首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
2.
3.
4.
5.
6.
GATA-1 is essential for the generation of the erythroid, megakaryocytic, eosinophilic and mast cell lineages. It acts as an activator and repressor of different target genes, for example, in erythroid cells it represses cell proliferation and early hematopoietic genes while activating erythroid genes, yet it is not clear how both of these functions are mediated. Using a biotinylation tagging/proteomics approach in erythroid cells, we describe distinct GATA-1 interactions with the essential hematopoietic factor Gfi-1b, the repressive MeCP1 complex and the chromatin remodeling ACF/WCRF complex, in addition to the known GATA-1/FOG-1 and GATA-1/TAL-1 complexes. Importantly, we show that FOG-1 mediates GATA-1 interactions with the MeCP1 complex, thus providing an explanation for the overlapping functions of these two factors in erythropoiesis. We also show that subsets of GATA-1 gene targets are bound in vivo by distinct complexes, thus linking specific GATA-1 partners to distinct aspects of its functions. Based on these findings, we suggest a model for the different roles of GATA-1 in erythroid differentiation.  相似文献   

7.
P D Aplan  K Nakahara  S H Orkin    I R Kirsch 《The EMBO journal》1992,11(11):4073-4081
  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
Leukemogenesis caused by incapacitated GATA-1 function   总被引:2,自引:0,他引:2       下载免费PDF全文
GATA-1 is essential for the development of erythroid and megakaryocytic lineages. We found that GATA-1 gene knockdown female (GATA-1.05/X) mice frequently develop a hematopoietic disorder resembling myelodysplastic syndrome that is characterized by the accumulation of progenitors expressing low levels of GATA-1. In this study, we demonstrate that GATA-1.05/X mice suffer from two distinct types of acute leukemia, an early-onset c-Kit-positive nonlymphoid leukemia and a late-onset B-lymphocytic leukemia. Since GATA-1 is an X chromosome gene, two types of hematopoietic cells reside within heterozygous GATA-1 knockdown mice, bearing either an active wild-type GATA-1 allele or an active mutant GATA-1.05 allele. In the hematopoietic progenitors with the latter allele, low-level GATA-1 expression is sufficient to support survival and proliferation but not differentiation, leading to the accumulation of progenitors that are easily targeted by oncogenic stimuli. Since such leukemia has not been observed in GATA-1-null/X mutant mice, we conclude that the residual GATA-1 activity in the knockdown mice contributes to the development of the malignancy. This de novo model recapitulates the acute crisis found in preleukemic conditions in humans.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号