首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Summary Using a direct conjugate of urokinase and ferritin, the binding has been followed at the plasma membrane and the internalization of urokinase into BALB/C-3T3 fibroblasts, cultured in plasminogen-free conditions. At 0° C, the conjugate was observed bound on both coated and uncoated cell surface regions as singlets, and small and large clusters. No binding was observed in the presence of excess native urokinase. The binding was impaired by preincubation of the conjugate with a competitive inhibitor of the catalytic site, suggesting an interaction between the receptor and the catalytic site of the enzyme.Within 1 min at 37° C, urokinase clustered on coated regions of the plasma membrane. At 5 min after warming, ferritin was found on deeply indented coated pits and in both coated and uncoated vesicles close to the cell surface. By 10 min at 37° C, ferritin particles were present in uncoated endosomes and in multivesicular bodies in the Golgi area. Within 10 min, the receptors on the surface strongly decreased. New receptors were observed on the membrane after 20 min at 37° C. At this time, ferritin was observed both in endosomes or multivesicular bodies and in vesicles close to the plasma membrane.  相似文献   

2.
Label-fracture immunochemistry and pre-embedding indirect immunocytochemistry were applied to investigate insulin uptake by endothelial cells. Freeze fracture replicas showed that a small percentage of native insulin receptors are associated with non-coated pits (4%) and coated pits (2%). After warming, receptor bound insulin became increasingly associated with such endocytotic vesicles. After 2 min the percentage of detectable insulin associated with non-coated and coated pits increased to 16% and 8%, respectively. Pre-embedding immunocytochemical localization of insulin gave results consistent with those obtained from the label-fracture studies. Both non-coated and coated vesicles appeared labelled after 5 min of warming. Non-coated vesicles contained 25% of the cell associated insulin while 9% was associated with coated pits and vesicles. After 10 min of warming, 9% of label was located in non-coated vesicles and 7% in coated vesicles. A large proportion (29%) of the label was found in tubular-vesicular endosomes at this time. After 15 min of warming, 30% of the remaining cell-associated gold label was found in multivesicular bodies. These experiments demonstrate that insulin uptake by endothelium is mediated by both coated and non-coated vesicles and that, once internalized, insulin is routed through endosomal pathways that primarily result in transcytosis.  相似文献   

3.
Summary The morphological aspects of the binding and internalization of low density lipoproteins (LDL) and acetylated low density lipoproteins (AcLDL) by cultured human monocyte-derived macrophages were investigated. For this purpose, LDL and AcLDL were conjugated to 20 nm colloidal gold particles. After incubation of the cells with the conjugated lipoproteins at 4° C some LDL-or AcLDL-gold complexes were found to be attached to the cell surface, but without characteristic localization. However, after incubation of the cells at 8° C with either LDL-gold or AcLDL-gold, lipoprotein-gold complexes were present in clusters on the plasma membrane, often in coated pits. Cells incubated at 37° C for various time periods showed internalization of both LDL- and AcLDL-gold complexes via small coated and non-coated vesicles and processing of the complexes in smooth-walled endosomes. When the cells were pulse-chased with LDL- or AcLDL-gold for 30 min at 37° C, the gold conjugates occurred in dense bodies, probably lysosomes. The results suggest that although native and modified LDL are reported to be metabolized differently by macrophages, the morphological aspects of the endocytosis of LDL and AcLDL by cultured human monocyte-derived macrophages are similar.  相似文献   

4.
Summary The ileal absorptive cells of suckling rats exhibit high levels of endocytic activity being engaged in nonselective uptake of macromolecules from the intestinal lumen. The apical cytoplasm usually contains an extensive network of small, membrane-limited tubules (apical tubules: AT), in addition to newly formed endocytic vesicles and large endocytic vacuoles. To determine whether the AT are directly involved in the endocytic process by carrying the tracer into the cell, we have analysed movements of the apical cell membrane of the ileal absorptive cells by using a membrane-bound tracer (horseradish peroxidase-labelled cancanavalin-A: Con-A HRP). The ileal absorptive cells were exposed in vitro to Con-A HRP for 10 min at 4° C, incubated for different times in Con-A free medium at 37° C, and prepared for electron microscopy. After 1 min incubation at 37° C, invaginations of the apical cell membrane, including coated pits, and endocytic vesicles were labelled with HRP-reaction product, whereas the AT and large endocytic vacuoles were negative. After 2.5 min, almost all the large endocytic vacuoles were labelled with reaction product, which was seen in their vacuolar lumen and along the luminal surface of their limiting membrane. A few AT with reaction product were seen in the apical cytoplasm; they were in frequent connection with the reaction-positive large endocytic vacuoles. With increasing incubation time, the number of the labelled AT increased. Thus, after 15 min at 37° C, the apical cytoplasm was fully occupied by the reaction-positive AT. The ends of these AT were often continuous with small spherical coated vesicles. No reaction product was detected in the Golgi complex at any time after incubation. These observations indicate that the AT located in the apical cytoplasm probably originate by budding off from the large endocytic vacuoles, rather than being involved in the process of endocytosis.  相似文献   

5.
Earlier studies have shown that transferrin binds to specific receptors on the reticulocyte surface, clusters in coated pits and is then internalized via endocytic vesicles. Guinea-pig reticulocytes also have specific receptors for ferritin. In this paper ferritin and transferrin endocytosis by guinea-pig reticulocytes was studied by electron microscopy using the natural electron density of ferritin and colloidal gold-transferrin (AuTf). At 4 degrees C both ligands bound to the cell surface. At 37 degrees C progressive uptake occurred by endocytosis. AuTf and ferritin clustered in the same coated pits and small intracellular vesicles. After 60 min incubations the ligands colocalized to large multivesicular endosomes (MVE), still membrane-bound. MVE subsequently fused with the plasma membrane and released AuTf, ferritin and inclusions by exocytosis. All endocytic structures labelled with AuTf contained ferritin, but 23 to 35% of ferritin-labelled endocytic structures contained no AuTf. These data suggest that ferritin and transferrin are internalized through the same pathway involving receptors, coated pits and vesicles, but that these proteins are recycled only partly in common.  相似文献   

6.
Alpha 2-macroglobulin is internalized into cultured fibroblasts by receptor-mediated endocytosis. This ligand binds initially to diffusely distributed receptors on the cell surface which cluster rapidly into bristle-coated pits. Within a few minutes at 37 degrees C, these complexes are internalized into uncoated cytoplasmic vesicles, called receptosomes, which move about in the cell by saltatory motion. These vesicles interact with the Golgi-endoplasmic reticulum-lysosome system in the cell to deliver the ligand to newly formed lysosomes within 30--60 min.  相似文献   

7.
We have examined, by analyzing thin (15-20 nm) serial sections, whether coated pits involved in adsorptive pinocytosis in cultured fibroblasts give rise to free coated vesicles or represent permanently surface-associated structures from the neck of which uncoated receptosomes pinch off and carry ligand into the cell. Human skin fibroblasts and mouse L-929 fibroblasts were incubated with cationized ferritin (CF), a ligand known to bind to coated pit regions, at 37 degrees C before fixation. In thin sections, CF was found in coated vesicular profiles within the cytoplasm. Serial sections revealed that whereas many of these coated profiles communicated with the cell surface, thus representing pits, about 10% in L-cells and 36% in skin fibroblasts were actually free coated vesicles. Moreover, evidence for uncoated vesicular structures (receptosomes) budding off from the coated pits was not obtained. We therefore conclude that coated pits do pinch off from the plasma membrane to form free, coated vesicles (pinosomes).  相似文献   

8.
Using transmission electron microscopy, we have studied the interaction of alpha 2 macroglobulin (alpha 2 M) with the surface of cultured fibroblasts. When cells were incubated for 2 h at 4 degrees C with ferritin-conjugated alpha 2 M, approximately 90% of the alpha 2 M was diffusely distributed on the cell surface, and the other 10% was concentrated in "coated" pits. A pattern of diffuse labeling with some clustering in "coated" pits was also obtained when cells were incubated for 5 min at 4 degrees C with alpha 2 M, fixed with glutaraldehyde, and the alpha 2 M was localized with affinity-purified, peroxidase-labeled antibody to alpha 2 M. Experiments in which cells were fixed with 0.2% paraformaldehyde before incubation with alpha 2 M showed that the native distribution of alpha 2 M receptors was entirely diffuse without significant clustering in "coated" pits. This indicates that some redistribution of the alpha 2 M-receptor complexes into clusters occurred even at 4 degrees C. In experiments with concanavalin A(Con A), we found that some of the Con A clustered in coated regions of the membrane and was internalized in coated vesicles, but much of the Con A was directly internalized in uncoated vesicles or pinosomes. We conclude that unoccupied alpha 2 M receptors are diffusely distributed on the cell surface. When alpha 2 M-receptor complexes are formed, they rapidly cluster in coated regions or pits in the plasma membrane and subsequently are internalized in coated vesicles. Because insulin and epidermal growth factor are internalized in the same structures as alpha 2 M (Maxfield, F.R., J. Schlessinger, Y. Schechter, I. Pastan, and M.C. Willingham. 1978. Cell, 14: 805--810.), we suggest that all peptide hormones, as well as other proteins that enter the cell by receptor-mediated endocytosis, follow this same pathway.  相似文献   

9.
Summary The removal of the acetylcholine receptors (AChRs) from the surface of muscle cells serves as an important mechanism in the regulation of the AChR turnover rate. Our previous studies have shown that cultured myotubes contain coated pits and vesicles bearing -bungarotoxin (BTX)-binding sites (Bursztajn 1984; Bursztajn and Fischbach 1984). In this study we have used BTX conjugated to horseradish peroxidase (HRP) and quantitative electron microscopy to determine the intracellular pathway(s) of acetylcholine receptors during the internalization process. To accomplish this, cultured rat myotubes were incubated with BTX-HRP at 4° C after which cells were washed and incubated at 37° C for 0 min to 2 h. After warming the cells, coated pits, coated vesicles and smooth membraned vesicles containing the peroxidase reaction product were present. A threefold increase in coated vesicles containing the reaction product was observed 1 min after warming the cells. The number of smooth-membraned vesicles remained constant at this time point. However, 5 to 15 min after warming the cells, a fivefold increase in the number of smooth membraned vesicles was observed. After 1 h at 37° C the reaction product was present in the lysosomal like bodies, but was not observed in the Golgi complex or the small coated vesicles associated with the Golgi complex. Our observations indicate that there is a size segregation between those coated vesicles containing BTX-HRP reaction product and those in which reaction product is absent. Our studies also suggest that within minutes of AChR internalization coated vesicles lose their coat and become smooth-membraned vesicles.  相似文献   

10.
We previously reported that in 3T3-L1 adipocytes 125I-insulin associates preferentially with microvilli and coated pits at low temperatures and early times of incubation. At higher temperatures it is internalized through a series of membrane limited intracellular compartments. In the present study, we used a high resolution probe, cationic ferritin (CF), to track adsorptive endocytosis in the 3T3-L1 adipocyte. We find that CF initially associates with coated pits at 2 min of incubation at 37 degrees C. With further incubation at 37 degrees C CF is internalized and after 2 to 10 min of incubation is predominantly localized to coated and non-coated clear vesicles. Approximately 50% of the apparent coated vesicles seen near the plasma membrane on single thin sections are shown by serial sectioning to be true vesicles (i.e., without a surface connection). At later time points CF is localized predominantly to lysosomal structures and, to a much smaller extent, Golgi-related structures. The remarkable similarity between 125I-insulin and CF with respect to post-binding processing suggests that while the membrane receptor confers the initial specificity, post-binding events are common for different types of ligands after they bind to cell surfaces and are subject to adsorptive endocytosis.  相似文献   

11.
Transferrin receptor and its recycling in HeLa cells.   总被引:44,自引:14,他引:30       下载免费PDF全文
The transferrin receptor is a 180 000-dalton protein which can be dissociated to two 90 000-dalton polypeptides under reducing conditions. It can be labelled by lactoperoxidase-catalysed iodination on the cell surface at 0 degree C. Trypsin digestion of labelled cells at 0 degree C can be used to degrade those receptors on the cell surface; they release a 70 000-dalton soluble fragment which binds to transferrin. When cells are labelled at 0 degree C, then warmed to 37 degrees C, the labelled receptors enter the cells and become trypsin resistant. These receptors enter the cells, probably via coated pits, with a half-life of approximately 5 min. Since there is about three times as much receptor inside cells as on the surface, this means that transit through the cell to the cell surface takes approximately 21 min, if all receptors are on the same cycling pathway.  相似文献   

12.
To characterize the mechanism of internalization of beta-adrenergic catecholamine receptors on human epidermoid A431 carcinoma cells, their distribution was analyzed by immunocytochemistry using the monoclonal anti-receptor antibody BRK2. In preconfluent cultures, the receptors appeared to be randomly distributed on the cell surface. Exposure to the agonist isoproterenol induced an overall decrease in the number of cell surface receptors as determined by binding experiments and visualized by immunofluorescence. When cells were incubated at 4 degrees C with BRK2 and anti-mouse IgG-gold and then transferred at 37 degrees C, non-coated invaginations and vesicles were labeled. The addition of isoproterenol resulted in an increased rate of internalization of the receptor-BRK2-anti-IgG-gold complex. When incubation with the two antibody reagents was prolonged (with or without isoproterenol), non-coated vesicles fused in the endosomal compartment, and receptors were transferred to multivesicular bodies and lysosomes. At no stage in this process was there any indication that clathrin-coated pits or vesicles participated. Furthermore, we found that an intracellular potassium depletion treatment known to inhibit endocytosis, did not affect the normal pattern of desensitization of beta-adrenergic receptors.  相似文献   

13.
The fate of tetanus toxin bound to neuronal cells at 0 degree C was followed using an anti-toxin 125I-protein A assay. About 50% of surface-bound toxin disappeared within 5 min of warming cells to 37 degrees C. Experiments with 125I-toxin showed that much of this loss was due to dissociation of bound toxin into the medium. Some toxin was however rapidly internalised, and could be detected only by permeabilizing cells with Triton X-100 prior to assay. To investigate the mechanism of internalisation, tetanus toxin was adsorbed to colloidal gold. Toxin-gold was shown to be stable, and to recognise the same receptor(s) as free toxin. Quantitation of the distribution of toxin-gold particles bound to the cell body at 4 degrees C showed that it was concentrated in coated pits. After 5 min at 37 degrees C, toxin-gold appeared in coated vesicles, endosomes, and tubules. After 15 min, it was found largely in endosomes, and at 30 min in multivesicular bodies. The involvement of coated pits in internalisation of tetanus toxin, but not cholera toxin, was confirmed using the free toxins, anti-toxins, and protein A-gold. Toxin-gold also entered nerve terminals and axons via coated pits, accumulating in synaptic vesicles and intraaxonal uncoated vesicles, respectively.  相似文献   

14.
Summary The internalization and intracellular movements of apical-cell-membrane material were investigated in the endodermal cells of cultured visceral yolk-sacs of rats (whole-embryo culture; explanted at 10.5 days of gestation and cultured for 24h) using horseradish peroxidase- and ferritin-labelled concanavalin A (Con-A HRP, Con-A Fer). When visceral yolk-sac endoderm was exposed to Con-A HRP or Con-A Fer for 5 min at 4°C, the apical cell membranes containing a well-developed fuzzy coat were heavily labelled, whereas apical vacuoles, lysosomes and apical canaliculi were not. Incubation of Con-A-labelled endoderm for 5 60 min at 20° and 37°C in Con-A-free serum resulted in a temperature-dependent internalization of membranebound lectin into coated vesicles, apical vacuoles and lysosomes, and the apical cell membranes were cleared of the heavy labelling. With increasing incubation time, the number of labelled vacuolar structures and the intensity of their labelling decreased gradually, whereas the number of labelled apical canaliculi increased. Thus, after 30 and 60 min at 37°C, most of the apical canaliculi contained high concentrations of the markers. It was possible to observe labelled apical canaliculi that were in continuity with labelled apical vacuoles and lysosomes as well as with the apical cell membrane. These findings in rat endodermal cells indicate that constitutents of the apical cell membrane are internalized in apical vacuoles and lysosomes, and are then brought back to the apical cell membrane by the apical canaliculi, which concentrate and store this membrane material.Supported by the Deutsche Forschungsgemeinschaft (SFB 105)  相似文献   

15.
Concentrative receptor-mediated endocytosis of many specific ligands by cultured fibroblasts occurs through the coated pit-receptosome pathway. The formation of receptosomes was studied using two impermeant electron-dense labels for the cell surface, ruthenium red and concanavalin A-horseradish peroxidase. These studies show that at 4 degrees C, virtually all coated structures near the plasma membrane are in communication with the cell surface, and are not isolated coated vesicles. On warming cells to 37 degrees C for only 1 minute, a major portion of these structures become cryptic, that is, not labeled by these surface markers. However, on cooling cells immediately back to 4 degrees C, virtually all of these structures are again in communication with the surface. Many images showed that membrane of these cryptic pits to be continuous with the cell surface when caught in the appropriate plane of section; often there was a very narrow entrance that excluded extracellular label. At 37 degrees C, receptosomes could be occasionally seen forming as an invagination of membrane adjacent to the coated region. Mechanisms by which receptosomes may form and other evidence demonstrating the failure of coated pits to pinch off to form isolated coated vesicles during endocytosis are discussed.  相似文献   

16.
Coated pits trap cell surface receptors and mediate their internalization. Once internalized, many receptors recycle back to the cell surface. When recycled receptors are inserted into the plasma membrane, they move until they are again trapped in coated pits. The mechanisms for moving receptors from their insertion sites to coated pits are unknown. Unaided diffusion as the transport mechanism is consistent with the observed kinetics of receptor recycling. Another candidate for the transport mechanism is convection. For receptors that recycle to random positions on the cell surface, or to restricted regions about coated pits, we assess the importance of convective flow in the transport of receptors to coated pits. First we consider local flows set up by the formation of coated pits and their transformation into coated vesicles. As coated pits form and round into coated vesicles, surrounding membrane is drawn inward, creating flows directed toward the coated pit centers. We show that unless the lifetime of a coated pit is very short, 10 s or less, such local flows have a negligible effect on the time it takes receptors to reach coated pits. We also show that they are unlikely to be the mechanism that keeps receptors that have reached coated pits trapped within coated pits until they are internalized. Finally we calculate the mean time tau for a diffusing receptor to reach a coated pit in the presence of membrane flow that is constant in magnitude and direction, as may occur on moving cells. We show that for typical membrane flow velocities, tau can be reduced significantly from its value in the absence of flow. For example, a velocity v = 2.8 micron/min cuts the mean transport time in half.  相似文献   

17.
Immunoglobulin (Ig) b4 allotypic determinants are detected on the surface membrane of rabbit peripheral blood lymphocytes by an indirect immunoferritin labeling technique. Cells coated with antiallotype antibodies are labelled with soluble complexes of ferritin and rabbit antiferritin of a given allotype. At 0 °C a patchy distribution of labeled surface immunoglobulin is visualized on 80% of the lymphocytes examined. Warming of the cells for 1–5 min at 37 °C causes rapid endocytosis of surface label in a perinuclear fashion. Cap formation is not observed. Cross-linking of immunoferritin labelled surface determinants with sheep anti-rabbit Ig (SARG) inhibits endocytosis and promotes aggregation of small surface patches. Indirect evidence suggests that sloughing and/or stripping of labelled surface Ig can occur after this aggregation. These surface changes may be the first step in the induction of lymphocyte activation.  相似文献   

18.
C Watts 《The EMBO journal》1984,3(9):1965-1970
Asialoorosomucoid was conjugated to lactoperoxidase and bound specifically to the asialoglycoprotein receptor on the human cell line Hep G2 at 4 degrees C. The bound conjugates incorporated 125I into cell surface proteins in the presence of H2O2. When Hep G2 cells were allowed to endocytose the prebound conjugates by warming to 37 degrees C for 10 min or were incubated for 1 h at 23 degrees C in the presence of conjugate, addition of 125I and H2O2 at 4 degrees C now resulted in labelling of endocytic vesicle proteins. The cell surface labelling pattern and the endosome labelling pattern were compared and found to be distinct. A major component labelled by the endocytosed asialoorosomucoid conjugate is shown to be the transferrin receptor. This protein and a component of 230 000 daltons are enriched in the endosome relative to the cell surface. The endocytosed lactoperoxidase conjugate was also visualised at the morphological level. Characteristic endosome tubules and vesicles contained electron-dense peroxidase reaction product as did cell surface coated pits. Selective capture of some cell surface proteins but not others by coated pits presumably gives rise to the distinct polypeptide composition of the endosome.  相似文献   

19.
The morphological aspects of the binding and internalization of low density lipoproteins (LDL) and acetylated low density lipoproteins (AcLDL) by cultured human monocyte-derived macrophages were investigated. For this purpose, LDL and AcLDL were conjugated to 20 nm colloidal gold particles. After incubation of the cells with the conjugated lipoproteins at 4 degrees C some LDL- or AcLDL-gold complexes were found to be attached to the cell surface, but without characteristic localization. However, after incubation of the cells at 8 degrees C with either LDL-gold or AcLDL-gold, lipoprotein-gold complexes were present in clusters on the plasma membrane, often in coated pits. Cells incubated at 37 degrees C for various time periods showed internalization of both LDL- and AcLDL-gold complexes via small coated and non-coated vesicles and processing of the complexes in smooth-walled endosomes. When the cells were pulse-chased with LDL- or AcLDL-gold for 30 min at 37 degrees C, the gold conjugates occurred in dense bodies, probably lysosomes. The results suggest that although native and modified LDL are reported to be metabolized differently by macrophages, the morphological aspects of the endocytosis of LDL and AcLDL by cultured human monocyte-derived macrophages are similar.  相似文献   

20.
At 4 degrees C transferrin bound to receptors on the reticulocyte plasma membrane, and at 37 degrees C receptor-mediated endocytosis of transferrin occurred. Uptake at 37 degrees C exceeded binding at 4 degrees C by 2.5-fold and saturated after 20-30 min. During uptake at 37 degrees C, bound transferrin was internalized into a trypsin- resistant space. Trypsinization at 4 degrees C destroyed surface receptors, but with subsequent incubation at 37 degrees C, surface receptors rapidly appeared (albeit in reduced numbers), and uptake occurred at a decreased level. After endocytosis, transferrin was released, apparently intact, into the extracellular space. At 37 degrees C colloidal gold-transferrin (AuTf) clustered in coated pits and then appeared inside various intracellular membrane-bounded compartments. Small vesicles and tubules were labeled after short (5-10 min) incubations at 37 degrees C. Larger multivesicular endosomes became heavily labeled after longer (20-35 min) incubations. Multivesicular endosomes apparently fused with the plasma membrane and released their contents by exocytosis. None of these organelles appeared to be lysosomal in nature, and 98% of intracellular AuTf was localized in acid phosphatase-negative compartments. AuTf, like transferrin, was released with subsequent incubation at 37 degrees C. Freeze-dried and freeze-fractured reticulocytes confirmed the distribution of AuTf in reticulocytes and revealed the presence of clathrin-coated patches amidst the spectrin coating the inner surface of the plasma membrane. These data suggest that transferrin is internalized via coated pits and vesicles and demonstrate that transferrin and its receptor are recycled back to the plasma membrane after endocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号