首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 954 毫秒
1.
T Luo  R A Livingston    J V Garcia 《Journal of virology》1997,71(12):9524-9530
Nef proteins from human immunodeficiency virus type 1 isolate SF2 (HIV-1SF2) and simian immunodeficiency virus isolate mac239 (SIVmac239) have been found to associate with a cellular serine/threonine kinase designated NAK. We have recently shown that the association of Nef with NAK is isolate dependent. To identify the structural basis for Nef-kinase association, several chimeric molecules were constructed between SF2 Nef (binding NAK) and 233 Nef (a primary isolate not binding NAK) and stably expressed in HuT-78 human T cells via retrovirus-mediated gene transfer. The Nef 233/SF2/SF2 chimera in which the N-terminal 37 amino acids of SF2 Nef were replaced by those of 233 Nef showed the same ability as SF2 Nef to bind NAK. The Nef 233/SF2/233 chimera in which the N-terminal 37 amino acids and the C-terminal 72 amino acids of SF2 Nef were replaced by corresponding sequences from 233 Nef completely lost the ability to associate with the kinase activity. Furthermore, replacement of the C-terminal 72 amino acids of 233 Nef with the equivalent SF2 sequence (chimera 233/233/SF2) fully restored kinase association to 233 Nef. These results suggest that (i) the core of Nef is not sufficient for NAK binding, (ii) the C terminus of SF2 Nef contains structural determinants important for association with NAK, and (iii) the failure of 233 Nef to bind NAK is due to a defect in its C terminus. Taking advantage of the C terminus of 233 Nef being nonfunctional and using an infectious clone of HIV-1SF2, we show that association with NAK is not required for Nef-mediated infectivity enhancement. While the strong and reproducible association of some Nef isolates with NAK has been clearly established, the role of NAK in Nef function remains to be fully elucidated.  相似文献   

2.
Adult rhesus macaques infected with nef-defective simian immunodeficiency virus (SIV) exhibit extremely low levels of steady-state virus replication, do not succumb to immunodeficiency disease, and are protected from experimental challenge with pathogenic isolates of SIV. Similarly, rare humans found to be infected with nef-defective human immunodeficiency virus type 1 (HIV-1) variants display exceptionally low viral burdens and do not show evidence of disease progression after many years of infection. HIV-1 Nef induces the rapid endocytosis and lysosomal degradation of cell surface CD4 and enhances virus infectivity in primary human T cells and macrophages. Although expression of SIV Nef also leads to down-modulation of cell surface CD4 levels, no evidence for SIV Nef-induced enhancement of virus infectivity was observed in earlier studies. Thus, it remains unclear whether fundamental differences exist between the activities of HIV-1 and SIV Nef. To establish more clearly whether the SIV and HIV-1 nef gene products are functionally analogous, we compared the replication kinetics and infectivity of variants of SIVmac239 that either do (SIVnef+) or do not (SIV delta nef) encode intact nef gene products. SIVnef+ replicates more rapidly than nef-defective viruses in both human and rhesus peripheral blood mononuclear cells (PBMCs). As previously described for HIV-1 Nef, SIV Nef also enhances virus infectivity within each cycle of virus replication. As a strategy for evaluating the in vivo contribution of HIV-1 nef alleles and long terminal repeat regulatory sequences to the pathogenesis of immunodeficiency disease, we constructed SIV-HIV chimeras in which the nef coding and U3 regulatory regions of SIVmac239 were replaced by the corresponding regions from HIV-1/R73 (SIVR7nef+). SIVR7nef+ displays enhanced infectivity and accelerated replication kinetics in primary human and rhesus PBMC infections compared to its nef-defective counterpart. Converse chimeras, containing SIV Nef in an HIV-1 background (R7SIVnef+) also exhibit greater infectivity than matched nef-defective viruses (R7SIV delta nef). These data indicate that SIV Nef, like that of HIV-1, does enhance virus replication in primary cells in tissue culture and that HIV-1 and SIV Nef are functionally interchangeable in the context of both HIV-1 and SIV.  相似文献   

3.
Nef proteins from human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) have been found to associate with an active cellular serine/threonine kinase designated Nef-associated kinase (Nak). The exact identity of Nak remains controversial, with two recent studies indicating that Nak may be either Pak1 or Pak2. In this study, we investigated the hypothesis that such discrepancies arise from the use of different Nef alleles or different cell types by individual investigators. We first confirm that Pak2 but not Pak1 is cleaved by caspase 3 in vitro and then demonstrate that Nak is caspase 3 sensitive, regardless of Nef allele or cell type used. We tested nef alleles from three lentiviruses (HIV-1 SF2, HIV-1 NL4-3, and SIVmac239) and used multiple cell lines of myeloid, lymphoid, and nonhematopoietic origin to evaluate the identity of Nak. We demonstrate that ectopically expressed Pak2 can substitute for Nak, while ectopically expressed Pak1 cannot. We then show that Nef specifically mediates the robust activation of ectopically expressed Pak2, directly demonstrating that Nef regulates Pak2 activity and does not merely associate with activated Pak2. We report that most of the active Pak2 is found bound to Nef, although a fraction is not. In contrast, only a small amount of Nef is found associated with Pak2. We conclude that Nak is Pak2 and that Nef specifically mediates Pak2 activation in a low-abundance complex. These results will facilitate both the elucidation of the role of Nef in pathogenesis and the development of specific inhibitors of this highly conserved function of Nef.  相似文献   

4.
Nef proteins of primate lentiviruses promote viral replication, virion infectivity, and evasion of antiviral immune responses by modulating signal transduction pathways and downregulating expression of receptors at the cell surface that are important for efficient antigen-specific responses, such as CD4, CD28, T-cell antigen receptor, and class I and class II major histocompatibility complex. Here we show that Nef proteins from diverse groups of primate lentiviruses which do not require the chemokine receptor CXCR4 for entry into target cells strongly downmodulate the cell surface expression of CXCR4. In contrast, all human immunodeficiency virus type 1 (HIV-1) and the majority of HIV-2 Nef proteins tested did not have such strong effects. SIVmac239 Nef strongly inhibited lymphocyte migration to CXCR4 ligand, the chemokine stromal derived factor 1 (SDF-1). SIVmac239 Nef downregulated CXCR4 by accelerating the rate of its endocytosis. Downmodulation of CXCR4 was abolished by mutations that disrupt the constitutively strong AP-2 clathrin adaptor binding element located in the N-terminal region of the Nef molecule, suggesting that Nef accelerates CXCR4 endocytosis via an AP-2-dependent pathway. Together, these results point to CXCR4 as playing an important role in simian immunodeficiency virus and possibly also HIV-2 persistence in vivo that is unrelated to viral entry into target cells. We speculate that Nef targets CXCR4 to disrupt ordered trafficking of infected leukocytes between local microenvironments in order to facilitate their dissemination and/or impair the antiviral immune response.  相似文献   

5.
The nef gene of the pathogenic simian immunodeficiency virus (SIV) mac239 clone has been well characterized. Little is known, however, about the function of nef alleles derived from naturally SIVsm-infected sooty mangabeys (Cercocebus atys) and from human immunodeficiency virus type 2 (HIV-2)-infected individuals. Addressing this, we demonstrate that, similarly to the SIVmac239 nef, primary SIVsm and HIV-2 nef alleles down-modulate cell surface expression of human CD4, CD28, CD3, and class I or II major histocompatibility complex (MHC-I or MHC-II, respectively) molecules, up-regulate surface expression of the invariant chain (Ii) associated with immature MHC-II, inhibit early T-cell activation events, and enhance virion infectivity. Both also stimulate viral replication, although HIV-2 nef alleles were less active in this assay than SIVsm nef alleles. Mutational analysis showed that a dileucine-based sorting motif in the C-proximal loop of SIV or HIV-2 Nef is critical for its effects on CD4, CD28, and Ii but dispensable for down-regulation of CD3, MHC-I, and MHC-II. The C terminus of SIV and HIV-2 Nef was exclusively required for down-modulation of MHC-I, further demonstrating that analogous functions are mediated by different domains in Nef proteins derived from different groups of primate lentiviruses. Our results demonstrate that none of the eight Nef functions investigated had been newly acquired after cross-species transmission of SIVsm from naturally infected mangabeys to humans or macaques. Notably, HIV-2 and SIVsm nef alleles efficiently down-modulate CD3 and C28 surface expression and inhibit T-cell activation more efficiently than HIV-1 nef alleles. These differences in Nef function might contribute to the relatively low levels of immune activation observed in HIV-2-infected human individuals.  相似文献   

6.
A nef gene is present in all primate lentiviruses, including human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus of macaque monkeys (SIVmac). However, the nef genes of HIV-1 and SIVmac exhibit minimal sequence identity, and not all properties are shared by the two. Nef sequences of SIVmac239 were replaced by four independent nef alleles of HIV-1 in a context that was optimal for expression. The sources of the HIV-1 nef sequences included NL 4-3, a variant NL 4-3 gene derived from a recombinant-infected rhesus monkey, a patient nef allele, and a nef consensus sequence. Of 16 rhesus monkeys infected with these SHIVnef chimeras, 9 maintained high viral loads for prolonged periods, as observed with the parental SIVmac239, and 6 have died with AIDS 52 to 110 weeks postinfection. Persistent high loads were observed at similar frequencies with the four different SIV recombinants that expressed these independent HIV-1 nef alleles. Infection with other recombinant SHIVnef constructions resulted in sequence changes in infected monkeys that either created an open nef reading frame or optimized the HIV-1 nef translational context. The HIV-1 nef gene was uniformly retained in all SHIVnef-infected monkeys. These results demonstrate that HIV-1 nef can substitute for SIVmac nef in vivo to produce a pathogenic infection. However, the model suffers from an inability to consistently obtain persisting high viral loads in 100% of the infected animals, as is observed with the parental SIVmac239.  相似文献   

7.
Human immunodeficiency virus type 1(F12) (HIV-1(F12)) interferes with the replication of other strains of HIV. Its accessory protein, Nef, is sufficient for this phenotype, where the production and infectivity of HIV are impaired significantly. The analysis of three rare mutations in this Nef protein revealed that these effects could be separated genetically. Moreover, the defect in virus production correlated with the lack of processing of the p55(Gag) precursor in the presence of Nef from HIV-1(F12). Importantly, the introduction of one of these mutations (E177G) into Nef from HIV-1(NL4-3) also created a dominant-negative Nef protein. Effects of Nef from HIV-1(F12) on virus production and Gag processing correlated with its altered subcellular distribution. Moreover, the association with two new cellular proteins with molecular masses of 74 and 75 kDa, which do not interact with other Nef proteins, correlated with the decreased virion infectivity. The identification of a dominant-negative protein for the production and infectivity of HIV suggests that Nef plays an active role at this stage of the viral replicative cycle.  相似文献   

8.
CEMx174- and C8166-45-based cell lines which contain a secreted alkaline phosphatase (SEAP) reporter gene under the control of a tat-responsive promoter derived from either SIVmac239 or HIV-1(NL4-3) were constructed. Basal levels of SEAP activity from these cell lines were low but were greatly stimulated upon transfection of tat expression plasmids. Infection of these cell lines with simian immunodeficiency virus (SIV) or human immunodeficiency virus type 1 (HIV-1) resulted in a dramatic increase in SEAP production within 48 to 72 h that directly correlated with the amount of infecting virus. When combined with chemiluminescent measurement of SEAP activity in the cell-free supernatant, these cells formed the basis of a rapid, sensitive, and quantitative assay for SIV and HIV infectivity and neutralization. Eight of eight primary isolates of HIV-1 that were tested induced readily measurable SEAP activity in this system. While serum neutralization of cloned SIVmac239 was difficult to detect with other assays, neutralization of SIVmac239 was readily detected at low titers with this new assay system. The neutralization sensitivities of two stocks of SIVmac251 with different cell culture passage histories were tested by using sera from SIV-infected monkeys. The primary stock of SIVmac251 had been passaged only twice through primary cultures of rhesus monkey peripheral blood mononuclear cells, while the laboratory-adapted stock had been extensively passaged through the MT4 immortalized T-cell line. The primary stock of SIVmac251 was much more resistant to neutralization by a battery of polyclonal sera from SIV-infected monkeys than was the laboratory-adapted virus. Thus, SIVmac appears to be similar to HIV-1 in that extensive laboratory passage through T-cell lines resulted in a virus that is much more sensitive to serum neutralization.  相似文献   

9.
Ono T  Iwatani Y  Nishimura A  Ishimoto A  Sakai H 《FEBS letters》2000,466(2-3):233-238
Nef gene function is diverse among virus isolates of primate immunodeficiency viruses. We found differential effects of nef mutation on the virus replication between two HIV-1 clones, NL432 and LAI. The nef mutation in NL432 affected the infectivity more severely compared with that in LAI, although the Nef functions of both clones were comparable. Analysis with a series of chimeric viruses between NL432 and LAI revealed that the gag-pol region was responsible for the differential effect of nef mutation. The functional association between Nef and gag-pol suggested that one of the potential targets of Nef was located within the gag-pol region.  相似文献   

10.
A Werner  G Winskowsky    R Kurth 《Journal of virology》1990,64(12):6252-6256
The CD4 molecule is expressed on T-helper cells and serves as the cellular receptor for the human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2) and for the simian immunodeficiency viruses SIVmac and SIVagm. HIV-1, HIV-2, and SIVmac infectivity can be blocked by monoclonal antibodies (MAbs) directed against the CD4 molecule and by soluble CD4 proteins (sCD4). In the present study, we demonstrated not only lack of inhibition, but 10- to 100-fold sCD4-dependent enhancement of SIVagm infectivity of human T-cell lymphoma lines, although SIVagm infection was blocked by MAbs OKT4a and Leu3a. SIVagm enhancement with sCD4 was suppressed by MAbs OKT4a and Leu3a to levels observed without addition of sCD4. The infectivity of all four tested SIVagm variants was enhanced by sCD4 on all tested lymphoma cell lines. These results suggest a second step (second or secondary receptor) required for enhancing virus entry into the cell and may have serious implications for approaches to the treatment of acquired immunodeficiency syndrome on the basis of modified sCD4 molecules.  相似文献   

11.
Simian immunodeficiency virus (SIV) and human immunodeficiency virus type 1 (HIV-1) Nef proteins are related regulatory proteins that share several functions, including the ability to downregulate class I major histocompatibility complex (MHC) and CD4 expression on the cell surface and to alter T-cell-receptor-initiated signal transduction in T cells. We compared the mechanisms used by SIV mac239 Nef and HIV-1 Nef to downregulate class I MHC and found that the ability of SIV Nef to downregulate class I MHC requires a unique C-terminal region of the SIV mac239 Nef molecule which is not found in HIV-1 Nef. Interestingly, mutation of the PxxP motif in SIV Nef, unlike in HIV-1 Nef, does not affect class I MHC downregulation. We also found that downregulation of class I MHC by SIV Nef requires a conserved tyrosine in the cytoplasmic domain of the class I MHC heavy chain and involves accelerated endocytosis of class I complexes, as previously found with HIV-1 Nef. Thus, while SIV and HIV-1 Nef proteins use a similar mechanism to downregulate class I MHC expression, they have evolved different surfaces for molecular interactions with cell factors that regulate class I MHC traffic. Mutations in the C-terminal domain of SIV mac239 Nef selectively disrupt class I MHC downregulation, having no detectable effect on other functions of Nef, such as the downregulation of CD4 and CD3 surface expression, the stimulation of SIV virion infectivity, and the induction of SIV replication from T cells infected in the absence of stimulation. The resulting mutants will be useful reagents for studying the importance of class I MHC downregulation for SIV replication and AIDS pathogenesis in infected rhesus macaques.  相似文献   

12.
Among the pleiotropic effects of Nef proteins of HIV and simian immunodeficiency virus (SIV), down-modulation of cell surface expression of CD4 is a prominent phenotype. It has been presumed that Nef proteins accelerate endocytosis of CD4 by linking the receptor to the AP-2 clathrin adaptor. However, the related AP-1 and AP-3 adaptors have also been shown to interact with Nef, hinting at role(s) for these complexes in the intracellular retention of CD4. By using genetic inhibitors of endocytosis and small interfering RNA-induced knockdown of AP-2, we show that accelerated CD4 endocytosis is not a dominant mechanism of HIV-1 (NL4-3 strain) Nef in epithelial cells, T lymphocyte cell lines, or peripheral blood lymphocytes. Furthermore, we show that both the CD4 recycling from the plasma membrane and the nascent CD4 in transit to the plasma membrane are susceptible to intracellular retention in HIV-1 Nef-expressing cells. In contrast, AP-2-mediated enhanced endocytosis constitutes the predominant mechanism for SIV (MAC-239 strain) Nef-induced down-regulation of human CD4 in human cells.  相似文献   

13.
Human immunodeficiency virus (HIV) Nef is a membrane-associated protein decreasing surface expression of CD4, CD28, and major histocompatibility complex class I on infected cells. We report that Nef strongly down-modulates surface expression of the beta-chain of the CD8alphabeta receptor by accelerated endocytosis, while CD8 alpha-chain expression is less affected. By mutational analysis of the cytoplasmic tail of the CD8 beta-chain, an FMK amino acid motif was shown to be critical for Nef-induced endocytosis. Although independent of CD4, endocytosis of the CD8 beta-chain was abrogated by the same mutations in Nef that affect CD4 down-regulation, suggesting common molecular interactions. The ability to down-regulate the human CD8 beta-chain was conserved in HIV-1, HIV-2, and simian immunodeficiency virus SIVmac239 Nef and required an intact AP-2 complex. The Nef-mediated internalization of receptors, such as CD4, major histocompatibility complex class I, CD28, and CD8alphabeta, may contribute to the subversion of the host immune system and progression towards AIDS.  相似文献   

14.
We investigated the function of severely truncated simian immunodeficiency virus (SIV) Nef proteins (tNef) in vitro and in vivo. These variants emerged in rhesus monkeys infected with SIVmac239 containing a 152-bp deletion in the nef-unique region and have been suggested to enhance SIV virulence (E. T. Sawai, M. S. Hamza, M. Ye, K. E. Shaw, and P. A. Luciw, J. Virol. 74:2038-2045, 2000). We found that the tNef proteins were unable to down-regulate the cell surface expression of major histocompatibility complex class I proteins, CD4, and CD28 and neither stimulated SIV replication nor enhanced virion infectivity. The tNef proteins did efficiently down-regulate T-cell receptor (TCR):CD3 cell surface expression. Nevertheless, the SIVmac239 tnef variants were strongly attenuated in six infected juvenile rhesus macaques. Thus, while the ability of SIV Nef to down-modulate TCR:CD3 cell surface expression apparently confers a selective advantage in vivo, it is insufficient for efficient viral replication in infected macaques. Additional mutations elsewhere in SIVmac239 tnef genomes are required for a virulent phenotype.  相似文献   

15.
We have recently identified the Nef-associated serine-threonine kinase (NAK) as the p21-activated kinase 2 (PAK2). Here we have taken advantage of the possibility to manipulate the functional properties of NAK by transfecting PAK2 cDNA or its mutant derivatives in order to further characterize the Nef-NAK complex. To exclude the possibility that some Nef variants might interact with PAK1 instead of PAK2, we also examined the identity of NAK complexed with divergent human immunodeficiency virus type 1 HIV-1 Nef proteins. All tested Nef proteins, including SF2, NL4-3, BH10, and HAN-2, associated with PAK2 but not with PAK1. By exchanging different regions between these two PAK proteins, the selective ability of PAK2 to associate with Nef could be mapped to the carboxy-terminal part of its regulatory domain. Binding of PAK2 with the adapter protein Nck or beta-PIX was found to be dispensable for the assembly of the Nef-PAK2 complex, whereas an intact Cdc42-Rac1 interactive binding motif was required. Most importantly, we found that NAK represented a distinct subpopulation of the total cellular PAK2 characterized by a high specific kinase activity. Thus, although only a small fraction of cellular PAK2 could be found in complex with Nef, NAK represented a major part of cellular PAK2 activity.  相似文献   

16.
A variety of simian immunodeficiency virus (SIVmac) nef mutants have been investigated to clarify which in vitro Nef functions contribute to efficient viral replication and pathogenicity in rhesus macaques. Most of these nef alleles, however, were only functionally characterized for their ability to down-modulate CD4 and class I major histocompatibility complex (MHC-I) cell surface expression and to enhance SIV replication and infectivity. To obtain information on the in vivo relevance of more recently established Nef functions, we examined the ability of a large panel of constructed SIVmac Nef mutants and of variants that emerged in infected macaques to down-regulate CD3, CD28, and MHC-II and to up-regulate the MHC-II-associated invariant chain (Ii). We found that all these four Nef functions were restored in SIV-infected macaques. In most cases, however, the initial mutations and the changes selected in vivo affected several in vitro Nef functions. For example, truncated Nef proteins that emerged in animals infected with SIVmac239 containing a 152-bp deletion in nef efficiently modulated both CD3 and Ii surface expression. Overall, our results suggest that the effect of Nef on each of the six cellular receptors investigated contributes to viral fitness in the infected host but also indicate that modulation of CD3, MHC-I, MHC-II, or Ii surface expression alone is insufficient for SIV virulence.  相似文献   

17.
The nef gene products encoded by human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus type 1 (SIV-1) increase viral loads in infected hosts and accelerate clinical progression to AIDS. Nef exhibits a spectrum of biological activities, including the ability to downregulate surface expression of CD4 and major histocompatibility complex (MHC) class I antigens, to alter the state of T-cell activation, and to enhance the infectivity of viral particles. To determine which of these in vitro functions most closely correlates with the pathogenic effects of Nef in vivo, we constructed recombinant HIV-1 NL4-3 viruses carrying mutations within the nef gene that selectively impair these functions. These mutant viruses were evaluated for pathogenic potential in severe combined immunodeficiency (SCID) mice implanted with human fetal thymus and liver (SCID-hu Thy/Liv mice), in which virus-mediated depletion of thymocytes is known to be Nef dependent. Disruption of the polyproline type II helix (Pxx)4 within Nef (required for binding of Hck and p21-activated kinase-like kinases, downregulation of MHC class I, and enhancement of HIV-1 infectivity in vitro but dispensable for CD4 downregulation) did not impair thymocyte depletion in virus-infected Thy/Liv human thymus implants. Conversely, three separate point mutations in Nef that compromised its ability to downregulate CD4 attenuated thymocyte depletion while not diminishing viral replication. These findings indicate that the functional ability of Nef to downregulate CD4 and not MHC class I downregulation, Hck or PAK binding, or (Pxx)4-associated enhancement of infectivity most closely correlates with Nef-mediated enhancement of HIV-1 pathogenicity in vivo. Nef-mediated CD4 downregulation merits consideration as a new target for the development of small-molecule inhibitors.  相似文献   

18.
The northern pig-tailed macaque(Macaca leonina) has been identified as an independent species of Old World monkey, and we previously found that PBMCs from M. leonina were susceptible to human immunodeficiency virus type 1(HIV-1), which may be due to the absence of a TRIM5 protein restricting HIV-1 replication. Here we investigated the infection potentials of six laboratory adapted HIV-1 strains and three primary HIV-1 isolates in PBMCs from M. leonina. The results indicate that these strains are characterized by various but low replication levels, and among which, HIV-1NL4-3 shows the highest replication ability. Based on the abundant evidence of species-specific interactions between restriction factors APOBEC3 and HIV/SIV-derived Vif protein, we subsequently examined the replication potentials of vif-substituted HIV-1(HSIV) in M. leonina PBMCs. Notably, HSIV-vifmac and stHIV-1SV chimeras, two HIV-1NL4-3-derived viruses encoding the viral infectivity factor(Vif) protein from SIVmac239, replicated robustly in cells from M. leonina, which suggests that HSIV could effectively antagonize the antiviral activity of APOBEC3 proteins expressed in cells of M. leonina. Therefore, our data demonstrate that M. leonina has the potential to be developed into a promising animal model for human AIDS.  相似文献   

19.
The human immunodeficiency virus type 1 (HIV-1) evades the immune responses of natural killer (NK) cells through mechanisms that have been partially deciphered. Here we show that in HIV-1-infected T lymphocytes, the early viral Nef protein downmodulates PVR (CD155, Necl-5), a ligand for the activating receptor DNAM-1 (CD226) expressed by all NK cells, CD8(+) T cells, and other cell types. This novel Nef activity is conserved by Nef proteins of laboratory HIV-1 strains (NL4-3, SF2) and of a patient-derived virus, but it is not maintained by HIV-2. Nef uses the same motifs to downregulate PVR and HLA-I molecules, likely by the same mechanisms. Indeed, as previously demonstrated for HLA-I, Nef reduces the total amounts of cell-associated PVR. Optimal downregulation of cell surface PVR by Nef also requires the presence of the late viral factor Vpu. In line with PVR reduction, the NK cell-mediated lysis of T cells infected by a wild-type but not Nef-deficient virus is virtually abrogated upon blocking of both DNAM-1 and another activating receptor, NKG2D, previously shown to mediate killing of HIV-infected cells. Together, these data demonstrate that the PVR downmodulation by Nef and Vpu is a strategy evolved by HIV-1 to prevent NK cell-mediated lysis of infected cells. The PVR downregulation reported here has the potential to affect the immune responses of other DNAM-1-positive cells besides NK cells and to alter multiple PVR-mediated cellular processes, such as adhesion and migration, and may thus greatly influence HIV-1 pathogenesis.  相似文献   

20.
The HIV-1 accessory factor Nef is essential for high-titer viral replication and AIDS progression. Nef function requires interaction with many host cell proteins, including specific members of the Src kinase family. Here we explored whether Src-family kinase activation is a conserved property of Nef alleles from a wide range of primary HIV-1 isolates and their sensitivity to selective pharmacological inhibitors. Representative Nef proteins from the major HIV-1 subtypes A1, A2, B, C, F1, F2, G, H, J and K strongly activated Hck and Lyn as well as c-Src to a lesser extent, demonstrating for the first time that Src-family kinase activation is a highly conserved property of primary M-group HIV-1 Nef isolates. Recently, we identified 4-amino substituted diphenylfuropyrimidines (DFPs) that selectively inhibit Nef-dependent activation of Src-family kinases as well as HIV replication. To determine whether DFP compounds exhibit broad-spectrum Nef-dependent antiretroviral activity against HIV-1, we first constructed chimeric forms of the HIV-1 strain NL4-3 expressing each of the primary Nef alleles. The infectivity and replication of these Nef chimeras was indistinguishable from that of wild-type virus in two distinct cell lines (U87MG astroglial cells and CEM-T4 lymphoblasts). Importantly, the 4-aminopropanol and 4-aminobutanol derivatives of DFP potently inhibited the replication of all chimeric forms of HIV-1 in both U87MG and CEM-T4 cells in a Nef-dependent manner. The antiretroviral effects of these compounds correlated with inhibition of Nef-dependent activation of endogenous Src-family kinases in the HIV-infected cells. Our results demonstrate that the activation of Hck, Lyn and c-Src by Nef is highly conserved among all major clades of HIV-1 and that selective targeting of this pathway uniformly inhibits HIV-1 replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号