首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The two-layered, fibrillar cell wall of Mougeotia C. Agardh sp. consisted of 63.6% non-cellulosic carbohydrates and 13.4% cellulose. The orientation of cellulose microfibrils in the native cell wall agrees with the multinet growth hypothesis, which has been employed to explain the shift in microfibril orientation from transverse (inner wall) toward axial (outer wall). Monosaccharide analysis of isolated cell walls revealed the presence of ten sugars with glucose, xylose and galactose most abundant. Methylation analysis of the acid-modified, 1 N NaOH insoluble residue fraction showed that it was composed almost exclusively of 4-linked glucose, confirming the presence of cellulose. The major hemicellulosic carbohydrate was semi-purified by DEAE Sephacel (Cl?) anion-exchange chromatography of the hot 1 N NaOH soluble fraction. This hemicellulose was a xylan consisting of a 4-xylosyl backbone and 2,4-xylosyl branch points. The major hot water soluble neutral polysaccharide was identified as a 3-linked galactan. Mougeotia cell wall composition is similar to that of (Charophyceae) and has homologies with vascular plant cell walls. Our observations support transtructural evidence which suggests that members of the Charophyceae represent the phylogenetic line that gave rise to vascular plants. Therefore, the primary cell walls of vascular plants many have evolved directly from structures typical of the filamentous green algal cell walls found in the Charophyceae.  相似文献   

2.
The cell wall polysaccharides of two species of red algae, which are adapted to both freshwater and marine environments, were analysed to determine the effect of these widely different environments on their commercially important agarocolloids and to investigate the possible role of the cell wall in environmental adaptation. Cell wall polymers of freshwater isolates of Bangia atropurpurea (Roth) C. Agardh and cultured freshwater and marine Bostrychia moritziana (Sonder ex Kützing) J. Agardh were isolated and the polysaccharides chemically fractionated and characterized. Wall polysaccharides of freshwater B. atropurpurea were similar to those previously reported for marine isolates with repeating disac-charide units of agarose and porphyran predominant in the hot water extracts. In the insoluble residues, 3-iinked galactosyl and 4-linked mannosyl residues were predominant. Bostrychia moritziana wall polysaccharides included agarocolloids with various patterns of methyl ether substitution similar to those previously described for other Ceramiales. Differences in the position of methyl ether substituents were detected in the hot water extracts of the freshwater and marine specimens. Polymers of freshwater ß. moritziana cultures were composed of a complex mixture of repeating disaccharide units including 2′-O-methyl agarose, 6-O-methyI agarose and 2′-O-methyl porphyran. Polymers of marine isolates of ß. moritziana differ in that they contain only trace amounts of 2-O-methyl saccharides and increased amounts of 6-O-amethyl saccharides. The hot water insoluble residues of both freshwater and marine isolates of ß. moritziana contain a mixture of 3-linked galactosyl and 4-linked glucosyl residues. These results indicate that the adaptive response of B. moritziana to changing osmotic and ionic conditions may include changes in cell wall chemistry: notably, the pattern of methyl ether substitution.  相似文献   

3.
Two new polysaccharides were isolated from the cell walls of the carrageenan producing red seaweed Kappaphycus alvarezii (Doty) Doty. They were characterized by chemical analyses, enzymatic degradations, and nuclear magnetic resonance spectroscopy. One was a 4.0 M NaOH soluble β-(1,4)- d -glucomannan that mostly precipitated upon neutralization and dialysis. It was composed of about 82 residues, and 70% of its glucose and mannose were released by a commercial cellulase enzyme complex. The disaccharide β- d -Man (1→4) d -Glc was recovered from the hydrolysate during the first hours of degradation and confirmed the chemical structure of the polysaccharide. The other polysaccharide was extracted with 1.5 M NaOH and was identified as a sulfated glucan of degree of polymerization of about 180 1,4-linked β-glucose containing 10% 1,3-linkages. The sulfate was located on C-6 of 64% of the 4-linked glucose residues. A third alkali-soluble polysaccharide rich in galactose was also detected. The distribution of the glucomannan and galactose containing polysaccharides was inversely related to the algal cell size. Potential functions of these alkali-soluble polymers are discussed in the context of cell wall polysaccharide assembly.  相似文献   

4.
A hemicellulosic polysaccharide, which was homogeneous on sedimentation analysis and also on electrophoresis, was isolated from the rice endosperm cell walls by the combination of alkaline extraction, ion exchange chromatography and iodine complex formation. It is composed of arabinose, xylose and glucose (molar ratio, 1.0: 2.0: 5.7) together with a small amount of galactose and rhamnose. Methylation analysis, Smith degradation and fragmentation with cellulase showed that this polysaccharide is composed of three distinct polysaccharide moieties i.e., xyloglucan, β-glucan and arabinoxylan. The xyloglucan consists of β-(1→4)-linked glucan back bone and short side chains of single xylose units or galactosylxylose both attached to C-6 of the glucose residues. The β-glucan contains both (1 →3)-and (1→4)-linkages similarly to the other cereal β-glucans, but differ from them in containing the blocks of (1→3)-linked glucose residues in the chain. The arabinoxylan has a highly branched structure, in which 78% of (1→4)-linked xylose residues have short side chains of arabinose at C-3 position.

On the basis of these findings, the interconnection of these polysaccharide moieties is discussed.  相似文献   

5.
An acid-extractable, water-soluble, polysaccharide sulphate, isolated from Padina pavonia, comprised variable proportions of glucuronic acid, galactose, glucose, mannose, xylose, and fucose in addition to a protein moiety. Partial acid hydrolysis and autohydrolysis of the free acid polysaccharide yielded several oligosaccharides. Evidence from periodate oxidation studies indicated that the inner polysaccharide portion is composed of (1 → 4)-linked β-D-glucuronic acid, (1 → 4)-linked β-D-mannose and (1 → 4)-linked β-D-glucose residues. The heteropolymeric partially sulphated exterior portion is attached to the inner part and comprises various ratios of (1 → 4)-linked β-D-galactose, β-D-galactose-3-sulphate residues, (1 → 4)-linked β-D-glucose residues, (1 → 2)-linked α-L-fucose 4-sulphate residues and (1 → 3)-linked β-D-xylose residues.  相似文献   

6.
Halymenia durvillei is a red seaweed with a great potential as sulphated galactan producer collected in the coastal waters of small island of Madagascar (Nosy-be in Indian Ocean). To elucidate the structure of its polysaccharide, NMR (1H and 13C), FTIR, HPAEC and different colorimetric methods were carried out. It has been shown that this polysaccharide, consisted mainly of galactose, was branched by xylose and galactose in minor amounts. Arabinose and fucose were also detected. This galactan was found highly sulphated (42%, w/w) and pyruvylated (1.8%, w/w). Analysis of glycosidic linkages by CPG-MS and 13C NMR indicated that the polysaccharide has the defining linear backbone of alternating 3-β-d-galactopyranosyl units and 4-linked α-l/d-galactopyranosyl residues. 3,6-Anhydrogalactose units have been also detected in minor quantity. This λ-carrageenan like polysaccharide has shown original sulphatation patterns with 2-O (26%) or 2/6-O (58%) sulphated 3-linked β-d-galactopyranosyl units and 6-O (19%) or 2/6-O (47%) 4-linked α-l/d-galactopyranosyl residues.  相似文献   

7.
Cell walls of the Basidiomycete fungus Polyporus tumulosus (Cooke) were fractionated, and the polysaccharide content of the fractions investigated. The major constituents of the cell wall include four polysaccharides, chitin, a β-1, 3-glucan and the alkali soluble α-glucan and xylomannan.The glucan is highly dextrotatory with an [α]D21 of + 221° and gave on partial acid hydrolysis and acetolysis an homologous series of oligosaccharides. The disaccharide was shown to be nigerose 3-0-α-D-glucopyranosyl-D-glucose. Periodate oxidation and methylation studies provided supporting evidence that the polysaccharide is an essentially unbranched polymer of 1,3-linked glucose residues.The other alkali-soluble polysaccharide, a xylomannan, is a polymer of mannose and xylose in the approximate molar proportions of 1.2:1. It has an [α]D = + 56° and on partial acid hydrolysis and acetolysis gave an homologous series of 1,3-linked mannodextrins but no oligosaccharides containing xylose were obtained. An α-1,3-linked mannan was prepared from the xylomannan by degradation with mild acid or by degradation of the periodate-oxidased and reduced xylomannan. The structure therefore is visualised as having a backbone of 1,3-linked mannan, to which xylose residues are attached. Methylation studies showed that branching occurs at C-4 of the mannopyranose units; the presence of 2,3-di-o-methyl-d-xylose in the hydrolysate of the methylated polysaccharide indicated that some of the xylose residues are 1,4-linked. The possible structure of the fungal cell wall is discussed in the light of the results obtained.  相似文献   

8.
The structures of two polysaccharides reported in the previous paper were studied by means of methylation analysis and the Smith degradation. As a result, it was concluded that the water-soluble xylan consisted essentially of a (l→4)-linked β-d-xylopyranosyl chain and contained l-arabinofuranosyl residues linked through the C–l as terminal side units. Unambiguous information concerning the residues of d-glactose and d-glucuronic acid as the constituents of the xylan has not been obtained. For the arabinogalactan, evidence was obtained for an interesting structure having a backbone chain of (l→3)-linked β-d-galactopyranosyl residues to which the terminal arabinose residues were attached at the C–6 position as the most prevalent side chains.  相似文献   

9.
A l-fucose-containing arabinogalactan-protein that strongly inhibited hemagglutination by eel anti-H agglutinin of human O erythrocytes was purified from hot phosphate-buffered saline extracts of mature leaves of rape, Brassica campestris. The purified glycoconjugate consisted of 90% of the polysaccharide moiety comprising l-fucose, l-arabinose, d-galactose, 4-O-methyl-d-glucuronic acid, and d-glucuronic acid, and 4% of the hydroxyproline-rich protein portion. Upon methylation, periodate oxidation, and enzymatic degradation, we found that consecutive β-(→3)-linked d-galactopyranosyl residues constituted a backbone chain of the polysaccharide moiety, to which the side chains of β-(→6)-linked d-galactopyranosyl residues were attached through O-6. Most of l-arabinofuranosyl residues were linked as single units through 0-3 to the side chains while a small quantity of the sugar was present as (1→2)-, (1→3)-, or (1→5)-linked inter-chain residues. Single residues of α-l-fucopyranose, apparently attached to (1→2)-linked l-arabinofuranosyl residues, reacted with eel anti-H precipitin and Aleuria aurantia l-fucose-specific lectin, and were assumed to be crucial in the expression of the H-like activity. The uronosyl residues were also located at the non-reducing terminal ends. Reductive alkaline degradation of the arabinogalactan-protein provided indications that the polysaccharide chains were mainly conjugated through serine-O-glycosidic linkages to the polypeptide core. In an immunoprecipitation test, the rape leaf arabinogalactan-protein cross-reacted with antisera raised against radish leaf arabinogalactan-protein, indicating that these cruciferous arabinogalactan-proteins share common immunodeterminant(s) in their molecules.  相似文献   

10.
Cell walls have been isolated from the mesocarp of mature grape (Vitis vinifera L.) berries. Tissue homogenates were suspended in 80% (v/v) ethanol to minimise the loss of water-soluble wall components and wet-sieved on nylon mesh to remove cytoplasmic material. The cell wall fragments retained on the sieve were subsequently treated with buffered phenol at pH 7.0, to inactivate any wall-bound enzymes and to dislodge small amounts of cytoplasmic proteins that adhered to the walls. Finally, the wall preparation was washed with chloroform/methanol (1:1, v/v) to remove lipids and dried by solvent exchange. Scanning electron microscopy showed that the wall preparation was essentially free of vascular tissue and adventitious protein of cytoplasmic origin. Compositional analysis showed that the walls consisted of approximately 90% by weight of polysaccharide and less than 10% protein. The protein component of the walls was shown to be rich in arginine and hydroxyproline residues. Cellulose and polygalacturonans were the major constituents, and each accounted for 30–40% by weight of the polysaccharide component of the walls. Substantial varietal differences were observed in the relative abundance of these two polysaccharides. Xyloglucans constituted approximately 10% of the polysaccharide fraction and the remainder was made up of smaller amounts of mannans, heteroxylans, arabinans and galactans. Received: 26 November 1996 / Accepted: 30 January 1997  相似文献   

11.
The chemical constituents of the cell wall of Piricularia oryzae, the pathogenic fungus of rice blast disease, were studied with the aids of chemical analysis, X-ray diffraction, infra-red absorption and enzymatic degradation. The sugar constituents were identified by chromatography as glucose (62%), mannose (4%), galactose (0.5%), and hexosamine (13%). The acidic amino acid rich protein was comprised 4.6% in the cell wall. The cell wall consists of at least three different polysaccharide complexes: a) α-Heteropolysaccharide protein complex containing mannose, glucose and galactose, b) β-1,3-Glucan containing β-1, 6-linked branch, c) Chitin like substance.  相似文献   

12.
A unique, alkali-soluble polysaccharide has been isolated from the cell walls of the basidiomycete Coprinus macrorhizus microsporus. The polysaccharide, which is primarily a glucan, contains a large proportion of α-(1→4)-linked d-glucose residues and a smaller amount of β-(1→3) and (1→6) linkages, as suggested by methylation, partial acid hydrolysis, periodate oxidation, and enzymic studies. Hydrolysis of the methylated polysaccharide gave equimolar amounts of 2,4-di- and 2,3-di-O-methyl-d-glucose; no 2,6-di-O-methyl-d-glucose was identified, indicating the absence of branch points joined through O-1, O-3, and O-4. The isolation and identification of 2-O-α- glucopyranosylerythritol from the periodate-oxidized polysaccharide suggests that segments of the a-(1→4)-linked d-glucose residues are joined by single (1→3)-linkages. An extracellular enzyme-preparation from Sporotrichum dimorphosporum (QM 806) containing both β-(1→3)- and α-(1→4)-d-glucanohydrolase activity released 76% of the reducing groups from the polysaccharide. The polysaccharide also contains minor proportions of xylose, mannose, 2-amino-2-deoxyglucose, and amino acids.  相似文献   

13.
The cells of the red microalga Porphyridium sp. (UTEX 637) are encapsulated in a cell wall of a negatively charged mucilaginous polysaccharide complex composed of 10 different sugars, sulfate, and proteins. In this work, we studied the proteins associated with the cell‐wall polysaccharide. A number of noncovalently associated proteins were resolved by SDS‐PAGE, but no covalently bound proteins were detected. The most prominent protein detected was a 66‐kDa glycoprotein consisting of a polypeptide of approximately 58 kDa and a glycan moiety of approximately 8 kDa containing N‐linked terminal mannose. In size‐exclusion chromatography, the 66‐kDa protein was coeluted with the polysaccharide and could be separated from the polysaccharide only after denaturation of the protein, indicating that the 66‐kDa protein was tightly bound to the polysaccharide. Western blot analysis revealed that the 66‐kDa protein was specific to Porphyridium sp. and P. cruentum, because it was not detected in the other species of red microalgae examined. Indirect immunofluorescence assay confirmed the location of the protein in the algal cell wall. The sequence of cDNA clone encoding the 66‐kDa glycoprotein, detected in our in‐house expressed sequence tag database of Porphyridium sp., revealed that this is a novel protein with no similarity to any protein in the public domain databases and our in‐house expressed sequence tag database of the red microalga Rhodella reticulata. The 66‐kDa protein bound polysaccharides from red algae but not from those of other origins tested. Possible roles of the 66‐kDa protein in the biosynthesis of the polysaccharide are discussed.  相似文献   

14.
Succinoglucan, a succinylated polysaccharide produced by Alcaligenes faecalis var. myxogenes 10C3, was partially hydrolyzed with acid. Fractionation of the neutral oligosaccharides gave cellobiose, gentiobiose, laminaribiose, laminaritriose, 6-O-β-laminaribiosylglucose, 6-O-β-laminaritriosylglucose, and 3-O-β-cellobiosylgalactose, confirming the previous results that the polysaccharide consists of β-(l→3)-linked, (1→4)-linked and (1 →6)-linked d-glucose residues, and β-(1→3)-linked d-galactose residues.

Possible structural features of succinoglucan were discussed on the basis of the above and previous results obtained by Smith degradation.  相似文献   

15.
The preparation and chemical poperties of the cell walls of Leptospira biflexa Urawa and Treponema pallidum Reiter are described. Both cell walls are composed mainly of polysaccharides and peptidoglycans. The data of chemical analysis indicate that the cell wall of L. biflexa Urawa contains rhamnose, arabinose, xylose, mannose, galactose, glucose and unidentified sugars as neutral sugars, and alanine, glutamic acid, α,ε-diaminopimelic acid, glucosamine and muramic acid as major amino acids and amino sugars. As major chemical constituents of the cell wall of T. pallidum Reiter, rhamnose, arabinose, xylose, mannose, galactose, glucose, alanine, glutamic acid, ornithine, glycine, glucosamine and muramic acid have been detected. The chemical properties of protein and polysaccharide fractions prepared from the cells of T. pallidum Reiter were also partially examined.  相似文献   

16.
Cells of Pseudomonas phaseolicola were observed entrapped against plant cell walls in both susceptible (Red Kidney) and resistant (Red Mexican) cultivars of French bean (Phaseolus vulgaris). After staining of samples with ruthenium red for electron microscopy pectic polysaccharide within plant cell walls became particularly well contrasted as did fibrillar material connecting bacteria to the plant cell walls. In places this fibrillar material appeared to emanate from the pectic polysaccharide in the plant cell wall, and the plant cell wall surface was eroded at such points. Ruthenium red also stains acidic, bacterial extracellular polysaccharide (EPS) and some of the fibrillar material in intercellular spaces is probably from this source. It is possible that bacteria become attached through an interaction between EPS and Pectic polysaccharide in plant cell walls.  相似文献   

17.
A morphological mutant of Neurospora crassa, which showed great changes in cell wall β-glucan structures, was obtained. The mutant lacked spore-forming ability. Chemical analysis indicated that the mutant cell walls had more carbohydrates and less proteins than the wild type. In the structural polymers of cell walls, heteroglycan and chitin were not apparently changed in their sugar composition and structures. On the other hand, the alkali-soluble β-glucan of this mutant showed significant changes in the chemical structure, particularly, the number and length of branches. The mutant glucan had about 2.5 times as many branches as that from wild type and the number of 1,3-linked glucose residues was greatly reduced.  相似文献   

18.
The polysaccharides from the envelopes of heterocysts of Cylindrospermum licheniforme Kütz., and of heterocysts and spores of Anabaena variabilis Kütz., like those from the differentiated cells of Anabaena cylindrica Lemm., have a 1,3-linked backbone consisting of glucosyl and mannosyl residues in a molar ratio of approximately 3:1. As is the case with A. cylindrica the polysaccharides from A. variabilis and from the heterocysts of C. licheniforme have terminal xylosyl and galactosyl residues as side branches. In addition, the polysaccharide from C. licheniforme resembles that from A. cylindrica in having terminal mannosyl residues as side branches (absent from A. variabilis). The polysaccharides from A. variabilis resemble that from A. cylindrica in having glucose-containing side branches (absent from the heterocyst polysaccharide from C. licheniforme), but in contrast to the polysaccharides from the other two species they also have terminal arabinosyl residues as side branches. All of the polysaccharides mentioned appear to be structurally related; we present tentative structures for those not previously investigated. In contrast, the envelope of spores of C. licheniforme contains only a largely 4-linked galactan. The bulk of this envelope is not polysaccharide in nature, and contains aromatic groups.  相似文献   

19.
The rigid component of the cell walls of red macroalgae, cellulose, is lacking in the red microalgae. Instead, the cells are encapsulated within an amorphous polysaccharide. These complex sul fated polysaccharides are composed of at least 10 different sugars, but their structure is not known, When the herbicide 2,6-dichlorobenzonitrile (DCB), a compound that specifically inhibits cellulose biosynthesis, was applied to cultures of the red microalga Rhodella reticulata upon inoculation, growth was inhibited. When added during the stationary phase of growth (after cell division had ceased), DCB did not affect cell number but it did inhibit polysaccharide production. A spontaneous mutant resistant to DCB was selected; it had physiological characteristics similar to those of the wild-type parent. The composition of the cell wall polysaccharide of the mutant was totally modified, being composed almost entirely (98% of its dry matter, as compared to 2.9% in the wild type) of methyl galactose, but retaining the same sulfate content. The molecular mass of the mutant polysaccharide was, however, similar to that of the wild-type parent (~6 × 106 daltons), although its viscosity was significantly lower.  相似文献   

20.
The serotype-specific carbohydrate moiety of Streptococcus mutans was isolated by mild degradation of purified cell walls with a cell-wall lytic enzyme. Cell walls of serotype g S. mutans strain 6715 were digested with M1 enzyme, an endo-N-acetylmuramidase purified from culture supernatants of Streptomyces globisporus strain 1829. The enzyme lysate of the cell walls was applied to a CM Sephadex C-25 column to remove the M1 enzyme from the cell wall lysate and then subjected to Sephadex G-100 column chromatography. Carbohydrate antigens with serotype g specificity, designated M1g, and a peptidoglycan—polysaccharide complex lacking serotype specificity (M1PG) were separated. Purified serotype g antigen was also obtained by autoclaving the S. mutans 6715 whole cells in saline at 120 C for 30 min. The extract was applied to a DEAE Sephadex A-25 column to remove nucleic acids and teichoic acids. The unbound peak fraction was concentrated and re-chromatographed on a Bio-Gel P-100 column. The void volume fraction contained serotype g carbohydrate and was designated RRg antigen. M1g and RRg antigens formed a band of identity with anti-serotype g serum by immunodiffusion. These antigens were composed mainly of galactose, glucose, and rhamnose at an approximate weight ratio of 8 : 4 : 1, while constituent sugars of M1PG consisted of rhamnose and glucose, with no detectable galactose. M1g also contained peptidoglycan residues other than threonine, an interpeptide bridge component of the native cell wall peptidoglycan. Marked inhibition of the quantitative precipitin reaction between M1g and anti-serotype g serum was obtained with melibiose and galactose, which suggests that the immunodeterminant of the serotype g carbohydrate is an α-linked galactose-glucose terminal linkage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号