首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nitrogen-limited and nitrogen-sufficient cell cultures of Selenastrum minutum (Naeg.) Collins (Chlorophyta) were used to investigate the dependence of NH4+ assimilation on exogenous CO2. N-sufficient cells were only able to assimilate NH4+ maximally in the presence of CO2 and light. Inhibition of photosynthesis with 3-(3,4-dichlorophenyl)-1,1-dimethylurea, diuron also inhibited NH4+ assimilation. These results indicate that NH4+ assimilation by N-sufficient cells exhibited a strict requirement for photosynthetic CO2 fixation. N-limited cells assimilated NH4+ both in the dark and in the light in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea, diuron, indicating that photosynthetic CO2 fixation was not required for NH4+ assimilation. Using CO2 removal techniques reported previously in the literature, we were unable to demonstrate CO2-dependent NH4+ assimilation in N-limited cells. However, employing more stringent CO2 removal techniques we were able to show a CO2 dependence of NH4+ assimilation in both the light and dark, which was independent of photosynthesis. The results indicate two independent CO2 requirements for NH4+ assimilation. The first is as a substrate for photosynthetic CO2 fixation, whereas the second is a nonphoto-synthetic requirement, presumably as a substrate for the anaplerotic reaction catalyzed by phosphoenolpyruvate carboxylase.  相似文献   

2.
Mobilization of the reserve β-1,3-glucan (chrysolaminaran) in N-limited cells of the marine diatom Skeletonema costatum (Grev.) Cleve (Bacillariophyceae) was investigated. The diatom was grown in pH-regulated batch cultures with a 14:10-h light:dark cycle until N depletion. In a pulse-chase experiment, the cells were first incubated in high light (200 μmol photons·m 2·s 1) with 14C-bicarbonate until dissolved inorganic carbon was exhausted. Unlabeled bicarbonate (1 mM) was then added, and the cells were incubated in the dark and subsequently in low light (20 μmol photons·m 2·s 1) with additions of 40 μM NH4 + . In the 14C pulse phase with high light and N depletion, β-1,3-glucan accumulated and accounted for 85% of incorporated 14C. In the subsequent 14C chase phases, added NH4 + was assimilated at an N-specific rate of 0.11 h 1 in both the dark and low light, and in both cases it caused a significant mobilization of β-1,3-glucan (dark, 26%; low light, 19%). Biochemical fractionation of organic 14C showed that free amino acids were most rapidly labeled in the early stage of NH4 + assimilation, whereas proteins and polysaccharides were labeled more rapidly after 1.2 h. Analysis of the cellular free amino acids strongly indicated that de novo biosynthesis was occurring, with a Gln:Glu ratio increasing from 0.4 to 10 within 1.2 h. After the NH4 + was exhausted, the cellular pools of glucan and amino acids became constant or slowly decreased. In another experiment, N-limited cells were first incubated in high light until dissolved inorganic carbon was exhausted and were further incubated in high light with 150 μM NH4 + under inorganic carbon limitation. Added NH4 + was assimilated at an N-specific rate of 0.023 h 1, and cellular β-1,3-glucan decreased by 15% within 6 h. Hence, β-1,3-glucan was mobilized during NH4 + assimilation, even though inorganic carbon was modifying the metabolic rates. The results provide new evidence of β-1,3-glucan supplying essential precursors for biosynthesis of amino acids and other components in S. costatum in both the dark and subsaturating light and even saturating light under inorganic carbon limitation.  相似文献   

3.
In N-sufficient cells of Chlorella sorokiniana Shihira and Krauss strain 211/8K (CCAP of Cambridge University), assimilation of ammonium was strictly dependent on light and CO2, and was severely inhibited by 100 μ M atrazine or 10 μ M 3-(3,4-dichlorophenyl)-1, l-dimethylurea (DCMU). In N-limited cells, assimilation of NH4+ took place at similar rates in both light and darkness, which were 1.6-fold higher than the rate of light-dependent assimilation by N-sufficient cells. Assimilation by N-limited cells was inhibited by l -methionine- dl -sulfoximine (MSX), but not by atrazine or DCMU.
The rate of photosynthetic O2 evolution was 2.9±0.9 mmol ml−1 packed cell volume (PCV) h−1 in N-sufficient cells, and 0.64±0.12 mmol ml−1 PCV h−1 in N-limited cells. In the latter resupply of ammonium resulted in a rapid activation by 22%;, followed by a time-dependent increase of the photosynthetic O2 evolution, which after 12 h reached the same rate as in N-sufficient cells.
Respiratory consumption of oxygen in darkness in N-sufficient and N-limited cells was 0.10±0.03 and 0.11±0.02 mmol ml−1 PCV h−1, respectively. Addition of ammonium was without effect on respiration of N-sufficient cells, but resulted in a 4-fold stimulation of respiration of N-limited cells. Such stimulation took place also in cells treated with DCMU, atrazine, or MSX, and it was also promoted by methylammonium. The stimulation of respiration lasted for several hours.  相似文献   

4.
The metabolic fate of photosynthetically-fixed CO2 was determined by labeling samples of Merismopedia tenuissima Lemmerman for 30 min with NaH14CO3 and analyzing its incorporation into low molecular weight compounds, polysaccharide and protein. In N- and P-sufficient cultures, relative incorporation into protein increased as the irradiance used during the labeling period was decreased to 20 μE · m-2 s-1. This pattern was found for cells grown at irradiances of either 20 or 180 μE · m-2· s-1, although incorporation into protein was greater in cultures grown at the higher irradiance. In N-limited continuous cultures, relative incorporation into protein was low, independent of growth rate, and the same for samples tested at 20 or 180 μE · m-2· s-1 irradiance. In contrast, 14C incorporation into protein by P-limited cultures increased as growth rate increased, and at relative growth rates greater than 0.25, the incorporation was greater at 20 than at 180 μE · m-2· s-1. However, the total RNA content and maximum photosynthetic rate of the cultures was the same at all growth rates tested. The interaction between nutrient concentration and light intensity was studied by growing-limited continuous cultures at the same dilution rate, but different irradiances. Relative incorporation into protein was highest in cultures grown at 20 μE · m-2· s-1, in which the relative growth rate was 0.4. These results suggest that photosynthetic carbon metabolism may respond to relative growth rate μ/μmax rather than to growth rate directly.  相似文献   

5.
The effects of NH4+ assimilation on dark carbon fixation and β-1,3-glucan metabolism in the N-limited marine diatom Skeletonema costatum (Grev.) Cleve (Bacillariophyceae) were investigated by chemical analysis of cell components and incorporation of 14C-bicarbonate. The diatom was grown in pH-regulated batch cultures with a 14:10 h LD cycle until N depletion. The cells were then incubated in the dark with 14C-bicarbonate, but without a source of N for 2 h, then in the dark with 63 μmol·L−1 NH4+ for 3 h. Without N, the cellular concentration of free amino acids was almost constant (∼4.5 fmol·cell−1). Added NH4+ was assimilated at a rate of 12 fmol·cell−1·h−1, and the cellular amino acid pool increased rapidly (doubled in <1 h, tripled in <3 h). The glutamine level increased steeply (45× within 3 h), and the Gln/ Glu ratio increased from 0.1 to 2.4 within 3 h. The rate of dark C fixation during N depletion was only 1.0 fmol·cell−1·h−1. The addition of NH4+ strongly stimulated dark C fixation, leading to an assimilation rate of 4.0 fmol·cell−1·h−1, corresponding to a molar C/N uptake ratio of 0.33. Biochemical fractionation of organic 14C showed no significant 14C fixation into amino acids during N depletion, but during the first 1–2 h of NH4+ assimilation, amino acids were rapidly radiolabeled, accounting for virtually all net 14C fixation. These results indicate that anaplerotic β-carboxylation is activated during NH4+ assimilation to provide C4 intermediates for amino acid biosynthesis. The level of cellular β-1,3-d-glucan was constant (16.5 pg·cell−1) during N depletion, but NH4+ assimilation activated a mobilization of 28% of the reserve glucan within 3 h. The results indicate that β-1,3-glucan in diatoms is the ultimate substrate for β-carboxylation, providing precursors for amino acid biosynthesis in addition to energy from respiration.  相似文献   

6.
Marine phytoplankton and macroalgae acquire important resources, such as inorganic nitrogen, from the surrounding seawater by uptake across their entire surface area. Rates of ammonium and nitrate uptake per unit surface area were remarkably similar for both marine phytoplankton and macroalgae at low external concentrations. At an external concentration of 1 μM, the mean rate of nitrogen uptake was 10±2 nmol·cm?2·h?1 (n=36). There was a strong negative relationship between log surface area:volume (SA:V) quotient and log nitrogen content per cm2 of surface (slope=?0.77), but a positive relationship between log SA:V and log maximum specific growth rate (μmax; slope=0.46). There was a strong negative relationship between log SA:V and log measured rate of ammonium assimilation per cm2 of surface, but the slope (?0.49) was steeper than that required to sustain μmax (?0.31). Calculated rates of ammonium assimilation required to sustain growth rates measured in natural populations were similar for both marine phytoplankton and macroalgae with an overall mean of 6.2±1.4 nmol·cm?2·h?1 (n=15). These values were similar to maximum rates of ammonium assimilation in phytoplankton with high SA:V, but the values for algae with low SA:V were substantially less than the maximum rate of ammonium assimilation. This suggests that the growth rates of both marine phytoplankton and macroalgae in nature are often constrained by rates of uptake and assimilation of nutrients per cm2 surface area.  相似文献   

7.
The obligate methylotroph Methylobacillus flagellatum was grown in the presence of different ammonium concentrations and the regulation of the enzymes associated with ammonium assimilation was investigated in steady-state and transient growth regimes. As the medium changed from C-limitation to dual C/N- and finally to N-limitation, the culture passed through three definite growth phases. The NADP+-dependent glutamate dehydrogenase (GDH) was present under ammonium limitation of the culture growth (at 2 mmol l-1 of ammonium in the growth medium) and increased in response to an increase in nitrogen availability. Glutamine synthetase (GS) and glutamate synthase (GOGAT) activities were negligible during C- and C/N-limitation. In N-limited cells the GOGAT activity increased as the dilution rate increased up to 0.35 h-1, and then sharply dropped. In the N-sufficient cultures both NAD+- and NADP+-dependent isocitrate dehydrogenase (NAD-ICDH and NADP-ICDH) activities were up-regulated as dilution rate increased, but in the N-limited culture the NAD-ICDH activity was up-regulated whereas NADP-ICDH one was down-regulated. Pulse additions of ammonium and methanol demonstrated the coordinate regulation of the GDH and ICDHs activities. When pulses were added to the C/N-limited cultures, there was an immediate utilization of the nutrients, resulting in an increase in biomass; at the same time the GDH and ICDH activities increased and the GS and GOGAT activities decreased. When the same ammonium/methanol pulse was added into the N-limited culture, there was a 3-hours delay in the culture response, after which the substrates were utilized at rates close to the ones shown by the C/N-limited culture after the analogous pulse.  相似文献   

8.
Romero JM  Lara C 《Plant physiology》1987,83(1):208-212
Illuminated suspensions of Anacystis nidulans, supplied with saturating concentrations of CO2 evolved O2 at a greater rate when nitrate was simultaneously present. The extent of the stimulation of noncyclic electron flow induced by nitrate was dependent on light intensity, being maximal under light saturating conditions. Accordingly, nitrate depressed the rate of CO2 fixation at limiting but not at saturating light, this depression reflecting the competition between both processes for assimilatory power. In contrast, ammonium stimulated CO2 fixation at any light intensity assayed, the stimulation being dependent on the incorporation of ammonium to carbon skeletons. The positive effect of ammonium on CO2 fixation also appeared to occur when nitrate was the nitrogen source, since with either nitrogen source an increase in the incorporation of newly fixed carbon into acid-soluble metabolites took place. From these results, the in vivo partitioning of assimilatory power between photosynthetic nitrogen and carbon assimilation and the quantitative and qualitative effects of inorganic nitrogen assimilation on CO2 fixation are discussed.  相似文献   

9.
Mass spectrometric analysis of gas exchange in light and dark by N-limited cells of Chlamydomonas reinhardtii indicated that ammonium assimilation was accompanied by an increase in respiratory carbon flow to provide carbon skeletons for amino acid synthesis. Tricarboxylic acid (TCA) cycle carbon flow was maintained by the oxidation of TCA cycle reductant via the mitochondrial electron transport chain. In wild-type cells, inhibitor studies and 18O2 discrimination experiments indicated that respiratory electron flow was mediated entirely via the cytochrome pathway in both the light and dark, despite a large capacity for the alternative pathway. In a cytochrome oxidase deficient mutant, or in wild-type cells in the presence of cyanide, the alternative pathway could support the increase in TCA cycle carbon flow. These different mechanisms of oxidation of TCA cycle reductant were reflected by the much greater SHAM sensitivity of ammonium assimilation by cytochrome oxidase-deficient cells as compared to wild type.  相似文献   

10.
The effects of pulsed ammonium additions on the ammonium-limited marine diatoms, Chaetoceros gracile Schutt and Skeletonema costatum (Grev.) Cleve were studied. Two culture systems were maintained for each species. One culture was grown in a chemostat which provided a homogeneous distribution of the limiting nutrient. In the other continuous culture, ammonium was added once daily giving rise to a patchy distribution. Ammonium patchiness increased both the V'max (from 4.1 ± 0.3 to 11.8 ± 0.9 · h?1) and the Vi (from 0.19 ± 0.02 to 0.36 ± 0 0.04 · h?1) for ammonium in S. costatum and the V'max (from 0.91 ± 0.07 to 2.9 ± 0 0.2 · h?1) and the Vi (from 0.16 ± 0.01 to 0.31 ± 0.05 · h?1) for ammonium in Chaetoceros gracile. The once-per-day addition of ammonium also induced a diel periodicity in photosynthetic rate and fluorescence although these cultures were growing under continuous light. The relative amplitude of the periodicity was greater for Skeletonema than for Chaetoceros. These observations are considered with regard to the hypothesis that limiting nutrient patchiness may alter the growth kinetics of marine phytoplankton.  相似文献   

11.
In spring 2005, monthly sampling was carried out at a sublittoral site near Tautra Island. Microphytobenthic identification, abundance (ABU), and biomass (BIOM), were performed by microscopic analyses. Bacillariophyceae accounted for 67% of the total ABU, and phytoflagellates constituted 30%. The diatom floristic list consisted of 38 genera and 94 species. Intact light‐harvesting pigments chl a, chl c, and fucoxanthin and their derivatives were identified and quantified by HPLC. Photoprotective carotenoids were also observed (only as diadinoxanthin; no diatoxanthin was detected). Average fucoxanthin content was 4.57 ± 0.45 μg fucoxanthin · g sediment dry mass?1, while the mean chl a concentration was 2.48 ± 0.15 μg · g?1 dry mass. Both the high fucoxanthin:chl a ratio (considering nondegraded forms) and low amounts of photoprotective carotenoids indicated that the benthic microalgal community was adapted to low light. Microphytobenthic primary production was estimated in situ (MPPs, from 0.15 to 1.28 mg C · m?2 · h?1) and in the laboratory (MPPp, from 6.79 to 34.70 mg C · m?2 · h?1 under light saturation) as 14C assimilation; in April it was additionally estimated from O2‐microelectrode studies (MPPO2) along with the community respiration. MPPO2 and the community respiration equaled 22.9 ± 7.0 and 7.4 ± 1.8 mg C · m?2 · h?1, respectively. A doubling of BIOM from April to June in parallel with a decreasing photosynthetic activity per unit chl a led us to suggest that the microphytobenthic community was sustained by heterotrophic metabolism during this period.  相似文献   

12.
To test the possibility of inorganic carbon limitation of the marine unicellular alga Emiliania huxleyi (Lohmann) Hay and Mohler, its carbon acquisition was measured as a function of the different chemical species of inorganic carbon present in the medium. Because these different species are interdependent and covary in any experiment in which the speciation is changed, a set of experiments was performed to produce a multidimensional carbon uptake scheme for photosynthesis and calcification. This scheme shows that CO2 that is used for photosynthesis comes from two sources. The CO2 in seawater supports a modest rate of photosynthesis. The HCO is the major substrate for photosynthesis by intracellular production of CO2 (HCO+ H+→ CO2+ H2O → CH2O + O2). This use of HCO is possible because of the simultaneous calcification using a second HCO, which provides the required proton (HCO+ Ca2+→ CaCO3+ H+). The HCO is the only substrate for calcification. By distinguishing the two sources of CO2 used in photosynthesis, it was shown that E. huxleyi has a K½ for external CO2 of “only” 1.9 ± 0.5 μM (and a Vmax of 2.4 ± 0.1 pmol·cell−1·d−1). Thus, in seawater that is in equilibrium with the atmosphere ([CO2]= 14 μM, [HCO]= 1920 μM, at fCO2= 360 μatm, pH = 8, T = 15° C), photosynthesis is 90% saturated with external CO2. Under the same conditions, the rate of photosynthesis is doubled by the calcification route of CO2 supply (from 2.1 to 4.5 pmol·cell−1·d−1). However, photosynthesis is not fully saturated, as calcification has a K½ for HCO of 3256 ± 1402 μM and a Vmax of 6.4 ± 1.8 pmol·cell−1·d−1. The H+ that is produced during calcification is used with an efficiency of 0.97 ± 0.08, leading to the conclusion that it is used intracellularly. A maximum efficiency of 0.88 can be expected, as NO uptake generates a H+ sink (OH source) for the cell. The success of E. huxleyi as a coccolithophorid may be related to the efficient coupling between H+ generation in calcification and CO2 fixation in photosynthesis.  相似文献   

13.
Rates of net photosynthesis and dark respiration were determined under submersed and emerged conditions for Hesperophycus harveyanus S. & G. and Pelvetia fastigiata f. gracilis (Decne.) S. & G. Both species exhibited submersed photosynthesis-light relationships and dark respiration rates similar to those established for other closely related intertidal, fucoids. Maximal net photosynthesis of H. harveyanus (0.21 mmol O2 g dry wt.-1· h-1; 0.18 mmol CO2 g dry wt.-1· h-1) was similar to that of P. fastigiata f. gracilis (0.17 mmol. O2 g dry wt.-1· h-1; 0.14 mmol CO2 g dry wt. -1· h-1). Light saturation occurred between 150 and 250 μE · m-2· s-1 for H. harveyanus and between 75 and 150 μE · m-2· s-1 for P. fastigiata f. gracilis; photon flux densities required for compensation were 6.4 and 9.2 μE · m-2· s-1, respectively. Photoinhibition was not observed for either species. The light-saturated, submersed net photosynthetic performances of both species varied significantly with temperature. Greatest photosynthetic rates were obtained at 23° C for H. harveyanus and at 18° C for P. fastigiata f. gracilis. Under emersed conditions, the maximal net photosynthetic rate and the photon flux densities required for saturation were greater for H. harveyanus (0.08 mmol CO2 g dry wt.-1· h-1; 260 to 700 μE · m-2· s-1) than for P. fastigiata f. gracilis (0.02 mmol CO2g dry wt.-1· h-1; 72 to 125 μE · m-2· s-1). However, for both species, emersed photosynthetic rates were much lower (14–44%) than those obtained under submersed conditions. Desiccation negatively influenced emersed photosynthesis, of both species, but H. harveyanus thalli contained more water when fully hydrated and lost water more slowly during dehydration, thus suggesting greater photosynthetic potential during field conditions of emersion.  相似文献   

14.
Leaflets of soybean plants which are moderately inorganic nitrogen (N)-limited exhibit either no difference in the rate of net photosynthesis or as much as a 15–23% lower net photosynthesis rate per unit area than leaflets of N-sufficient plants [Robinson JM (1996) Photosynth Res 50: 133–148; Robinson JM (1997a) Int J Plant Sci 158: 32–43]. However, mature leaflets of N-limited soybean plants have a higher CO2photoassimilation rate per unit chlorophyll than leaflets of N-sufficient soybean plants at both moderate light intensity (500 µmol m-2s-1) and saturating light intensity (1200 µmol m-2s-1) [Robinson JM (1996) Photosynth Res 50: 133–148]. This study was undertaken to determine whether chloroplast thylakoids isolated from the leaflets of nitrogen-limited soybean plants displayed similar or higher linear electron transport rates (H2O ferredoxin NADP) per unit chlorophyll than thylakoids isolated from leaflets of N-sufficient plants. Chlorophyll concentration in reaction mixtures containing chloroplast thylakoids prepared from leaflets of N-limited plants was manipulated so that it was similar to the chlorophyll concentration in reaction mixtures of thylakoids prepared from leaflets of N-sufficient plants. Measurements of ferredoxin dependent, NADP dependent, O2photo-evolution in thylakoid isolates were carried out in saturating light (1500 µmol m-2s-1) and with (an uncoupler) in the chloroplast reaction mixtures. Chloroplast thylakoids isolated from N-limited soybean plant leaflets routinely had a 1.5 to 1.7 times higher rate of uncoupled, whole chain electron transport per unit chlorophyll in saturating light than did chloroplast thylakoids isolated from leaflets of N-sufficient plants. The results suggest that the photosystems and photosynthetic electron transport chain components are more active per unit Chl in leaflet chloroplast thylakoids of N-limited soybean plants than in thylakoids of N-sufficient plants.  相似文献   

15.
Branches of 22-year-old loblolly pine (Pinus taeda, L.) trees growing in a plantation were exposed to ambient CO2, ambient + 165 μmol mol?1 CO2 or ambient + 330 μmol mol?1 CO2 concentrations in combination with ambient or ambient + 2°C air temperatures for 3 years. Field measurements in the third year indicated that net carbon assimilation was enhanced in the elevated CO2 treatments in all seasons. On the basis of A/Ci, curves, there was no indication of photosynthetic down-regulation. Branch growth and leaf area also increased significantly in the elevated CO2 treatments. The imposed 2°C increase in air temperature only had slight effects on net assimilation and growth. Compared with the ambient CO2 treatment, rates of net assimilation were ~1·6 times greater in the ambient + 165 μmol mol?1 CO2 treatment and 2·2 times greater in the ambient + 330 μmol mol?1 CO2 treatment. These ratios did not change appreciably in measurements made in all four seasons even though mean ambient air temperatures during the measurement periods ranged from 12·6 to 28·2°C. This indicated that the effect of elevated CO2 concentrations on net assimilation under field conditions was primarily additive. The results also indicated that the effect of elevated CO2 (+ 165 or + 330 μmol mol?1) was much greater than the effect of a 2°C increase in air temperature on net assimilation and growth in this species.  相似文献   

16.
Nitrate-cultured cells of Phaeodactylum tricornutum Bohlin lack the ability to take up guanine but can do so after a period of nitrogen deprivation, i.e. photosynthesis in nitrogen-free medium. Maximum rate of uptake occurred after 24 h of nitrogen deprivation. The development of ability to take up guanine required CO2 fixation and was prevented by cycloheximide, ammonium or nitrate. The guanine taken up accummulated in the cells almost entirely as a compound which is probably methylated hypoxanthine. Guanine uptake was dependent upon metabolism and exhibited Michaelis-Menten like kinetics with a half-saturation value of 0.48 ± 0.05 μM guanine and a maximum uptake rate for guanine of ca. 200 nmol · 10?8 cells · h?1. Rate of uptake increased hyperbolically with Na+ concentration, with 8.25 mM Na+ supporting half-maximal rate, and it was inhibited by K+ ions.  相似文献   

17.
揭示不同恢复阶段热带森林土壤细菌呼吸季节变化及其主控因素,对于探明土壤细菌呼吸对热带森林恢复的响应机制具有重要的科学意义。以西双版纳不同恢复阶段热带森林(白背桐群落、崖豆藤群落和高檐蒲桃群落)为研究对象,运用真菌呼吸抑制法及高通量宏基因组测序技术分别测定土壤细菌呼吸速率和细菌多样性,并采用回归分析及结构方程模型揭示热带森林恢复过程中土壤细菌多样性、pH、土壤碳氮组分变化对土壤细菌呼吸速率的影响特征。结果表明:1)不同恢复阶段热带森林土壤细菌呼吸速率表现为:高檐蒲桃群落((1.51±0.62)CO2 mg g-1 h-1)显著高于崖豆藤群落((1.16±0.56)CO2 mg g-1 h-1)和白背桐群落((0.82±0.60)CO2 mg g-1 h-1)(P<0.05)。2)不同恢复阶段土壤细菌呼吸速率呈显著的单峰型季节变化(P<0.05),最大值均出现在9月:高檐蒲桃群落((...  相似文献   

18.
Three photosynthetic parameters of 7 species of marine diatoms were studied using Na214CO3 at 5–8 C using log phase axenic cultures. The cell volumes of the different species varied from 70 μm3 to 40 × 105μm3. The present experiment is consistent with the interpretation that the initial slope α (mg C · [mg chl a]?1· h?1· w?1· m2) of photosynthesis vs. light curves is controlled by self-shading of chlorophyll a in the cell. Pm, the rate of photosynthesis at light saturation (mg C · [mg cell, C]?1· h?1) and R, the intercept at zero light intensity (mg C · [mg cell C]?1· H?1) are both dependent on the ratio of surface area to volume of cell.  相似文献   

19.
A. Makino  T. Mae  K. Ohira 《Planta》1985,166(3):414-420
Changes in gas-exchange rates during the life span of the leaves of rice (Oryza sativa L.) were analyzed quantitatively by measuring changes in the carboxylation/oxygenation and regeneration of ribulose 1,5-bisphosphate (RuBP) at photon fluence rates of 2000 (saturating) and 500 (subsaturating) μmol quanta·m-2·s-1 under ambient air conditions. The RuBP levels were always higher than the active-site concentrations of RuBP carboxylase (EC 4.1.1.39), irrespective of the irradiance supplied. Analysis of the CO2-assimilation rate as a function of intercellular CO2 concentration indicated that RuBP regeneration does not limit CO2 assimilation. The estimated RuBP-carboxylase/oxygenase activity in vivo was linearly correlated to the rate of CO2 assimilation at each level of irradiance. This enzyme activity was just enough to account for the rate of CO2 assimilation at the saturating irradiance and was 35% more than the rate of CO2 assimilation at the subsaturating irradiance. Analysis of the assimilation rate at subsaturating irradiance as a function of intercellular CO2 concentration indicated that a limitation caused by enzyme activation comes into play. The results indicate that the rate of CO2 assimilation in rice leaves under ambient air conditions is limited during their entire life span by the RuBP-carboxylation/oxygenation capacity.  相似文献   

20.
Using particulate methane monooxygenase (pMMO) encoding gene, pmoA-based terminal-restrict fragment length polymorphism (T-RFLP), the methanotrophic communities between rhizospheric soils (RSs) and non-rhizospheric soil (NRSs) of landfill cover (LC), riparian wetland (RW) and rice paddy (RP) were compared before and after pre-incubation of 90 days. The ultimate potential of methane oxidation rate (UPMOR) and gene copy number of pmoA were evaluated in the soil samples after pre-incubation. Compared to the methanotrophic community in the soil samples before pre-incubation, type II methanotrophs, the Methylocystis-Methylosinus group, was mostly increased after pre-incubation, regardless of the soil type. The UPMOR (11.82 ± 0.27 μmol-CH4· g?1 soil-DW·h?1) in the LC-RS was significantly higher than that (9.57 ± 0.14 μmol-CH4· g?1 soil-DW·h?1) in the LC-NRS. However, no significant difference was found between RSs and NRSs in the RW (15.28 ± 0.91 and 13.23 ± 0.69 μmol-CH4· g?1 soil-DW·h?1, respectively) and RP (13.81 ± 1.04 and 12.81 ± 2.40 μmol-CH4· g?1 soil-DW·h?1, respectively) soils. There was no significantly difference in the gene copy numbers of pmoA in the RSs compared with those in the NRSs at all of the sampling sites. This study provides basic metagenomic information about both rhizospheric and non-rhizospheric methanotrophs, which will be helpful in developing a better strategy of biological methane removal from both natural and anthropogenic major methane sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号