首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rabbit antiserum against bovine pancreatic DNase A is used to study the immunological reaction of DNases I. As shown by double immunodiffusion, bovine pancreatic DNases A, B, C, and D are immunologically identical, so are DNases from bovine pancreas and parotid and from ovine pancreas. These DNases also behave similarly in immunotitration of DNase activity and all are tightly bound to the immunoaffinity medium, requiring an acidic buffer with 10% ammonium sulfate to dissociate. On the other hand, porcine pancreatic and malted barley DNases that do not form precipitin lines remain active in solution with the antibody; however, in spite of the lack of inhibition these DNases are retarded (but not tightly bound) in immunoaffinity chromatography, suggesting interaction with the antibody. In thin layer isoelectric focusing, the parotid DNase, purified with the immunoaffinity technique, shows only two major active components whose isoelectric points correspond to those of DNases A and C of bovine pancreas. As estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the molecular weight of parotid DNase is 34,000, approximately 3,000 more than that of the pancreatic enzyme. However, both parotid and pancreatic DNases have the same NH2-terminal leucine, an identical COOH-terminal amino acid sequence, nearly identical amino acid compositions, and almost the same peptide maps. The molecular weight difference is due to differences in the carbohydrate side chains. Results of peptide analyses indicate that parotid DNase contains two glycopeptides; pancreatic DNase has only one. In addition, both parotid glycopeptides contain glucosamine and galactosamine while the pancreatic glycopeptide has only glucosamine.  相似文献   

2.
Multiple forms of bovine pancreatic DNase (DNases A, B, C, and D) are separated by isoelectric focusing in thin layers of polyacrylamide gel with a carrier ampholyte in the pH range 4–6. The isoelectric points of DNases A, B, C, and D are 5.22, 4.96, 5.06, and 4.78, respectively. A zymogram method for detecting DNase activity as bands in the gel following isoelectric focusing is described. The method detects microgram amounts of DNase and has only one step. It can be used with the parified cazyme as well as with crude extracts of tissues containing DNase. By this method, two major components of DNase in ovine pancreas and at least three in malted barley as well as two previously unideatified forms of DNase in bovine pancreas with isoelectric points of 5.12 and 5.48 (DNases E and F) are observed.  相似文献   

3.
DNase activity in coleoptiles and the first leaf apices of winter wheat (Triticum aestivum L., cv. Mironovskaya 808) etiolated seedlings was found to increase significantly during seedling growth, peaking on the eighth day of plant development. The maximum of DNase activity was coincident with apoptotic internucleosomal DNA fragmentation in these organs. Wheat endonucleases are capable of hydrolyzing both singleand double-stranded DNA of various origins. The leaf and coleoptiles were found to exhibit nuclease activities that hydrolyzed the lambda phage DNA with N6-methyladenine and 5-methylcytosine more actively compared to the hydrolysis of similar unmethylated DNAs. Thus, the endonucleases of wheat seedlings are sensitive to the methylation status of their substrate DNAs. The leaves and coleoptiles exhibited both Ca2+/Mg2+- and Zn2+-dependent nuclease activities that underwent differential changes during development and senescence of seedling organs. EDTA at a concentration of 50 mM fully inhibited the total DNase activity. Electrophoretic heterogeneity was observed for DNase activities operating simultaneously in the coleoptile and the first leaf at different stages of seedling development. Proteins exhibiting DNase activity (16–80 kD mol wt) were revealed in the first leaf and the coleoptile; these proteins were mostly nucleases with the pH optimum around 7.0. Some endonucleases (mol wts of 36, 39, and 28 kD) were present in both organs of the seedling. Some other DNases (mol wts of 16, 56, and about 80 kD) were found in the coleoptile; these DNases hydrolyzed DNA in the nucleus at terminal stages of apoptosis. Different suites of DNase activities were revealed in the nucleus and the cytoplasm, the nuclear DNase activities being more diverse than the cytoplasmic ones. Thus, the cellular (organspecific) and subcellular heterogeneity in composition and activities of DNases has been revealed in wheat plants. These DNases undergo specific changes during seedling development, serving at various stages of programmed cell death in seedling tissues.  相似文献   

4.
Rat pancreas actin: purification and characterization   总被引:1,自引:0,他引:1  
Isolation of rat pancreas actin was performed with three different technics: polymerization-depolymerization method, affinity chromatography on DNase I-Sepharose 4B or ion exchange chromatography on DEAE-cellulose. Inhibition of DNase I activity, localization by SDS polyacrylamide slab gel electrophoresis and presence of microfilaments allowed its identification. Affinity process led us to obtain actin which kept inhibitory activity (30,000 U per mg) on DNase I when using vacuum dialysis. Actin eluted from DEAE-cellulose associated reversibly in 50-70 A microfilaments in the presence of phalloidin, was pure at 95% and had a satisfactory inhibitor activity (77,000 U per mg).  相似文献   

5.
Ca2+,Mg2+- and Ca2+,Mn2+-dependent and acid DNases were isolated from spermatozoa of the sea urchin Strongylocentrotus intermedius. The enzymes have been purified by successive chromatography on DEAE-cellulose, phenyl-Sepharose, Source 15Q, and by gel filtration, and the principal physicochemical and enzymatic properties of the purified enzymes were determined. Ca2+,Mg2+-dependent DNase (Ca,Mg-DNase) is a nuclear protein with molecular mass of 63 kD as the native form and its activity optimum is at pH 7.5. The enzyme activity in the presence of bivalent metal ions decreases in the series (Ca2+ + Mg2+) > Mn2+ = (Ca2+ + Mn2+) > (Mg2+ + EGTA) > Ca2+. Ca,Mg-DNase retains its maximal activity in sea water and is not inhibited by G-actin and N-ethylmaleimide, whereas Zn2+ inhibits the enzyme. The endogenous Ca,Mg-DNase is responsible for the internucleosomal cleavage of chromosomal DNA of spermatozoa. Ca2+,Mn2+-dependent DNase (Ca,Mn-DNase) has molecular mass of 25 kD as the native form and the activity optimum at pH 8.5. The enzyme activity in the presence of bivalent metal ions decreases in the series (Ca2+ + Mn2+) > (Ca2+ + Mg2+) > Mn2+ > (Mg2+ + EGTA). In seawater the enzyme is inactive. Zinc ions inhibit Ca,Mn-DNase. Acid DNase of spermatozoa (A-DNase) is not a nuclear protein, it has molecular mass of 37 kD as a native form and the activity optimum at pH 5.5, it is not activated by bivalent metal ions, and it is inhibited by N-ethylmaleimide and iodoacetic acid. Mechanisms of the endonuclease cleavage of double-stranded DNA have been established for the three enzymes. The possible involvement of DNases from sea urchin spermatozoa in programmed cell death is discussed.  相似文献   

6.
The pH optimum for the stability of the barley leaf polyamine oxidase is 4.8, which is also the pH optimum for its activity with spermine as substrate. Zonal centrifugation indicates that the enzyme is associated with a particle which is slightly more dense than chloroplasts, and the peak of activity corresponds with the peak of nucleic acid. Neither DNase nor RNase released the enzyme from the particles, despite the hydrolysis of more than 50% of the nucleic acid. The enzyme from the leaves of oat seedlings grown in the dark was purified 900-fold. Mg2+ and Ca2+ inhibited both barley and oat enzymes by ca 50% at 50 mM. The optimum pH for both spermine and spermidine oxidation by the oat enzyme was 6.5. The MW of the enzyme from both sources determined by gel chromatography was ca 85 000.  相似文献   

7.
Ca2+ plus Mg2+-dependent endodeoxyribonuclease was extracted from calf thymus chromatin and purified to a state free from contamination by other DNases. This DNase required both Ca2+ and Mg2+, or Mn2+ alone for its activity and the optimum pH for activity was at 6.5-7.5. No specificity for the 5'-base was observed. The molecular weight of the DNase was estimated to be about 25,000-30,000 by glycerol gradient centrifugation. Actin and antibody for pancreatic DNase (DNase I) did not inhibit the enzyme, whereas both strongly inhibited DNase I, suggesting that these two DNases are different enzymes.  相似文献   

8.
DEAE-cellulose chromatography, in the presence and absence of Ca2+, of the 16,000g supernatant from bovine carotid artery smooth muscle has been used to separate four different types of cyclic nucleotide phosphodiesterase (3′:5′-cyclic-nucleotide 5′-nucleotidohydrolase, EC 3.1.4.17) activity, designated types A, B, C, and D. Type A is a high affinity, cyclic AMP-specific form of phosphodiesterase (Km = 1.6 μM) and elutes at relatively high ionic strength. Type B is a high affinity (Km = 2 μM), cyclic GMP-specific form which elutes at low ionic strength. Type C is a mixed substrate form, displaying anomalous kinetics for the hydrolysis of both cyclic AMP and cyclic GMP. It elutes from DEAE-cellulose at an ionic strength intermediate to that of types A and B. Type D is also a mixed substrate form of phosphodiesterase. However, its elution pattern from DEAE-cellulose differs, depending on whether Ca2+ is present or not, suggesting a Ca2+-dependent interaction between this enzyme form and the acidic Ca2+-dependent regulator protein (CDR). The hydrolytic activity of type D is stimulated by CDR, and activation requires the simultaneous presence of Ca2+ and CDR. Kinetic analysis of cyclic AMP hydrolysis by type D gives a linear double reciprocal plot; activation has no effect on the Km but increases the velocity approximately sixfold. Activation of cyclic GMP hydrolysis apparently affects both the Km and V. At all concentrations tested, the degree of activation is higher with cyclic AMP than with cyclic GMP. It is suggested that while the activable form of phosphodiesterase may play a relatively minor role in the overall hydrolysis of cyclic nucleotides, Ca2+-dependent activation may have a more important role in regulating the level of cyclic AMP than that of cyclic GMP in vascular smooth muscle.  相似文献   

9.
Summary This article will review recent progress on the purification of DNase I (E.C.3.1.4.5) from various sources and the characterization of multiple forms of the enzyme. The chemical basis of the multiple forms in bovine pancreas will be discussed in detail, while for other DNases, including those in ovine pancreas, bovine, mouse and rat parotid, and malt, only the evidence for multiplicity will be presented.  相似文献   

10.
The earthworm enzyme Eisenia fetida Protease-III-1 (EfP-III-1) is known as a trypsin-like protease which is localized in the alimentary canal of the earthworm. Here, we show that EfP-III-1 also acts as a novel deoxyribonuclease. Unlike most DNases, this earthworm enzyme recognizes 5′-phosphate dsDNA (5′P DNA) and degrades it without sequence specificity, but does not recognize 5′OH DNA. As is the case for most DNases, Mg2+ was observed to markedly enhance the DNase activity of EfP-III-1. Whether the earthworm enzyme functioned as a DNase or as a protease depended on the pH values of the enzyme solution. The protein acted as a protease under alkaline conditions whereas it exhibited DNase activity under acid conditions. At pH 7.0, the enzyme could work as either a DNase or a protease. Given the complex living environment of the earthworm, this dual function of EfP-III-1 may play an important role in the alimentary digestion of the earthworm.  相似文献   

11.
The deoxyribonucleic acid (DNA) yield and deoxyribonuclease (DNase) activity of several yeasts were correlated. Debaryomyces castellii and Debaryomyces franciscae were found to contain active DNases which carry out DNA hydrolysis, whereas the amounts of DNA as determined by extraction with Sarkosyl buffer (pH 7.8) were found to be small. On the other hand, Candida parapsilosis, Saccharomyces carmosousae, and Lodderomyces elongisporus produced no detectable DNases active at pH 7.8, and their DNA yield was correspondingly high. L. elongisporus was found to possess DNase only at pH 4.0.  相似文献   

12.
Microorganisms capable of producing high amounts of α-acetolactate decarboxylase (ALDC; EC 4.1.1.5) were screened for with stock type cultures. Brevibacterium acetylicum had the most potent enzyme activity among the strains tested. The productivity of ALDC by B. acetylicum was elevated by adding Zn2+ to the medium. ALDC was purified from the cell-free extract of B. acetylicum by a procedure involving ammonium sulfate fractionation, Sephadex G-100 gel filtration, and DEAE-cellulose and FPLC-MonoQ column chromatographies. The purified enzyme was homogeneous by polyacrylamide gel electrophoresis. The molecular weight of the native enzyme was 62,000 by TSK-gel filtration and the subunit molecular weight was 31,000 by SDS polyacrylamide gel electrophoresis. The enzyme activity was inhibited by metal chelators such as diethyldithiocarbamate, 8-oxyquinoline, and o-phenanthroline. Analysis by atomic absorption spectrophotometry showed that zinc atoms were involved in the purified enzyme preparation.  相似文献   

13.
An inducible enzyme catalysing the hydrolysis of (+)-usnic acid to (+)-2-desacetylusnic acid and acetic acid has been purified 150-fold from the mycelium of Mortierella isabellina grown in the presence of (+)-usnic acid. Purification was achieved by treatment with protamine sulfate, (NH4)2SO4 fractionation, negative adsorption on alumina Cγ gel and hydroxylapatite followed by chromatography on DEAE-cellulose and Sephadex G-200. The elution pattern from a Sephadex G-200 column indicated a MW of ca 7.6 × 104 for the enzyme. The apparent Km value for (+)-usnic acid at the pH optimum (pH 7) was 4.0 × 10?5 M. The enzyme was specific for (+)-usnic acid and inactive towards (?)-usnic acid, (+)-isousnic acid or certain phloracetophenone derivatives. Its activity was enhanced in the presence of divalent metal ions such as Co2+, Ni2+, Mn2+, Mg2+ and Zn2+.  相似文献   

14.
Deoxyribonucleases from rat brain   总被引:1,自引:0,他引:1  
Two distinctly different DNases were isolated from rat brain and could be separated easily by ammonium sulphate fractionation. One of the DNases acts optimally at pH 5.0 hydrolysing preferentially native DNA and requiring an optimal Mg2+ concentration of about 0.03 m . The other DNase has its optimal pH between 7.4 and 8.9, acts preferentially on heat-denatured DNA and requires a lower Mg2+ concentration, the optimum being 1 × 10?4m . Cerebellum from adult rat brain has a lower acid DNase activity and higher alkaline DNase activity, and therefore has a higher ratio of alkaline DNase to acid DNase than the other areas of brain studied. This unique activity ratio in cerebellum of adult rat brain was not observed in infant rat brain.  相似文献   

15.
The membrane-bound and solubilized (using Triton ×-100 or sodium dodecyl sulfate (SDS)) alkaline phosphohydrolase (APase) activities of the isolated brush border membrane of Hymenolepis diminuta require a divalent cation for maximum activity. Highest rates of substrate (p-nitrophenyl phosphate) hydrolysis are obtained with low concentrations of Mg2+ (1 mM), although low concentrations of Mn2+, Ca2+, or Zn2+ will also partially satisfy this requirement; higher concentrations of Mg2+ and Mn2+, and other divalent cations (Cu2+, Fe2+, and Pb2+), inhibit the membrane-bound APase activity. Solubilization of the membrane-bound enzyme in either Triton or SDS results in an increase in specific activity and Km, but has little effect on thermal stability of the APase activity. Phosphate, pyrophosphate, adenosine 5′-triphosphate, adenosine 5′-monophosphate, glucose 1-phosphate, glucose 6-phosphate, fructose 6-phosphate, and fructose 1,6-diphosphate inhibit substrate hydrolysis, and the relative affinities of these inhibitors for the APase enzyme are altered only slightly upon solubilization. Graphic analyses of data from inhibitor studies indicate that all eight inhibitors will inhibit membrane-bound and solubilized APase activities 100% at high inhibitonsubstrate ratios. Molybdate, F?, 2-mercaptoethanol, cysteine, and p-chloromercuribenzoate inhibit membrane-bound APase activity. Inhibitor data indicate that if more than one enzyme is responsible for the APase activity of the brush border membrane of H. diminuta, the enzymes cannot be differentiated on the basis of substrate specificity.  相似文献   

16.
An immunoglobulin light chain phagemid library derived from peripheral blood lymphocytes of three patients with systemic lupus erythematosus was used. Phage particles displaying DNA binding light chains were isolated by affinity chromatography on DNA‐cellulose, and the fraction eluted by an acidic buffer (pH 2.6) was used for preparation of individual monoclonal light chains (MLChs, 28 kDa). Thirty three of 687 individual colonies obtained were randomly chosen for study of MLCh DNase activity. Nineteen of 33 clones contained MLChs with DNase activity. Four preparations of MLChs were expressed in Escherichia coli in soluble form, purified by metal chelating chromatography followed by gel filtration, and studied in detail. Detection of DNase activity after SDS‐PAGE in a gel containing DNA demonstrated that the four MLChs are not contaminated by canonical DNases. The MLChs demonstrated one or two pH optima. They were inactive after the dialysis against ethylenediaminetetraacetic acid but could be activated by several externally added metal ions; the ratio of relative activity in the presence of Mg2+, Mn2+, Ni2+, Ca2+, Zn2+, and Co2+ was individual for each MLCh preparation. K+ and Na+ inhibited the DNase activity of various MLChs at different concentrations. Hydrolysis of DNA by all four MLCh was saturable and consistent with Michaelis–Menten kinetics. These clones are the first examples of recombinant MLChs possessing high affinity for DNA (Km = 3–9 nM) and demonstrating high kcat values (3.4–6.9 min?1). These observations suggest that the systemic lupus erythematosus light chain repertoire can serve as a source of new types of DNases. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
32P-labeled oligonucleotides from a pancreatic DNase digest of non-glucosylated T2 gt? DNA have been analyzed by high voltage electrophoresis (both before and after dephosphorylation of the 5′ terminus). T2 gt? oligonucleotides, which contain 5-hydroxymethyl cytosine (hm5C) in place of cytosine (C), have altered electrophoretic mobilities compared to fd DNA oligonucleotides (which contain C). In addition, we have observed that pancreatic DNase exhibits a marked cleavage specificity; i.e., hm5C is the predominant 5′ terminal residue in the hm5C-containing oligonucleotides we have characterized.  相似文献   

18.
β-N-Acetyl-D-glucosaminidase was purified from viscera of green crab (Scylla serrata) by extraction with 0.01 M Tris-HCl buffer (pH 7.5) containing 0.2 M NaCl, ammonium sulfate fractionation, and then chromatography on Sephadex G-100 and DEAE-cellulose (DE-32). The purified enzyme showed a single band on polyacrylamide gel electrophoresis, and the specific activity was determined to be 7990 U/mg. The molecular weight of the whole enzyme was determined to be 132.0 kD, and the enzyme is composed of two identical subunits with molecular mass of 65.8 kD. The optimum pH and optimum temperature of the enzyme for the hydrolysis of p-nitrophenyl-N-acetyl-β-D-glucosaminide (pNP-NAG) were found to be at pH 5.6 and at 50°C, respectively. The study of its stability showed that the enzyme is stable in the pH range from 4.6 to 8.6 and at temperatures below 45°C. The kinetic behavior of the enzyme in the hydrolysis of pNP-NAG followed Michaelis-Menten kinetics with Km of 0.424 ± 0.012 mM and Vmax of 17.65 ± 0.32 µmol/min at pH 5.8 and 37°C, and the activation energy was determined to be 61.32 kJ/mol. The effects of some metal ions on the enzyme were surveyed, and the results show that Na+ and K+ have no effects on the enzyme activity; Mg2+ and Ca2+ slightly activate the enzyme, while Ba2+, Zn2+, Mn2+, Hg2+, Pb2+, Cu2+, and Al3+ inhibit the enzyme to different extents.  相似文献   

19.
《Plant science》1988,58(2):135-144
A calcium-dependent protein kinase (CDPK) was purified to 1400-fold from the soluble fraction of alfalfa (Medicago varia) cells by ammonium sulfate fractionation, Sephacryl-300, DEAE-Sephacel, Phenyl-Sepharose and Hydroxylapatite column chromatography. The enzyme is mainly monomeric. During the course of the purification steps a 50 kDa phosphoprotein doublet and a 56 kDa phosphoprotein copurified with the CDPK activity. Mobility shift of these proteins have been shown by SDS PAGE in Ca2+ free conditions. Tests on enzyme activity after separation by native gel electrophoresis revealed two protein kinase activities in our enzyme preparation and the phosphorylation of the 50 kDa and 56 kDa proteins. We suggest that these proteins are the autophosphorylated forms of calcium dependent protein kinases. Preincubation of the CDPK in ATP resulted in a marked increase in enzyme activity, but did not alter the Ca2+ sensitivity of the protein kinase.  相似文献   

20.
Arginine decarboxylase activity in the shoots of seedlings was high in oats, intermediate in barley and low in rice, maize, wheat and rye. After partial purification, the arginine decarboxylase from the shoots of potassium deficient oat seedlings was separated into two fractions, A (MW 195 000) and B (MW 118 000), by gel chromatography. On gel electrophoresis, the mobilities of these fractions were respectively 0.12 and 0.55 relative to bromophenol blue at pH 9.5. Fraction A was twice as active as fraction B in extracts of seedlings grown with both normal and potassium deficient nutrition, despite the greater activity ( × 5) of the potassium deficient plants. The properties of the two fractions were similar with respect to pH optimum (7–7.5), Km (3 × 10 ?5M) and the effect of inhibitors. Fraction A was purified to apparent homogeneity by DEAE-cellulose chromatography. The enzyme was specific for l-arginine and it was strongly inhibited by NSD 1055, d-arginine and canavanine. Mercaptoethanol and dithiothreitol stimulated the enzyme by ca 50% and p-chloromercuribenzoate was an inhibitor. Pyridoxal phosphate stimulated activity by ca 30% and EDTA stimulated activity by 30%. Ca2+ and Mg2+ inhibited the enzyme by 50% at ca 20 mM. Putrescine and the polyamines showed only moderate inhibition at 10 mM, but agmatine reduced activity to 30% at this concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号