首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Four cycloartane- (hareftosides A–D) and oleanane-type triterpenoids (hareftoside E) were isolated from Astragalus hareftae along with fifteen known compounds. Structures of the compounds were established as 3,6-di-O-β-d-xylopyranosyl-3β,6α,16β,24(S),25-pentahydroxycycloartane (1), 3,6,24-tri-O-β-d-xylopyranosyl-3β,6α,16β,24(S),25-pentahydroxycycloartane (2), 3-O-β-d-xylopyranosyl-3β,6α,16β,25-tetrahydroxy-20(R),25(S)-epoxycycloartane (3), 16-O-β-d-glucopyranosyl-3β,6α,16β,25-tetrahydroxy-20(R),24(S)-epoxycycloartane (4), 3-O-[β-d-xylopyranosyl-(1→2)-O-β-d-glucopyranosyl-(1→2)-O-β-d-glucuronopyranosyl]-soyasapogenol B (5) by the extensive use of 1D- and 2D-NMR experiments along with ESI-MS and HR-MS analyses.  相似文献   

2.
Two new steroidal saponins, 25(R)-3β [(O-β-d-glucopyranosyl-(1  3)-β-d-glucopyranosyl-(1  2)-O-[β-d-xylopyranosyl-(1  3)-O-β-d-glucopyranosyl-(1  4)-β-d-galactopyranosyl)oxy]-5α, 15β, 22R, 25R-spirostan-3,15-diol (1, named parquispiroside) and 25R-26-[(β-d-glucopyranosyl)Oxy]-(3β [(O-β-d-glucopyranosyl-(1  3)-β-d-glucopyranosyl-(1  2)-O-[β-d-xylopyranosyl-(1  3)-O-β-d-glucopyranosyl-(1  4)-β-d-galactopyranosyl)oxy], 5α, 15β, 22R, 25R)-furostane-3,15,22-triol (2, named parquifuroside), along with the known saponins, capsicoside D (3) and 22-OMe-capsicoside D (4) and the known glycoside, benzyl primeveroside (5), were isolated from the leaves of Cestrum parqui. The structures of these compounds were elucidated by careful analysis of 1D and 2D NMR spectra and ESIMS data. Parquispiroside (1) exhibited moderate inhibition of Hela, HepG2, U87, and MCF7 cell lines with IC50 values in the range of 3.3–14.1 μM.  相似文献   

3.
Three cycloartane-type triterpene glycosides were isolated from Astragalus wiedemannianus together with eight known secondary metabolites namely cycloastragenol, cycloascauloside B, astragaloside IV, astragaloside VIII, brachyoside B, astragaloside II, astrachrysoside A, and astrasieversianin X. The structures were established mainly by a combination of 1D and 2D-NMR techniques as 3-O-[α-L-rhamnopyranosyl-(1  2)-β-D-glucopyranosyl]-25-O-β-D-glucopyranosyl-20(R),24(S)-epoxy-3β,6α,16β,25-tetrahydroxycycloartane, 3-O-[α-L-rhamnopyranosyl-(1  2)-β-D-xylopyranosyl]-6-O-β-D-glucopyranosyl-24-O-α-(4’-O-acetoxy)-L-arabinopyranosyl-16-O-acetoxy-3β,6α,16β,24(S),25-pentahydroxycycloartane, 3-O-[α-L-rhamnopyranosyl-(1  2)-β-D-xylopyranosyl]-6-O-β-D-glucopyranosyl-24-O-α-L-arabinopyranosyl-16-O-acetoxy-3β,6α,16β,24(S),25-pentahydroxycycloartane. To the best of our knowledge, the presence of an arabinose moiety on the acyclic side chain of cycloartanes is reported for the first time.  相似文献   

4.
Five new steroidal saponins were isolated from the fruits of Tribulus terrestris. Their structures were fully established by spectroscopic and chemical analysis as (23S,25S)-5α-spirostane-24-one-3β,23-diol-3-O-{α-l-rhamnopyranosyl-(1  2)-O-[β-d-glucopyranosyl-(1  4)]-β-d-galactopyranoside} (1), (24S,25S)-5α-spirostane-3β,24-diol-3-O-{α-l-rhamnopyranosyl-(1  2)-O-[β-d-glucopyranosyl-(1  4)]-β-d-galactopyranoside} (2), 26-O-β-d-glucopyranosyl-(25R)-5α-furostan-2α,3β,22α,26-tetraol-3-O-{β-d-glucopyranosyl-(1  2)-O-β-d-glucopyranosyl-(1  4)-β-d-galactopyranoside} (3), 26-O-β-d-glucopyranosyl-(25R)-5α-furostan-20(22)-en-2α,3β,26-triol-3-O-{β-d-glucopyranosyl-(1  2)-O-β-d-glucopyranosyl-(1  4)-β-d-galactopyranoside} (4), and 26-O-β-d-glucopyranosyl-(25S)-5α-furostan-12-one-22-methoxy-3β,26-diol-3-O-{α-l-rhamnopyranosyl-(1  2)-O-[β-d-glucopyranosyl-(1  4)]-β-d-galactopyranoside} (5). The isolated compounds were evaluated for cytostatic activity against HL-60 cells.  相似文献   

5.
Three new oleanane-type saponins, leptocarposide B-D (13), were isolated from the whole plant of Ludwigia leptocarpa (Nutt.) Hara, together with ten known compounds 4–13.The structures of these compounds were determined by interpretation of their spectral data, mainly HR-TOFESIMS, 1D-NMR (1H, 13C) and 2D-NMR (1H–1H COSY, HSQC, HMBC, and NOESY), and by comparison with the literature data. The structures of the new compounds were established as 28-O-β-d-xylopyranosyl-(1  4)-α-l-rhamnopyranosyl-(1  2)-[α-l-arabinopyranosyl-(1  3)]-4-O-(3′-hydroxybutanoyloxy-3-hydroxybutanoyloxy)-β-d-fucopyranosyl zanhic acid (1); 3-O-β-d-glucopyranosyl-28-O-β-d-xylopyranosyl-(1  4)-α-l-rhamnopyranosyl-(1  2)-4-O-(3′-hydroxybutanoyloxy-3-hydroxybutanoyloxy)-β-d-fucopyranosyl medicagenic acid (2); 3-O-β-d-glucopyranosyl-(1  4)-β-d-glucopyranosyl-28-O-β-d-xylopyranosyl-(1  4)-α-l-rhamnopyranosyl-(1  2)-[α-l- arabinopyranosyl-(1  3)]-4-O-(3′-hydroxybutanoyloxy-3-hydroxybutanoyloxy)-β-d-fucopyranosyl zanhic acid (3).  相似文献   

6.
Six new cycloartane-type triterpene glycosides named 3-O-[β-d-glucopyranosyl(1  2)-β-d-xylopyranosyl]-3β,16β,23(R),24(R),25-pentahydroxycycloartane (1), 3-O-[β-d-glucopyranosyl(1  2)-β-d-xylopyranosyl]-3β,16β,23(R),24(R)-tetrahydroxy-25-dehydrocycloartane (2), 3-O-[β-d-xylopyranosyl]-6α-acetoxy-23α-methoxy-16β,23(R)-epoxy-24,25,26,27-tetranorcycloartane (3), 3-O-[β-d-xylopyranosyl]-6α-acetoxy-23α-butoxy-16β,23(R)-epoxy-24,25,26,27-tetranorcycloartane (4), 3-O-[β-d-glucopyranosyl(1  2)]-β-d-xylopyranosyl]-6α-acetoxy-23α-methoxy-16β,23(R)-epoxy-24,25,26,27-tetranorcycloartane (5), 3-O-[β-d-glucopyranosyl(1  2)]-β-d-xylopyranosyl]-23α-methoxy-16β,23(R)-epoxy-4,25,26,27-tetranorcycloartane (6), in addition to three known secondary metabolites consisting of another cycloartane triterpene glycoside and two flavonol glycosides, were isolated from the aerial parts of Astragalus gombo Coss. & Dur. (Fabaceae). The structures of the isolated compounds were established by spectroscopic methods, including 1D and 2D-NMR, mass spectrometry and comparison with literature data.  相似文献   

7.
Two new penterpenoid saponins, hemsloside-Ma4 (1) hemsloside-Ma5 (2), and a new diterpenoid glycoside, hemsloside-Ma6 (3), were isolated from the rhizomes of Hemsleya chinensis. By detailed analysis of the NMR spectra and chemical methods, the structures of new compounds were determined to be 3-O-β-l-arabinopyranosyl-(1  3)-O-(6′-methyl ester)-β-d-glucuropyranosyl-oleanolic acid-28-O-β-d-glucopyranosyl-(1  6)-O-β-d-glucopyranoside (1), 3-O-β-l-arabinopyranosyl-(1  3)-O-(6′-methyl ester)-β-d-glucuropyranosyl-oleanolic acid-28-O-β-d-xylopyranosyl-(1  6)-O-β-d-glucopy-ranoside (2), and 13ϵ-hydroxylabda-8(17), 14-dien-18-oic acid-18-O-α-l-rhamnopyranosyl-(1  2)-O-β-d-glucopyranosyl-(1  4)-O-α-l-rhamnopyranoside (3). Diterpenoid-type compound (3) was isolated from Hemsleya genus for the first time.  相似文献   

8.
Three new phenylethanoid glycosides, 2-(3-hydroxy-4-methoxyphenyl)ethyl 1-O-β-d-allopyranoside (hodgsonialloside A, 1), 2-(3-hydroxy-4-methoxyphenyl)ethyl 1-O-β-d-glucopyranosyl-(1  4)-β-d-allopyranoside (hodgsonialloside B, 2) and 2-(3-methoxy-4-hydroxyphenyl)ethyl 1-O-β-d-allopyranoside (hodgsonialloside C, 3) were isolated from the leaves of Magnolia hodgsonii in addition to six known compounds, tyrosol 4-O-β-d-xylopyranosyl-(1  6)-β-d-glucopyranoside (4), kaempferol 3-O-neohesperidoside (5), kaempferol 3-O-rutinoside (6), kaempferol 3-O-α-l-rhamnopyranosyl-(1  2)-[α-l-rhamnopyranosyl-(1  6)]-β-d-glucopyranoside (7), (+)-syringaresinol O-β-d-glucopyranoside (8), and oblongionoside C (9). The structure elucidation of these compounds was based on analyses of physical and spectroscopic data including 1D and 2D NMR experiments.  相似文献   

9.
Two triterpenoid saponins have been isolated from the seed kernels of Entada rheedii. Their structures have been established using 1D- and 2D-NMR and mass spectrometry as 3-O-β-d-xylopyranosyl-(1  3)-O-α-l-arabinopyranosyl-(1  6)-2-acetylamino-2-deoxy-β-d-glucopyranosylentagenic acid 28-O-β-apiofuranosyl-(1  3)-β-d-xylopyranosyl-(1  2)-β-d-glucopyranoside (Rheediinoside A, 1) and 3-O-β-d-glucopyranosyl-(1  3)-O-[β-d-xylopyranosyl-(1  3)-α-l-arabinopyranosyl-(1  6)]-2-acetylamino-2-deoxy-β-d-glucopyranosylentagenic acid 28-O-β-apiofuranosyl-(1  3)-β-d-xylopyranosyl-(1  2)-β-d-glucopyranoside (Rheediinoside B, 2). Compounds 1 and 2 were tested for their antiproliferative activity against T98G, A431, PC3 and B16-F1 cell lines, and further for their antioxidant properties. Moderate cytotoxic potency and antioxidant properties were found for these compounds whereas Rheediinoside B was in all assays more active than Rheediinoside A.  相似文献   

10.
Six cycloartane-type triterpene glycosides were isolated from Astragalus icmadophilus along with two known cycloartane-type glycosides, five known oleanane-type triterpene glycosides and one known flavonol glycoside. The structures of the six compounds were established as 3-O-[α-L-arabinopyranosyl-(1  2)-O-3-acetoxy-α-L-arabinopyranosyl]-6-O-β-D-glucopyranosyl-3β,6α,16β,24(S),25-pentahydroxycycloartane, 3-O-[α-L-rhamnopyranosyl-(1  2)-O-α-L-arabinopyranosyl-(1  2)-O-β-D-xylopyranosyl]-6-O-β-D-glucopyranosyl-3β,6α,16β,24(S),25-pentahydroxy cycloartane, 3-O-[α-L-arabinopyranosyl-(1  2)-O-3,4-diacetoxy-α-L-arabinopyranosyl]-6-O-β-D-glucopyranosyl-3β,6α,16β,24(S),25-pentahydroxycycloartane, 3-O-[α-L-arabinopyranosyl-(1  2)-O-3-acetoxy-α-L-arabinopyranosyl]-6-O-β-D-glucopyranosyl-3β,6α,16β,25-tetrahydroxy-20(R),24(S)-epoxycycloartane, 3-O-[α-L-arabinopyranosyl-(1  2)-O-β-D-xylopyranosyl]-6-O-β-D-glucopyranosyl-3β,6α,16β,24α-tetrahydroxy-20(R),25-epoxycycloartane, 3-O-[α-L-rhamnopyranosyl-(1  2)-O-α-L-arabinopyranosyl-(1  2)-O-β-D-xylopyranosyl]-6-O-β-D-glucopyranosyl-3β,6α,16β,24α-tetrahydroxy-20(R),25-epoxycycloartane by the extensive use of 1D- and 2D-NMR experiments along with ESIMS and HRMS analysis.The first four compounds are cyclocanthogenin and cycloastragenol glycosides, whereas the last two are based on cyclocephalogenin as aglycone, more unusual in the plant kingdom, so far reported only from Astragalus spp.  相似文献   

11.
A new dihydrochalcone, 2‘,4‘-dihydroxy-3‘-methoxy-3,4-methylenedioxy-8-hydroxymethylene dihydrochalcone 1 and two new steroidal saponins, (25S)-ruscogenin-1-O-α-l-rhamnopyranosyl-(1  2)-β-d-glucopyranoside 2, (25S)-ruscogenin-3-O-α-l-rhamnopyranosyl-(1  4)-β-d-glucopyranoside 3, together with three known steroidal saponins (25S)-ruscogenin-3-O-β-d-glucopyranoside 4, (25S)-ruscogenin-1-O-α-l-rhamnopyranosyl-(1  2)-[β-d-xylopyranosyl-(1  3)]-α-l-arabinopyranoside 5 and (25R)-26-O-β-d-glucopyranosyl-furost-5-ene-1β,3β,22α,26-tetrol-1-O-α-L-rhamnopyranosyl-(1  2)-[β-d-xylopyranosyl-(1  3)]-α-l-arabinopyranoside 6 were isolated from the aerial parts of Sansevieria cylindrica. The structures of the new compounds were established by UV, IR, EI-MS, HR-ESI–MS as well as 1D (1H,13C and DEPT-135) and 2D (HSQC, HMBC and TOCSY) NMR spectral analysis. The isolated compounds 1-6 were assayed for in vitro cytotoxicities against the three human tumor cell lines HT116, MCF7 and HepG2. Compound 1 showed a moderate cytotoxicity against MCF7. Compounds 2, 3 and 6 exhibited moderate cytotoxicities against the three used cell lines and compound 5 showed marked cytotoxicities against all used cell lines.  相似文献   

12.
Four new and three known oleanane-type saponins have been isolated from the methanolic extract of Phryna ortegioides, a monotypic and endemic taxon of Caryophyllaceae.The structures of the new compounds were determined as gypsogenic acid 28-O-β-d-glucopyranosyl-(1→2)-O-β-d-glucopyranosyl-(1→6)-O-β-d-glucopyranosyl ester (1), 3-O-α-l-arabinofuranosyl-gypsogenic acid 28-O-β-d-glucopyranosyl-(1→3)-O-[β-d-glucopyranosyl-(1→6)]-O-β-d-glucopyranosyl ester (2), 3-O-α-l-arabinofuranosyl-gypsogenic acid 28-O-β-d-glucopyranosyl-(1→3)-O-[β-d-glucopyranosyl-(1→2)-O-β-d-glucopyranosyl-(1→6)-O-]-β-d-glucopyranosyl ester (3), 3-O-α-l-arabinofuranosyl-16α-hydroxyolean-12-en-23,28-dioic acid-28-O-β-d-glucopyranosyl-(1→3)-O-[β-d-glucopyranosyl-(1→2)-O-β-d-glucopyranosyl-(1→6)]-O-β-d-glucopyranosyl ester (4). Their structures were established by a combination of one- and two-dimensional NMR techniques, and mass spectrometry. Noteworthy, none of isolated compounds possesses as aglycone moiety gypsogenin, considered a marker of Caryophyllaceae family.The cytotoxic activity of the isolated compounds was evaluated against three cancer cell lines including A549 (human lung adenocarcinoma), A375 (human melanoma) and DeFew (human B lymphoma) cells. Only compound 6 showed a weak activity against A375 and DeFew cell lines with IC50 values of 77 and 52 μM, respectively. None of the other tested compounds, in a range of concentrations between 12.5 and 100 μM, caused a significant reduction of the cell number.  相似文献   

13.
Two new tridesmosidic cycloartane-type triterpene glycosides (1 and 2) were isolated from the methanolic extract of the roots of Astragalus brachycalyx FISCHER (A. brachycalyx) along with ten (3–12) known cycloartane-type triterpene glycosides. Structures of the new compounds were established as 3-O-β-d-xylopyranosyl-6-O-β-d-glucopyranosyl-16-O-β-d-glucopyranosyl-3β,6α,16β,24(S)-25-pentahydroxycycloartane (1), 3-O-[α-l-arabinopyranosyl-(1→2)-β-d-xylopyranosyl]-6-O-β-d-glucopyranosyl-16-O-β-d-glucopyranosyl-3β,6α,16β,24(S)-25-pentahydroxycycloartane (2), by using 1D and 2D-NMR techniques and mass spectrometry.In vitro immunomodulatory effects and hemolytic activities of the new saponins (1 and 2) and acetylated form of 1 (1a) were studied together with the BuOH and MeOH extracts of Astragalus brachycalyx. The results have proven that tridesmosidic Astragalus cycloartanes are noteworthy immunomodulatory compounds via induction of cytokine production, namely IL-2 and IFN-γ. The test compounds also resulted slight hemolysis at very high doses substantiating a safer profile compared to the positive control QS-21.  相似文献   

14.
A bioassay-guided phytochemical analysis of the triterpene saponins from under ground parts of Gypsophila arrostii var. nebulosa allowed the isolation of two triterpene saponins; nebuloside A, B based on gypsogenin and quillaic acid aglycone. Two new oleanane type triterpenoid saponins (nebuloside A, B) and three known saponins (13) were isolated from the root bark of Gypsophila arrostii var. nebulosa. The structures of the two new compounds were elucidated as 3-O-β-d-galactopyranosyl-(1→2)-[β-d-xylopyranosyl-(1→3)]-β-d-glucuronopyranosyl quillaic acid 28-O-β-d-glucopyranosyl-(1→3)-[β-d-xylopyranosyl-(1→3)-β-d-xylopyranosyl-(1→4)]-α-l-rhamnopyranosyl-(1→2)-β-d-fucopyranosyl ester (nebuloside A) and 3-O-β-d-xylopyranosyl-(1→3)-[β-d-galactopyranosyl(1→3)-β-d-galactopyranosyl-(1→2)]-β-d-glucuronopyranosyl gypsogenin 28-O-β-d-glucopyranosyl-(1→3)-[β-d-xylopyranosyl-(1→3)-β-d-xylopyranosyl-(1→4)]-α-l-rhamnopyranosyl-(1→2)-β-d-fucopyranosyl ester (nebuloside B), on the basis of extensive spectral analysis and chemical evidence. Nebuloside A and B showed toxicity enhancing properties on saporin a type-I RIP without causing toxicity by themselves at 15 μg/mL.  相似文献   

15.
Four triterpene saponins, agrostemmosides A–D were isolated from the methanol extract of Agrostemma gracilis. The structures of the compounds were determined as 3-O-β-d-xylopyranosyloleanolic acid 28-O-β-d-glucopyranosyl-(1  2)-[β-d-xylopyranosyl-(1  6)]-β-d-glucopyranosyl-(1  6)-β-d-glucopyranosyl ester, 3-O-α-l-rhamnopyranosyl-(1  2)-β-d-xylopyranosyloleanolic acid 28-O-β-d-glucopyranosyl-(1  2)-[β-d-xylopyranosyl-(1  6)]-β-d-glucopyranosyl-(1  6)-β-d-glucopyranosyl ester, 3-O-β-d-xylopyranosylechinocystic acid 28-O-β-d-glucopyranosyl-(1  2)-β-d-glucopyranosyl-(1  6)-β-d-glucopyranosyl ester, 3-O-β-d-xylopyranosylechinocystic acid 28-O-β-d-glucopyranosyl-(1  2)-[β-d-xylopyranosyl-(1  6)]-β-d-glucopyranosyl-(1  6)-β-d-glucopyranosyl ester by a combination of one- and two-dimensional NMR techniques, and mass spectrometry. To the best of our knowledge this is the first phytochemical report on A. gracilis, and echinocystic acid saponins were encountered for the first time in Caryophyllaceae family.  相似文献   

16.
In the search of natural compounds inhibiting methane production in ruminants three novel steroidal saponins have been isolated from the aerial parts of Helleborus viridis L. Their structures have been established based on spectral analyses as: (25R)-26-O-β-d-glucopyranosyl-5β-furostan-3β,22α,26-triol 3-O-β-d-glucopyranosyl-(1  6)-O-β-d-glucopyranoside, (25R)-26-O-β-d-glucopyranosyl-5α-furostan-3β,22α,26-triol 3-O-β-d-glucopyranosyl-(1  6)-O-β-d-glucopyranoside and (25R)-26-O-β-d-glucopyranosyl-furost-5-ene-1β,3β,22α,26-tetraol 1-O-{α-l-rhamnopyranosyl-(1  2)-O-[β-d-glucopyranosyl-(1  3)]-6-O-acetoxy-β-d-glucopyranoside}.  相似文献   

17.
Six new compounds including two oleanane-type triterpenoid saponins (1, 2) and four C-glycosyl flavones (36), along with a known saponin (7), three di-C-glycosyl flavones (810) and a glycosyl auronol (11), were isolated from the stem bark of Erythrina abyssinica Lam. The structures of the new compounds, identified as 3-O-[α-l-rhamnopyranosyl-(1  2)-β-d-galactopyranosyl-(1  2)-β-d-glucuronopyranosyl]-22-O-β-d-glucopyranosyl sophoradiol (1), 3-O-[α-l-rhamnopyranosyl-(1  2)-β-d-glucopyranosyl-(1  2)-β-d-glucuronopyranosyl]-22-O-β-d-glucopyranosyl sophoradiol (2), 6-C-β-glucopyranosyl-8-C-β-quinovopyranosyl apigenin (3), 6-C-β-quinovopyranosyl-8-C-β-glucopyranosyl apigenin (4), 8-C-[6″-O-α-l-rhamnopyranosyl-(1‴  6″)]-β-glucopyranosyl 7,4′-dihydroxyflavone (5) and 8-C-[6″-O-β-d-xylopyranosyl-(1‴  6″)]-β-glucopyranosyl 7,4′-dihydroxyflavone (6), were determined by comprehensive spectroscopic analysis, including 1D and 2D NMR techniques, mass spectrometry and acid hydrolysis. These new compounds together with the known saponins 7 were evaluated for their cytotoxic activity against MCF-7 (estrogen dependent) and MDA-MB-231 (estrogen independent) cell lines. The new saponin 2 exhibited the highest cytotoxic activity among tested compounds, exerting a selective inhibitory effect against the proliferation of MCF-7 cells, with lower IC50 value (12.90 μM) than that of the positive control, resveratrol (13.91 μM). Structure–activity relationship of these compounds is also discussed.  相似文献   

18.
A new complex triterpenoid saponin was isolated from the stem bark of Samanea saman by using chromatographic methods. Its structure was established as 3-[(2-O-β-d-glucopyranosyl-β-d-glucopyranosyl)oxy]-2,23-dihydroxy-(2β,3β,4α)-olean-12-en-28-oic acid O-β-d-glucopyranosyl-(1  3)-O-[O-β-d-glucopyranosyl-(1  4)]-O-6-deoxy-α-l-mannopyranosyl-(1  2)-6-O-[4-O-[(2E,6S)-2,6-dimethyl-1-oxo-2,7-octadienyl]-6-deoxy-α-l-mannopyranosyl)oxy]-β-d-glucopyranosyl ester (1). Structural elucidation was performed using detailed analyses of 1H and 13C NMR spectra including 2D NMR spectroscopic techniques and chemical conversions. The haemolytic activity of the saponin was evaluated using in vitro assays, and its adjuvant potential on the cellular immune response against ovalbumin antigen was investigated using in vivo models.  相似文献   

19.
One new bithiophenes, 5-(but-3-yne-1,2-diol)-5′-hydroxy-methyl-2,2′-bithiophene (2), two new polyacetylenic glucosides, 3-O-β-d-glucopyranosyloxy-1-hydroxy-4E,6E-tetradecene-8,10,12-triyne (8), (5E)-trideca-1,5-dien-7,9,11-triyne-3,4-diol-4-O-β-d-glucopyranoside (9), six new terpenoid glycosides, rel-(1S,2S,3S,4R,6R)-1,6-epoxy-menthane-2,3-diol-3-O-β-d-glucopyranoside (10), rel-(1S,2S,3S,4R,6R)-3-O-(6-O-caffeoyl-β-d-glucopyranosyl)-1,6-epoxy menthane-2,3-diol (11), (2E,6E)-2,6,10-trimethyl-2,6,11-dodecatriene-1,10-diol-1-O-β-d-glucopyranoside (12), 3β,16β,29-trihydroxy oleanane-12-ene-3-O-β-d-glucopyranoside (13), 3,28-di-O-β-d-glucopyranosyl-3β,16β-dihydroxy oleanane-12-ene-28-oleanlic acid (14), 3-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl oleanlic-18-ene acid-28-O-β-d-glucopyranoside (15), along with fifteen known compounds (1, 37, and 1624), were isolated from the aerial parts of Eclipta prostrata. Their structures were established by analysis of the spectroscopic data. The isolated compounds 19 were tested for activities against dipeptidyl peptidase IV (DPP-IV), compound 7 showed significant antihyperglycemic activities by inhibitory effects on DPP-IV in human plasma in vitro, with IC50 value of 0.51 μM. Compounds 1024 were tested in vitro against NF-κB-luc 293 cell line induced by LPS. Compounds 12, 15, 16, 19, 21, and 23 exhibited moderate anti-inflammatory activities.  相似文献   

20.
Chemical investigation of an acidic methanol extract of the whole plants of Datura metel resulted in the isolation of two new guainane sesquiterpenes, 1β,5α,7β-guaiane-4β,10α,11-triol (1) and 1α,5α,7α-11-guaiene-2α,3β,4α,10α,13-pentaol (2), along with eight known compounds: pterodontriol B (3), disciferitriol (4), scopolamine (5), kaempferol 3-O-β-d-glucosyl(1  2)-β-d-galactoside 7-O-β-d-glucoside (6), kaempferol 3-O-β-glucopyranosyl(1  2)-β-glucopyranoside-7-O-α-rhamnopyranoside (7), pinoresinol 4′′-O-β-d-glucopyranoside (8), (7R,8S,7′S,8′R)-4,9,4′,7′-tetrahydroxy-3,3′-dimethoxy-7,9′-epoxy-lignan-4-O-β-d-glucopyranoside (9), and (7S,8R,7′S,8′S)-4,9,4′,7′-tetrahydroxy-3,3′-dimethoxy-7,9′-epoxylignan-4-O-β-d-glucopyranoside (10). Their structures were elucidated by extensive spectroscopic methods, including 1D and 2D NMR and MS spectra. Compounds 2-4 and 6-10 were shown to have modest anti-inflammatory effects through inhibition of NO production in LPS-stimulated BV cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号