首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Apo-Calmodulin acts as the light chain for unconventional myosin V, and treatment with Ca(2+) can cause dissociation of calmodulin from the 6IQ region of the myosin heavy chain. The effects of Ca(2+) on the stoichiometry and affinity of interactions of calmodulin and its two domains with two myosin-V peptides (IQ3 and IQ4) have therefore been quantified in vitro, using fluorescence and near- and far-UV CD. The results with separate domains show their differential affinity in interactions with the IQ motif, with the apo-N domain interacting surprisingly weakly. Contrary to expectations, the effect of Ca(2+) on the interactions of either peptide with either isolated domain is to increase affinity, reducing the K(d) at physiological ionic strengths by >200-fold to approximately 75 nM for the N domain, and approximately 10-fold to approximately 15 nM for the C domain. Under suitable conditions, intact (holo- or apo-) calmodulin can bind up to two IQ-target sequences. Interactions of apo- and holo-calmodulin with the double-length, concatenated sequence (IQ34) can result in complex stoichiometries. Strikingly, holo-calmodulin forms a high-affinity 1:1 complex with IQ34 in a novel mode of interaction, as a "bridged" structure wherein two calmodulin domains interact with adjacent IQ motifs. This apparently imposes a steric requirement for the alpha-helical target sequence to be discontinuous, possibly in the central region, and a model structure is illustrated. Such a mode of interaction could account for the Ca(2+)-dependent regulation of myosin V in vitro motility, by changing the structure of the regulatory complex, and paradoxically causing calmodulin dissociation through a change in stoichiometry, rather than a Ca(2+)-dependent reduction in affinity.  相似文献   

2.
Myosin 5a is as yet the best-characterized unconventional myosin motor involved in transport of organelles along actin filaments. It is well-established that myosin 5a is regulated by its tail in a Ca(2+)-dependent manner. The fact that the actin-activated ATPase activity of myosin 5a is stimulated by micromolar concentrations of Ca(2+) and that calmodulin (CaM) binds to IQ motifs of the myosin 5a heavy chain indicates that Ca(2+) regulates myosin 5a function via bound CaM. However, it is not known which IQ motif and bound CaM are responsible for the Ca(2+)-dependent regulation and how the head-tail interaction is affected by Ca(2+). Here, we found that the CaM in the first IQ motif (IQ1) is responsible for Ca(2+) regulation of myosin 5a. In addition, we demonstrate that the C-lobe fragment of CaM in IQ1 is necessary for mediating Ca(2+) regulation of myosin 5a, suggesting that the C-lobe fragment of CaM in IQ1 participates in the interaction between the head and the tail. We propose that Ca(2+) induces a conformational change of the C-lobe of CaM in IQ1 and prevents interaction between the head and the tail, thus activating motor function.  相似文献   

3.
Secretion is dependent on a rise in cytosolic Ca(2+)concentration and is associated with dramatic changes in actin organization. The actin cortex may act as a barrier between secretory vesicles and plasma membrane. Thus, disassembly of this cortex should precede late steps of exocytosis. Here we investigate regulation of both the actin cytoskeleton and secretion by calmodulin. Ca(2+), together with ATP, induces cortical F-actin disassembly in permeabilized rat peritoneal mast cells. This effect is strongly inhibited by removing endogenous calmodulin (using calmodulin inhibitory peptides), and increased by exogenous calmodulin. Neither treatment, however, affects secretion. Low concentrations ( approximately 1 microM) of a specific inhibitor of myosin light chain kinase, ML-7, prevent F-actin disassembly, but not secretion. In contrast, a myosin inhibitor affecting both conventional and unconventional myosins, BDM, decreases cortical disassembly as well as secretion. Observations of fluorescein-calmodulin, introduced into permeabilized cells, confirmed a strong (Ca(2+)-independent) association of calmodulin with the actin cortex. In addition, fluorescein-calmodulin enters the nuclei in a Ca(2+)-dependent manner. In conclusion, calmodulin promotes myosin II-based contraction of the membrane cytoskeleton, which is a prerequisite for its disassembly. The late steps of exocytosis, however, require neither calmodulin nor cortical F-actin disassembly, but may be modulated by unconventional myosin(s).  相似文献   

4.
We report the identification and characterization of myr 4 (myosin from rat), the first mammalian myosin I that is not closely related to brush border myosin I. Myr 4 contains a myosin head (motor) domain, a regulatory domain with light chain binding sites and a tail domain. Sequence analysis of myosin I head (motor) domains suggested that myr 4 defines a novel subclass of myosin I''s. This subclass is clearly different from the vertebrate brush border myosin I subclass (which includes myr 1) and the myosin I subclass(es) identified from Acanthamoeba castellanii and Dictyostelium discoideum. In accordance with this notion, a detailed sequence analysis of all myosin I tail domains revealed that the myr 4 tail is unique, except for a newly identified myosin I tail homology motif detected in all myosin I tail sequences. The Ca(2+)-binding protein calmodulin was demonstrated to be associated with myr 4. Calmodulin binding activity of myr 4 was mapped by gel overlay assays to the two consecutive light chain binding motifs (IQ motifs) present in the regulatory domain. These two binding sites differed in their Ca2+ requirements for optimal calmodulin binding. The NH2-terminal IQ motif bound calmodulin in the absence of free Ca2+, whereas the COOH-terminal IQ motif bound calmodulin in the presence of free Ca2+. A further Ca(2+)-dependent calmodulin binding site was mapped to amino acids 776-874 in the myr 4 tail domain. These results demonstrate a differential Ca2+ sensitivity for calmodulin binding by IQ motifs, and they suggest that myr 4 activity might be regulated by Ca2+/calmodulin. Myr 4 was demonstrated to be expressed in many cell lines and rat tissues with the highest level of expression in adult brain tissue. Its expression was developmentally regulated during rat brain ontogeny, rising 2-3 wk postnatally, and being maximal in adult brain. Immunofluorescence localization demonstrated that myr 4 is expressed in subpopulations of neurons. In these neurons, prominent punctate staining was detected in cell bodies and apical dendrites. A punctate staining that did not obviously colocalize with the bulk of F- actin was also observed in C6 rat glioma cells. The observed punctate staining for myr 4 is reminiscent of a membranous localization.  相似文献   

5.
Calmodulin-like protein (CLP) is a specific light chain of unconventional myosin-10 (Myo10) and enhances Myo10-dependent filopodial extension. Here we show that phenylalanine-795 in the third IQ domain (IQ3) of Myo10 is critical for CLP binding. Remarkably, mutation of F795 to alanine had little effect on calmodulin binding to IQ3. Fluorescence microscopy and time-lapse video microscopy showed that HeLa cells expressing CLP and transiently transfected with GFP-Myo10-F795A exhibited significantly shorter filopodia and decreased intrafilopodial motility compared to wildtype GFP-Myo10-transfected cells. Thus, F795 represents a unique anchor for CLP and is essential for CLP-mediated Myo10 function in filopodial extension and motility.  相似文献   

6.
Brush border myosin I from chicken intestine is phosphorylated in vitro by chicken intestinal epithelial cell protein kinase C. Phosphorylation on serine and threonine to a maximum of 0.93 mol of P/mol of myosin I occurs within an approximately 20 kDa region at the end of the COOH-terminal tail of the 119-kDa heavy chain. The effects of Ca2+ on myosin I phosphorylation by protein kinase C are complex, with up to 4-fold stimulation occurring at 0.5-3 microM Ca2+, and up to 80% inhibition occurring at 3-320 microM Ca2+. Phosphorylation required that brush border myosin I be in its phosphatidylserine vesicle-bound state. Previously unknown Ca2+ stimulation of brush border myosin I binding to phosphatidylserine vesicles was found to coincide with Ca2+ stimulation of phosphorylation. A myosin I proteolytic fragment lacking approximately 20 kDa of its tail retained Ca(2+)-stimulated binding, but showed reduced Ca(2+)-independent binding. Ca(2+)-dependent phosphatidylserine binding is apparently due to the concomitant phosphatidylserine-promoted, Ca(2+)-induced dissociation of up to three of the four calmodulin light chains from myosin I. Four highly basic putative calmodulin-binding sites in the Ca(2+)-dependent phosphatidylserine binding region of the heavy chain were identified based on the similarity in their sequence to the calmodulin- and phosphatidylserine-binding site of neuromodulin. Calmodulin dissociation is now shown to occur in the low micromolar Ca2+ concentration range and may regulate the association of brush border myosin I with membranes and its phosphorylation by protein kinase C.  相似文献   

7.
MYR-1, a mammalian class I myosin, consisting of a heavy chain and 4-6 associated calmodulins, is represented by the 130-kDa myosin I (or MI(130)) from rat liver. MI(130) translocates actin filaments in vitro in a Ca(2+)-regulated manner. A decrease in motility observed at higher Ca(2+) concentrations has been attributed to calmodulin dissociation. To investigate mammalian myosin I regulation, we have coexpressed in baculovirus calmodulin and an epitope-tagged 85-kDa fragment representing the amino-terminal catalytic "motor" domain and the first calmodulin-binding IQ domain of rat myr-1; we refer to this truncated molecule here as MI(1IQ). Association of calmodulin to MI(1IQ) is Ca(2+)-insensitive. MI(1IQ) translocates actin filaments in vitro at a rate resembling MI(130), but unlike MI(130), does not exhibit sensitivity to 0.1-100 micrometer Ca(2+). In addition to demonstrating successful expression of a functional truncated mammalian myosin I in vitro, these results indicate that: 1) Ca(2+)-induced calmodulin dissociation from MI(130) in the presence of actin is not from the first IQ domain, 2) velocity is not affected by the length of the IQ region, and 3) the Ca(2+) sensitivity of actin translocation exhibited by MI(130) involves 1 or more of the other 5 IQ domains and/or the carboxyl tail.  相似文献   

8.
Ca(2+)-dependent regulation of the motor activity of myosin V   总被引:2,自引:0,他引:2  
Mouse myosin V constructs were produced that consisted of the myosin motor domain plus either one IQ motif (M5IQ1), two IQ motifs (M5IQ2), a complete set of six IQ motifs (SHM5), or the complete IQ motifs plus the coiled-coil domain (thus permitting formation of a double-headed structure, DHM5) and expressed in Sf9 cells. The actin-activated ATPase activity of all constructs except M5IQ1 was inhibited above pCa 5, but this inhibition was completely reversed by addition of exogenous calmodulin. At the same Ca(2+) concentration, 2 mol of calmodulin from SHM5 and DHM5 or 1 mol of calmodulin from M5IQ2 were dissociated, suggesting that the inhibition of the ATPase activity is due to dissociation of calmodulin from the heavy chain. However, the motility activity of DHM5 and M5IQ2 was completely inhibited at pCa 6, where no dissociation of calmodulin was detected. Inhibition of the motility activity was not reversed by the addition of exogenous calmodulin. These results indicate that inhibition of the motility is due to conformational changes of calmodulin upon the Ca(2+) binding to the high affinity site but is not due to dissociation of calmodulin from the heavy chain.  相似文献   

9.
Erickson MG  Liang H  Mori MX  Yue DT 《Neuron》2003,39(1):97-107
L-type Ca(2+) channels possess a Ca(2+)-dependent inactivation (CDI) mechanism, affording feedback in diverse neurobiological settings and serving as prototype for unconventional calmodulin (CaM) regulation emerging in many Ca(2+) channels. Crucial to such regulation is the preassociation of Ca(2+)-free CaM (apoCaM) to channels, facilitating rapid triggering of CDI as Ca(2+)/CaM shifts to a channel IQ site (IQ). Progress has been hindered by controversy over the preassociation site, as identified by in vitro assays. Most critical has been the failure to resolve a functional signature of preassociation. Here, we deploy novel FRET assays in live cells to identify a 73 aa channel segment, containing IQ, as the critical preassociation pocket. IQ mutations disrupting preassociation revealed accelerated voltage-dependent inactivation (VDI) as the functional hallmark of channels lacking preassociated CaM. Hence, the alpha(1C) IQ segment is multifunctional-serving as ligand for preassociation and as Ca(2+)/CaM effector site for CDI.  相似文献   

10.
Cellular mechanisms for the regulation of Ca(2+)-dependent myosin light chain phosphorylation were investigated in bovine tracheal smooth muscle. Increases in the free intracellular Ca2+ concentration ([Ca2+]i), light chain phosphorylation, and force were proportional to carbachol concentration. KCaM, the concentration of Ca2+/calmodulin required for half-maximal activation of myosin light chain kinase, also increased proportionally, presumably due to Ca(2+)-dependent phosphorylation of the kinase. Isoproterenol treatment inhibited agonist-induced contraction by decreasing [Ca2+]i and thereby light chain phosphorylation. Depolarization by increasing concentrations of KCl also resulted in proportional increases in [Ca2+]i, KCaM, light chain phosphorylation, and force. However, the [Ca2+]i required to obtain a given value of either light chain phosphorylation or KCaM was greater in KCl-depolarized tissues compared to carbachol-treated tissues. In muscles contracted with KCl, isoproterenol treatment resulted in diminished light chain phosphorylation and force without alterations in [Ca2+]i or KCaM. Thus, isoproterenol inhibition of KCl-induced contraction results from a cellular mechanism different from that found in agonist-induced contraction. In neither case does isoproterenol produce relaxation by altering the calmodulin activation properties of myosin light chain kinase.  相似文献   

11.
Myosin II regulatory light chain (RLC) phosphorylation by Ca(2+)/calmodulin (CaM)-dependent myosin light chain kinase (MLCK) is implicated in many cellular actin cytoskeletal functions. We examined MLCK activation quantitatively with a fluorescent biosensor MLCK where Ca(2+)-dependent increases in kinase activity were coincident with decreases in fluorescence resonance energy transfer (FRET) in vitro. In cells stably transfected with CaM sensor MLCK, increasing [Ca(2+)](i) increased MLCK activation and RLC phosphorylation coincidently. There was no evidence for CaM binding but not activating MLCK at low [Ca(2+)](i). At saturating [Ca(2+)](i) MLCK was not fully activated probably due to limited availability of cellular Ca(2+)/CaM.  相似文献   

12.
The contractile state of smooth muscle is regulated primarily by the sarcoplasmic (cytosolic) free Ca2+ concentration. A variety of stimuli that induce smooth muscle contraction (e.g., membrane depolarization, alpha-adrenergic and muscarinic agonists) trigger an increase in sarcoplasmic free [Ca2+] from resting levels of 120-270 to 500-700 nM. At the elevated [Ca2+], Ca2+ binds to calmodulin, the ubiquitous and multifunctional Ca(2+)-binding protein. The interaction of Ca2+ with CaM induces a conformational change in the Ca(2+)-binding protein with exposure of a site(s) of interaction with target proteins, the most important of which in the context of smooth muscle contraction is the enzyme myosin light chain kinase. The interaction of calmodulin with myosin light chain kinase results in activation of the kinase that catalyzes phosphorylation of myosin at serine-19 of each of the two 20-kDa light chains (native myosin is a hexamer composed of two heavy chains (230 kDa each) and two pairs of light chains (one pair of 20 kDa each and the other pair of 17 kDa each)). This simple phosphorylation reaction triggers cycling of myosin cross-bridges along actin filaments and the development of force. Relaxation of the muscle follows removal of Ca2+ from the sarcoplasm, whereupon calmodulin dissociates from myosin light chain kinase regenerating the inactive kinase; myosin is dephosphorylated by myosin light chain phosphatase(s), whereupon it dissociates and remains detached from the actin filament and the muscle relaxes. A substantial body of evidence has been accumulated in support of this central role of myosin phosphorylation-dephosphorylation in the regulation of smooth muscle contraction. However, a wide range of physiological and biochemical studies supports the existence of additional, secondary Ca(2+)-dependent mechanisms that can modulate or fine-tune the contractile state of the smooth muscle cell. Three such mechanisms have emerged: (i) the actin-, tropomyosin-, and calmodulin-binding protein, calponin; (ii) the actin-, myosin-, tropomyosin-, and calmodulin-binding protein, caldesmon; and (iii) the Ca(2+)- and phospholipid-dependent protein kinase (protein kinase C).  相似文献   

13.
Lieto-Trivedi A  Coluccio LM 《Biochemistry》2008,47(38):10218-10226
To investigate the interaction of mammalian class I myosin, Myo1c, with its light chain calmodulin, we expressed (with calmodulin) truncation mutants consisting of the Myo1c motor domain followed by 0-4 presumed calmodulin-binding (IQ) domains (Myo1c (0IQ)-Myo1c (4IQ)). The amount of calmodulin associating with the Myo1c heavy chain increased with increasing number of IQ domains from Myo1c (0IQ) to Myo1c (3IQ). No calmodulin beyond that associated with Myo1c (3IQ) was found with Myo1c (4IQ) despite its availability, showing that Myo1c binds three molecules of calmodulin with no evidence of a fourth IQ domain. Unlike Myo1c (0IQ), the basal ATPase activity of Myo1c (1IQ) was >10-fold higher in Ca (2+) vs EGTA +/- exogenous calmodulin, showing that regulation is by Ca (2+) binding to calmodulin on the first IQ domain. The K m and V max of the actin-activated Mg (2+)-ATPase activity were largely independent of the number of IQ domains present and moderately affected by Ca (2+). In binding assays, some calmodulin pelleted with Myo1c heavy chain when actin was present, but a considerable fraction remained in the supernatant, suggesting that calmodulin is displaced most likely from the second IQ domain. The Myo1c heavy chain associated with actin in a nucleotide-dependent fashion. In ATP a smaller proportion of calmodulin pelleted with the heavy chain, suggesting that Myo1c undergoes nucleotide-dependent conformational changes that affect the affinity of calmodulin for the heavy chain. The studies support a model in which Myo1c in the inner ear is regulated by both Ca (2+) and nucleotide, which exert their effects on motor activity through the light-chain-binding region.  相似文献   

14.
Martin SR  Bayley PM 《FEBS letters》2004,567(2-3):166-170
Ca(2+)-saturated calmodulin binds to double-length IQ lever-arm sequences from murine myosin-V, forming a 1:1 "bridging" complex with very high affinity, (K9d)<10 pM for double motifs, IQ34, IQ45 and IQ56). Such a 1:1 complex involves interaction of one calmodulin (CaM) molecule with two adjacent IQ-motifs, providing a molecular mechanism for the observed Ca(2+)-dependent CaM dissociation from the IQ-region. Structural considerations suggest that formation of the 1:1 complex requires a severe distortion of the lever-arm, potentially regulating functional motility. This would be consistent with a recent report of diverse, irregular shapes of the lever arm of myosin-V induced by the presence of Ca(2+).  相似文献   

15.
Black DJ  Persechini A 《Biochemistry》2011,50(46):10061-10068
We have investigated the roles played by the calmodulin (CaM) N- and C-lobes in establishing the conformations of CaM-IQ domain complexes in different Ca(2+)-free and Ca(2+)-bound states. Our results indicate a dominant role for the C-lobe in these complexes. When the C-lobe is Ca(2+)-free, it directs the N-lobe to a binding site within the IQ domain consensus sequence. It appears that the N-lobe must be Ca(2+)-free to interact productively with this site. When the C-lobe is Ca(2+)-bound, it directs the N-lobe to a site upstream of the consensus sequence, and it appears that the N-lobe must be Ca(2+)-bound to interact productively with this site. A model for switching in CaM-IQ domain complexes is presented in which the N-lobe adopts bound and extended positions that depend on the status of the Ca(2+)-binding sites in each CaM lobe and the compositions of the two N-lobe binding sites. Ca(2+)-dependent changes in the conformation of the bound C-lobe that appear to be responsible for directed N-lobe binding are also identified. Changes in the equilibria between extended and bound N-lobe positions may control bridging interactions in which the extended N-lobe is bound to another CaM-binding domain. Ca(2+)-dependent control of bridging interactions with CaM has been implicated in the regulation of ion channel and unconventional myosin activities.  相似文献   

16.
Using Ca(2+)-dependent affinity chromatography on a synthetic compound (W-77)-coupled Sepharose 4B column, we purified two different Ca(2+)-binding proteins from rabbit lung extracts. The molecular weights of these proteins were estimated to be 17 kDa (calmodulin) and 10 kDa, respectively. The partial amino acid sequence of the 10-kDa protein revealed that it has two EF-hand structures. In addition, the 10-kDa protein was highly homologous (91%) to the product of growth-regulated gene, 2A9 (calcyclin). The Ca(2+)-binding property of the 10-kDa protein was observed by a change in the uv difference spectrum. Equilibrium dialysis showed that 1 mol of the 10-kDa protein bound to 2.04 +/- 0.05 mol of Ca2+ in the presence of 10(-4) M Ca2+. However, the protein failed to activate calmodulin-dependent enzymes such as Ca2+/CaM kinase II, myosin light chain kinase, and phosphodiesterase. We found that a 50-kDa cytosolic protein of the rabbit lung, intestine, and spleen bound to the 10-kDa protein, in a Ca(2+)-dependent manner. The distribution of calcyclin and calcyclin binding proteins was unique and seems to differ from that of calmodulin and calmodulin-binding proteins. Thus, calcyclin probably plays a physiological role through its binding proteins for the Ca(2+)-dependent cellular response.  相似文献   

17.
Myosin X is a member of the diverse myosin superfamily that is ubiquitously expressed in various mammalian tissues. Although its association with actin in cells has been shown, little is known about its biochemical and mechanoenzymatic function at the molecular level. We expressed bovine myosin X containing the entire head, neck, and coiled-coil domain and purified bovine myosin X in Sf9 cells. The Mg(2+)-ATPase activity of myosin X was significantly activated by actin with low K(ATP). The actin-activated ATPase activity was reduced at Ca(2+) concentrations above pCa 5 in which 1 mol of calmodulin light chain dissociates from the heavy chain. Myosin X translocates F-actin filaments with the velocity of 0.3 microm/s with the direction toward the barbed end. The actin translocating activity was inhibited at concentrations of Ca(2+) at pCa 6 in which no calmodulin dissociation takes place, suggesting that the calmodulin dissociation is not required for the inhibition of the motility. Unlike class V myosin, which shows a high affinity for F-actin in the presence of ATP, the K(actin) of the myosin X ATPase was much higher than that of myosin V. Consistently nearly all actin dissociated from myosin X in the presence of ATP. ADP did not significantly inhibit the actin-activated ATPase activity of myosin X, suggesting that the ADP release step is not rate-limiting. These results suggest that myosin X is a nonprocessive motor. Consistently myosin X failed to support the actin translocation at low density in an in vitro motility assay where myosin V, a processive motor, supports the actin filament movement.  相似文献   

18.
Myo2p is an unconventional myosin required for polarized growth in Saccharomyces cerevisiae. Four lines of evidence suggest that (a) Myo2p is a target of calmodulin at sites of cell growth, and (b) the interaction between Myo2p and calmodulin is Ca2+ independent. First, as assessed by indirect immunofluorescence, the distributions of Myo2p and calmodulin are nearly indistinguishable throughout the cell cycle. Second, a genetic analysis indicates that mutations in CMD1 show allele- specific synthetic lethality with the myo2-66 conditional mutation. Mutations that inactivate the Ca(2+)-binding sites of calmodulin have little or no effect on strains carrying myo2-66, whereas an allele with a mutation outside the Ca(2+)-binding sites dramatically increases the severity of the phenotype conferred by myo2-66. Third, Myo2p coimmunoprecipitates with calmodulin in the presence of Ca2+ or EGTA. Finally, we used a modified gel overlay assay to demonstrate direct interaction between calmodulin and fusion proteins containing portions of Myo2p. Calmodulin binds specifically to the region of Myo2p containing six tandem repeats of a motif called an IQ site. Binding occurs in either Ca2+ or EGTA, and only two sites are required to observe binding.  相似文献   

19.
Calmodulin, bound to the alpha(1) subunit of the cardiac L-type calcium channel, is required for calcium-dependent inactivation of this channel. Several laboratories have suggested that the site of interaction of calmodulin with the channel is an IQ-like motif in the carboxyl-terminal region of the alpha(1) subunit. Mutations in this IQ motif are linked to L-type Ca(2+) current (I(Ca)) facilitation and inactivation. IQ peptides from L, P/Q, N, and R channels all bind Ca(2+)calmodulin but not Ca(2+)-free calmodulin. Another peptide representing a carboxyl-terminal sequence found only in L-type channels (designated the CB domain) binds Ca(2+)calmodulin and enhances Ca(2+)-dependent I(Ca) facilitation in cardiac myocytes, suggesting the CB domain is functionally important. Calmodulin blocks the binding of an antibody specific for the CB sequence to the skeletal muscle L-type Ca(2+) channel, suggesting that this is a calmodulin binding site on the intact protein. The binding of the IQ and CB peptides to calmodulin appears to be competitive, signifying that the two sequences represent either independent or alternative binding sites for calmodulin rather than both sequences contributing to a single binding site.  相似文献   

20.
Mori MX  Imai Y  Itsuki K  Inoue R 《Biochemistry》2011,50(21):4685-4696
Calcium dynamics and its linked molecular interactions cause a variety of biological responses; thus, exploiting techniques for detecting both concurrently is essential. Here we describe a method for measuring the cytosolic Ca(2+) concentration ([Ca(2+)](i)) and protein-protein interactions within the same cell, using Fura-2 and superenhanced cyan and yellow fluorescence protein (seCFP and seYFP, respectively) FRET imaging techniques. Concentration-independent corrections for bleed-through of Fura-2 into FRET cubes across different time points and [Ca(2+)](i) values allowed for an effective separation of Fura-2 cross-talk signals and seCFP and seYFP cross-talk signals, permitting calculation of [Ca(2+)](i) and FRET with high fidelity. This correction approach was particularly effective at lower [Ca(2+)](i) levels, eliminating bleed-through signals that resulted in an artificial enhancement of FRET. By adopting this correction approach combined with stepwise [Ca(2+)](i) increases produced in living cells, we successfully elucidated steady-state relationships between [Ca(2+)](i) and FRET derived from the interaction of seCFP-tagged calmodulin (CaM) and the seYFP-fused CaM binding domain of myosin light chain kinase. The [Ca(2+)](i) versus FRET relationship for voltage-gated sodium, calcium, and TRPC6 channel CaM binding domains (IQ domain or CBD) revealed distinct sensitivities for [Ca(2+)](i). Moreover, the CaM binding strength at basal or subbasal [Ca(2+)](i) levels provided evidence of CaM tethering or apoCaM binding in living cells. Of the ion channel studies, apoCaM binding was weakest for the TRPC6 channel, suggesting that more global Ca(2+) and CaM changes rather than the local CaM-channel interface domain may be involved in Ca(2+)CaM-mediated regulation of this channel. This simultaneous Fura-2 and CFP- and YFP-based FRET imaging system will thus serve as a simple but powerful means of quantitatively elucidating cellular events associated with Ca(2+)-dependent functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号