首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Chronobiology international》2013,30(10):1139-1145
The aim of this pilot study was to explore the risk of metabolic abnormalities in steel workers employed in different shift-work rotations. Male workers in a steel factory [16 employed in a fast clockwise rotation (CW), 18 in slow counterclockwise rotation (CC), 9 day workers (DW); mean age 43.3?±?SD 6.8 years] with at least 5 years experience in their current work schedule participated. All workers provided fasting blood samples between 06:00 and 08:00?h for plasma glucose, insulin, apo-lipoproteins A and B (ApoA, ApoB), high- and low-density lipoproteins (HDL and LDL), total cholesterol (tCH), triglycerides (TG), minimally oxidized (mox) LDL, C-reactive protein (CRP), interleukin-8 (IL-8) and serum 25-hydroxyvitamin D (25(OH)D). HOMA index (homeostatic model assessment) was calculated to evaluate insulin resistance, beta cell function and risk of diabetes. Information on demographics, health, stimulants, sleep, social and work life, chronotype (phase of entrainment) and social jetlag (difference between mid-sleep on workdays and free days) as a surrogate for circadian disruption was collected by questionnaire. Neither chronotype nor social jetlag was associated with any of the metabolic risk blood markers. There were no significant differences in 25(OH)D, ApoA, ApoB, CRP, HDL, IL-8, insulin, LDL, mox-LDL, mox-LDL/ApoB ratio, tCH and TG levels between the three work groups. Although we did observe absolute differences in some of these markers, the small sample size of our study population might prevent these differences being statistically significant. Fasting glucose and HOMA index were significantly lower in CW compared to DW and CC, indicating lower metabolic risk. Reasons for the lower fasting glucose and HOMA index in CW workers remains to be clarified. Future studies of workers in different shift rotations are warranted to understand better the differential effects of shift-work on individual workers and their health indices.  相似文献   

2.
The efficacy of a light/darkness intervention designed to promote circadian adaptation to night shift work was tested in this combined field and laboratory study. Six full-time night shift workers (mean age ± SD:37.1 ± 8.1 yrs) were provided an intervention consisting of an intermittent exposure to full-spectrum bright white light (~2000 lux) in the first 6 h of their 8 h shift, shielding from morning light by tinted lenses (neutral gray density, 15% visual light transmission), and regular sleep/darkness episodes in darkened quarters beginning 2 h after the end of each shift. Five control group workers (41.1 ± 9.9 yrs) were observed in the presence of a regular sleep/darkness schedule only. Constant routines (CR) performed before and after a sequence of ~12 night shifts over 3 weeks revealed that treatment group workers displayed significant shifts in the time of peak cortisol expression and realignment of the rhythm with the night-oriented schedule. Smaller phase shifts, suggesting an incomplete adaptation to the shift work schedule, were observed in the control group. Our observations support the careful control of the pattern of light and darkness exposure for the adaptation of physiological rhythms to night shift work.  相似文献   

3.
The aim of this study was to investigate the diurnal variation in core temperature in aluminium shift-workers exposed to hot ambient conditions. Core temperature was continuously recorded via an ingestible radio-telemetry thermistor in 29 shift-workers. Data from the morning, afternoon and night shifts were aggregated for each participant to obtain 24-h recordings during work duties. Complete data were obtained from 10 participants. Results showed that body core temperatures recorded in the afternoon (from 12:00 h to 20:00 h) were significantly higher (P<0.05) than in the late evening, night and early morning (from 21:00 h to 08:00 h). In addition, core temperature displayed a circadian variation with a mesor of 37.45 (±0.19) °C, an amplitude of 0.23 (±0.12) °C and an acrophase at 16:36 h (±3:37 h). The peak values of core temperature recorded at each hour of the day on the work site followed the same pattern with an acrophase in the early afternoon. In summary, our data showed that shift-workers present higher core temperatures in the afternoon than in the morning or during the night. In addition, it was not the work duration but the hour-of-day that triggered the variation in core temperature. This result partly explains previous observations that workers under heat stress have a higher probability of heat illness during daytime shifts than during the night shift, and suggests that special care should be given to the afternoon shift and to the end of the morning shift.  相似文献   

4.
Occupational stress and stress-related performance impairment is a common feature among hospital nurses engaged in rotating shift work, particularly night work. This cross-sectional survey determined workplace stress and cognitive efficiency of nursing staff engaged in rotating shift work. One hundred twenty-two full-time staff nurses in three different government hospitals in West Bengal, India, were the participants. Perceived exertion, alertness, sleep duration and various performance tests were performed. Sleep duration was least between repeated night shifts in comparison with the other shifts. Though alertness and performance of the staff nurses varied on different shifts, the late portion of the night shift as well as the early portion of the morning shift was most prone to impairment of work efficiency.  相似文献   

5.
《Chronobiology international》2013,30(10):1169-1178
We compared two “3?×?8” shift rotas with backward rotation and quick return (morning and night shift in the same day) in a 5- or 6-day shift cycle, and a “2?×?12” shift rota with forward rotation in a 5-d shift cycle. A total of 294 nurses (72.6% women, mean age 33.8) were examined in a survey on work-related stress, including the Standard Shiftwork Index. Ten nurses per each shift roster recorded their activity and rest periods by actigraphy, rated sleepiness and sleep quality, and collected salivary cortisol throughout the whole shift cycle. Nurses engaged in the “2?×?12” rota showed lower levels of sleep disturbances and, according to actigraphy, sleep duration was more balanced and less fragmented than in the “3?×?8” rosters. The counter-clockwise shift rotation and quick return of “3?×?8” schedules reduce possibility of sleep and recovery. The insertion of a morning shift before the day with quick return increases night sleep by about 1?h. Nurses who take a nap during the night shift require 40% less sleep in the morning after. The “2?×?12” clockwise roster, in spite of 50% increased length of shift, allows a better recovery and more satisfying leisure times, thanks to longer intervals between work periods. Sleepiness increased more during the night than day shifts in all rosters, but without significant difference between 8-h and 12-h rosters. However, the significantly higher level at the start of the night shift in the “3?×?8” rotas points out that the fast backward rotation with quick return puts the subjects in less efficient operational conditions. Some personal characteristics, such as morningness, lability to overcome drowsiness, flexibility of sleeping habits and age were significantly associated to sleep disturbances in nurses engaged in the “3?×?8” rotas, but not in the “2?×?12” schedule.  相似文献   

6.
Continuous rotating shiftworkers temporarily working overtime slept at least once during the working hours of their night shifts. They worked at an electric power distribution plant in São Paulo (Brazil). In order to detect factors that could be associated with sleeping on the job, we compared those who slept (sleep group – S) with those who did not sleep (non-sleep group – NS) as to the number of night shifts, the average length of night shifts, the variability in night shift onset and offset times and the length of sleep episodes at home between consecutive night shifts. Data collection was based on dairies filled in by the workers for 30 consecutive days. For both S and NS groups, the number of night shifts for each worker varied from 5 to 9, no difference being found between groups. Individual means of night shifts length varied from 9.4 ± 0.3 hr to 14.2 ± 0.6 hr; they were significantly longer in the S than in the NS group. Night shift onset times were shown to be significantly more variable in the S than in the NS group, whereas offset times did not differ significantly between groups. Length of sleep episodes at home was not significantly different between groups. Workers who slept on the job were those who had longer working bouts and / or more variable night shift onset times. Differences among workers may be due to individual strategies to cope with a situation in which the work schedule included night shifts that were much longer than the established 8 hours, and with many changes in onset times from one night shift to the next.  相似文献   

7.
Night shift work is associated with a myriad of health and safety risks. Phase‐shifting the circadian clock such that it is more aligned with night work and day sleep is one way to attenuate these risks. However, workers will not be satisfied with complete adaptation to night work if it leaves them misaligned during days off. Therefore, the goal of this set of studies is to produce a compromise phase position in which individuals working night shifts delay their circadian clocks to a position that is more compatible with nighttime work and daytime sleep yet is not incompatible with late nighttime sleep on days off. This is the first in the set of studies describing the magnitude of circadian phase delays that occurs on progressively later days within a series of night shifts interspersed with days off. The series will be ended on various days in order to take a “snapshot” of circadian phase. In this set of studies, subjects sleep from 23:00 to 7:00 h for three weeks. Following this baseline period, there is a series of night shifts (23:00 to 07:00 h) and days off. Experimental subjects receive five 15 min intermittent bright light pulses (~3500 lux; ~1100 µW/cm2) once per hour during the night shifts, wear sunglasses that attenuate all visible wavelengths—especially short wavelengths (“blue‐blockers”)—while traveling home after the shifts, and sleep in the dark (08:30–15:30 h) after each night shift. Control subjects remain in typical dim room light (<50 lux) throughout the night shift, wear sunglasses that do not attenuate as much light, and sleep whenever they want after the night shifts. Circadian phase is determined from the circadian rhythm of melatonin collected during a dim light phase assessment at the beginning and end of each study. The sleepiest time of day, approximated by the body temperature minimum (Tmin), is estimated by adding 7 h to the dim light melatonin onset. In this first study, circadian phase was measured after two night shifts and day sleep periods. The Tmin of the experimental subjects (n=11) was 04:24±0.8 h (mean±SD) at baseline and 7:36±1.4 h after the night shifts. Thus, after two night shifts, the Tmin had not yet delayed into the daytime sleep period, which began at 08:30 h. The Tmin of the control subjects (n=12) was 04:00±1.2 h at baseline and drifted to 4:36±1.4 h after the night shifts. Thus, two night shifts with a practical pattern of intermittent bright light, the wearing of sunglasses on the way home from night shifts, and a regular sleep period early in the daytime, phase delayed the circadian clock toward the desired compromise phase position for permanent night shift workers. Additional night shifts with bright light pulses and daytime sleep in the dark are expected to displace the sleepiest time of day into the daytime sleep period, improving both nighttime alertness and daytime sleep but not precluding adequate sleep on days off.  相似文献   

8.
ABSTRACT

Osteoporosis is an important public health problem worldwide. Although a number of factors that affect bone structure have been described; thus far, the current knowledge of occupational factors that may have an influence on bone tissue metabolism is strongly limited. Published studies indicate night shift work and the related circadian rhythm disruption may be considered as plausible underlying factors. The aim of the present study was to assess the potential association between night shift work and bone mineral density (BMD) among female blue-collar workers in Poland. A cross-sectional study was carried out among 194 female blue-collar workers >40 years of age employed in industrial plants. The operating system of work consisted of three work shifts clockwise rotation: morning (06:00–14:00 h), afternoon (14:00–22:00 h), and night (22:00–06:00 h), with five consecutive shifts per week followed by a free weekend. A questionnaire survey, based on a Polish version of The European vertebral osteoporosis study (EVOS) questionnaire, a validated instrument, was administered. Data on current job characteristics, job seniority, and lifetime duration of night shift work were also collected. BMD of the lumbar spine and hip (both total femur and femoral neck) was measured using dual-energy X-ray absorptiometry. Multivariate linear regression models were run, with bone mineralization parameters as dependent variables, as well as night work characteristics and important confounders. Statistical analysis was performed separately for premenopausal and postmenopausal women. The analyses adjusted for confounders did not reveal any significant differences between current or lifetime experience of night shift work and BMD among both premenopausal and postmenopausal women. However, the outcomes supported the well-established correlation with factors, such as age, BMI, and menopausal status. BMD at the three sites measured was significantly associated with BMI (p < .001) and inversely associated with age (p < .001) in the total study population. Postmenopausal women had significantly lower BMD than did premenopausal women (p < .001). The study findings indicate that in the population of Polish female blue-collar workers, the system of work does not seem to be associated with the development of osteoporosis.  相似文献   

9.
Intolerance to shift work may result from individual susceptibility to an internal desynchronization. Some shift workers (SW) who show desynchronization of their circadian rhythms (e.g., sleep‐wake, body temperature, and grip strength of both hands) exhibit symptoms of SW intolerance, such as sleep alteration, persistent fatigue, sleep medication dependence, and mood disturbances, including depression. Existing time series data previously collected from 48 male Caucasian French SW were reanalyzed specifically to test the hypothesis that internal synchronization of circadian rhythms is associated with SW intolerance and symptoms. The entry of the subjects into the study was randomized. Three groups were formed thereafter: SW with good tolerance (n=14); SW with poor tolerance, as evident by medical complaints for at least one year (n=19); and former SW (n=15) with very poor tolerance and who had been discharged from night work for at 1.5 yr span but who were symptom‐free at the time of the study. Individual and longitudinal time series of selected variables (self‐recorded sleep‐wake data using a sleep log, self‐measured grip strength of both hands using a Colin Gentile dynamometer, and oral temperature using a clinical thermometer) were gathered for at least 15 days, including during one or two night shifts. Measurements were performed 4–5 times/24 h. Power spectra that quantify the prominent period (τ) and t‐test, chi square, and correlation coefficient were used as statistical tools. The mean (±SEM) age of SW with good tolerance was greater than that of SW with poor tolerance (44.9±2.1 yrs vs. 40.1±2.6 yrs, p<.001) and of former SW discharged from night work (very poor tolerance; 33.4±1.7, p<.001). The shift-work duration (yrs) was longer in SW with good than poor tolerance (19.9±2.2 yrs vs. 15.7±2.2; p<0.002) and former SW (10.7±1.2; p<.0001). The correlation between subject age and shift-work duration was stronger in tolerant SW (r=0.97, p<.0001) than in non‐tolerant SW (r=0.80, p<0.001) and greater than that of former SW (r=0.72, p<.01). The mean sleep‐wake rhythm τ was 24 h for all 48 subjects. The number of desynchronized circadian rhythms (τ differing from 24 h) was greater in non‐tolerant than in tolerant SW (chi square=38.9, p<.0001). In Former SW (i.e., 15 individuals assessed in follow‐up studies done 1.5 to 20 yrs after return to day work), both symptoms of intolerance and internal desynchronization were reduced or absent. The results suggest that non‐tolerant SW are particularly sensitive to the internal desynchronization of their circadian time organization.  相似文献   

10.
Fatigue is a major risk factor for occupational ‘accidents’ and injuries, and involves dimensions of physical, mental, and muscular fatigue. These dimensions are largely influenced by temporal aspects of work schedules. The “Risk Index” combines four fatigue-related components of work schedules to estimate occupational ‘accident’ and injury risk based on empirical trends: shift type (morning, afternoon/evening, night), length and consecutive number, and on-shift rest breaks. Since its first introduction in 2004, several additional studies have been published that allow the opportunity to improve the internal and external validity of the “Risk Index”. Thus, we updated the model’s estimates by systematically reviewing the literature and synthesizing study results using meta-analysis. Cochrane Collaboration directives and MOOSE guidelines were followed. We conducted systematic literature searches on each model component in Medline. An inverse variance approach to meta-analysis was used to synthesize study effect sizes and estimate between-studies variance (‘heterogeneity’). Meta-regression models were conducted to explain the heterogeneity using several effect modifiers, including the sample age and sex ratio. Among 3,183 initially identified abstracts, after screening by two independent raters (95–98% agreement), 29 high-quality studies were included in the meta-analysis. The following trends were observed: Shift type. Compared to morning shifts, injury risk significantly increased on night shifts (RR = 1.36 [95%CI = 1.15–1.60], n = 14 studies), while risk was slightly elevated on afternoon/evening shifts, although non-significantly (RR = 1.12 [0.76–1.64], n = 9 studies). Meta-regressions revealed worker’s age as a significant effect modifier: adolescent workers (≤ 20 y) showed a decreased risk on the afternoon/evening shift compared to both morning shifts and adult workers (p < 0.05). Number of consecutive shifts. Compared to the first shift in a block of consecutive shifts, risk increased exponentially for morning shifts (e.g., 4th: RR = 1.09 [0.90–1.32]; n = 6 studies) and night shifts (e.g., 4th: RR = 1.36 [1.14–1.62]; n = 8 studies), while risk on afternoon/evening shifts appeared unsystematic. Shift length. Injury risk rose substantially beyond the 9th hour on duty, a trend that was mirrored when looking at shift lengths (e.g., >12 h: RR = 1.34 [1.04–1.51], n = 3 studies). Rest breaks. Risk decreased for any rest break duration (e.g., 31–60 min: RR = 0.35 [0.29–0.43], n = 2 studies). With regards to time between breaks, risk increased with every additional half hour spent on the work task compared to the first 30 min (e.g., 90–119 min: RR = 1.62 [1.00–2.62], n = 3 studies). Rest break duration and interval seem to interact such that with increasing duration, the time between breaks becomes irrelevant. The updated “Risk Index”. All four components were combined to form the updated model and the relative risk values estimated for a variety of work schedules. The resulting “Risk Map” shows regions of highest risk when rest breaks are not taken frequently enough (i.e. <4 h) or are too short (i.e. <30 min), when shift length exceeds 11 h, and when work takes place during the night (particularly for >3 consecutive night shifts). The “Risk Index” is proposed as an empirical model to predict occupational ‘accident’ and injury risk based on the most recent data in the field, and can serve as a tool to evaluate hazards and maximize safety across different work schedules.  相似文献   

11.
The hindered rotations of acetone were studied density functional theory (B3LYP) and second order Møller-Plesset approaches using 6-31G** and 6-311G** basis sets. One of the CH3 groups of acetone with fixed heavy atoms was rotated from 0.0 to 120°, and CCH angles were scanned from 90.3 to 130.3° to cover the potential energy surface of interest; a circular valley was obtained with the deepest potential value at a CCH angle equal to 109.3°. Potential energy profiles were then calculated by assuming that the molecular geometry could relax during rotation (i.e., each value of the torsion angle of the molecular geometry was optimized). Next, the two methyl groups were both rotated clockwise, and then one was rotated clockwise and the other counterclockwise. Using the variation method, and utilizing the first 20 harmonic oscillator wave functions, the energy levels, relative transition moment and relative transition intensities of the component of the hindered rotation ν2 (125.16 cm?1) were computed in a one-dimensional Schrodinger equation. The first three energy levels were almost degenerate; the next three were opened up, and the seventh energy level appeared above the level where tunneling can occur.  相似文献   

12.
ABSTRACT

Despite research indicating that sleep disorders influence reproductive health, the effects of sleep on reproductive hormone concentrations are poorly characterized. We prospectively followed 259 regularly menstruating women across one to two menstrual cycles (the BioCycle Study, 2005–2007), measuring fasting serum hormone concentrations up to eight times per cycle. Women provided information about daily sleep in diaries and chronotype and night/shift work on a baseline questionnaire. We evaluated percent differences in mean hormone concentrations, the magnitude of shifts in the timing and amplitude of hormone peaks, and the risk for sporadic anovulation associated with self-reported sleep patterns and night/shift work. We estimated chronotype scores – categorizing women below and above the interquartile range (IQR) as “morning” and “evening” chronotypes, respectively. For every hour increase in daily sleep duration, mean estradiol concentrations increased by 3.9% (95% confidence interval [CI] 2.0, 5.9%) and luteal phase progesterone by 9.4% (CI 4.0, 15.2%). Receiving less than 7 hours of sleep per day was associated with slightly earlier rises in peak levels for several hormones. Women reporting night/shift work (n = 77) had lower testosterone relative to women employed without night/shift work (percent difference: ?9.9%, CI ?18.4, ?0.4%). Women with morning chronotypes (n = 47) had earlier rises in estradiol during their cycles and potentially an earlier rise in luteinizing hormone. Compared to those who had intermediate chronotypes, women with evening chronotypes (n = 42) had a later luteinizing hormone peak of borderline statistical significance. A reduced risk for sporadic anovulation was suggested, but imprecise, for increasing hours of daily sleep leading up to ovulation (risk ratio 0.79, CI 0.59, 1.06), while an imprecise increased risk was observed for women with morning chronotypes (risk ratio 2.50, CI 0.93, 6.77). Sleep-related hormonal changes may not greatly alter ovarian function in healthy women, but have the potential to influence gynecologic health.  相似文献   

13.
ABSTRACT

When shift nurses change shifts, it is likely to affect the cortisol patterns of their bodies and sleep quality. The objectives of this study was to verify the influence of monthly rotating day, evening and night shifts on the sleep quality of female nurses and determine whether the cortisol awakening response (CAR) mediates this relationship. A total of 132 female shift nurses were recruited, and ultimately 128 complete questionnaires and samples were obtained (subject loss rate = 3.0%) from 45 day-shift nurses, 44 evening-shift nurses and 39 night-shift nurses at a teaching hospital in Northern Taiwan. The Pittsburgh sleep quality index served as the research instrument that nurses used to collect saliva samples at home every day after waking and 30?min after waking so as to calculate the net increases in cortisol levels (CARi). Hierarchical multiple regression was employed to examine the influence of shift type on the sleep quality of the female nurses and the mediating effect of CARi. The results of this study indicate that shift type significantly influenced CARi (F = 19.66, p < 0.001) and that the regression coefficients of evening versus day shifts and night versus day shifts are both negative. Shift type also significantly influenced sleep quality (F = 15.13, p < 0.001), and the regression coefficients of evening versus day shifts and night versus day shifts are both positive. After controlling for the influence of shift type, CARi remained significantly correlated with sleep quality (ΔF = 5.17, p = 0.025). The results show that female evening-shift or night-shift nurses display significantly lower CARi and experience significantly poorer sleep quality than day-shift nurses. A greater CARi in the female shift nurses represents better sleep quality. Furthermore, the results prove that CARi is a mediating variable influencing the sleep quality of female shiftwork nurses.  相似文献   

14.
The objective of this study was to examine the association of age with chronotype and sleep duration in day workers and rotating shift workers, including night shift work. Between October 2012 and February 2015, a cross-sectional study was conducted in a German chemical company. Using the “Munich ChronoType Questionnaire” (MCTQ), data about sleep onset and sleep offset during workdays and work-free days were retrieved and the chronotype was computed during regular voluntary occupational health check-ups. Associations between age and chronotype, as well as sleep duration, were assessed using linear regression analyses. Potential effect modification by the working time system was examined. Within the study period, 4,040 employees (82.3% and 17.7% were engaged in day work and rotating shift work, respectively) completed the questionnaire. Study participants were on average 41.8 years old (Min = 18.0, Max = 65.0, SD = 10.2) and predominantly male (75.4%). Mean chronotype and overall sleep duration was 03:22 (SD = 54 min) and 7.2 h (SD = 1.0 h) respectively. Older age was associated with earlier chronotype and reduced overall sleep duration in both day workers and rotating shift workers (p < 0.001 for all models). Compared to day workers, employees whom engaged in rotating shift work were later chronotypes and had overall a longer sleep duration. With older age, the difference between day and rotating shift workers regarding chronotype increased, while the difference regarding overall sleep duration decreased (pinteraction<0.005 for both models). This finding could indicate that both changes in circadian physiology and exposure to certain work schedules contribute to the age-related changes. Older rotating shift workers, with early chronotypes may have issues with night shifts, while day work and morning shifts may be best compatible to earlier chronotypes. Differences in sleep timing across age groups, might indicate that the same work hours will affect shift workers differently, dependent on their age, suggesting that more flexible and chronotype-adapted work hours could provide useful; especially for older employees. Sleep education in the form of courses and health campaigns could be a way to raise awareness of the importance of a healthy sleep pattern. This could be achieved by learning strategies to better adjust individual sleep patterns to work hours.  相似文献   

15.
Incidence of cardiovascular events follows a circadian rhythm with peak occurrence during morning. Disturbance of autonomic control caused by exercise had raised the question of the safety in morning exercise and its recovery. Furthermore, we sought to investigate whether light aerobic exercise performed at night would increase HR and decrease HRV during sleep. Therefore, the aim of this study was to test the hypothesis that morning exercise would delay HR and HRV recovery after light aerobic exercise, additionally, we tested the impact of late night light aerobic exercise on HR and HRV during sleep in sedentary subjects. Nine sedentary healthy men (age 24 ± 3 yr; height 180 ± 5 cm; weight 79 ± 8 kg; fat 12 ± 3%; mean±SD) performed 35 min of cycling exercise, at an intensity of first anaerobic threshold, at three times of day (7 a.m., 2 p.m. and 11 p.m.). R-R intervals were recorded during exercise and during short-time (60 min) and long-time recovery (24 hours) after cycling exercise. Exercise evoked increase in HR and decrease in HRV, and different times of day did not change the magnitude (p < 0.05 for time). Morning exercise did not delay exercise recovery, HR was similar to rest after 15 minutes recovery and HRV was similar to rest after 30 minutes recovery at morning, afternoon, and night. Low frequency power (LF) in normalized unites (n.u.) decreased during recovery when compared to exercise, but was still above resting values after 60 minutes of recovery. High frequency power (HF-n.u.) increased after exercise cessation (p < 0.05 for time) and was still below resting values after 60 minutes of recovery. The LF/HF ratio decreased after exercise cessation (p < 0.05 for time), but was still different to baseline levels after 60 minutes of recovery. In conclusion, morning exercise did not delay HR and HRV recovery after light aerobic cycling exercise in sedentary subjects. Additionally, exercise performed in the night did change autonomic control during the sleep. So, it seems that sedentary subjects can engage physical activity at any time of day without higher risk.  相似文献   

16.
It has long been recognized that older shift workers may have shorter and more disturbed day sleeps between successive night shifts than their younger colleagues. This has given rise to considerable concern over the safety of aging shift workers because of the increasing age of the work force and increases in retirement age. Because there have been no direct studies of the combined effects of shift work and age on safety, the present paper begins by reviewing the literature relating safety to features of shift systems. It then considers the general effect of age on occupational injury rates before examining existing evidence of the combined effects of shift work and age on performance capabilities. The results of the literature review indicate that when the a priori risk is constant, there is reasonably clear evidence that injury rates are higher at night, and that they increase over successive night shifts more rapidly than over successive day shifts. Further, although occupational injuries are less frequent in older workers, those that do occur tend to be more serious. Finally, there is some suggestive evidence from studies of objectively measured performance capabilities that older workers may be less able to both maintain their performance over the course of a night shift and cope with longer spans of successive night shifts. It is concluded that it seems possible, even though unproven as yet, that older workers may be at greater risk both to injury and accident on the night shift. There is a strong need for future epidemiological studies of the combined effects of shift work and age on injuries and accidents, and that these should attempt to separate the effects of age per se from those of generation.  相似文献   

17.
It has long been recognized that older shift workers may have shorter and more disturbed day sleeps between successive night shifts than their younger colleagues. This has given rise to considerable concern over the safety of aging shift workers because of the increasing age of the work force and increases in retirement age. Because there have been no direct studies of the combined effects of shift work and age on safety, the present paper begins by reviewing the literature relating safety to features of shift systems. It then considers the general effect of age on occupational injury rates before examining existing evidence of the combined effects of shift work and age on performance capabilities. The results of the literature review indicate that when the a priori risk is constant, there is reasonably clear evidence that injury rates are higher at night, and that they increase over successive night shifts more rapidly than over successive day shifts. Further, although occupational injuries are less frequent in older workers, those that do occur tend to be more serious. Finally, there is some suggestive evidence from studies of objectively measured performance capabilities that older workers may be less able to both maintain their performance over the course of a night shift and cope with longer spans of successive night shifts. It is concluded that it seems possible, even though unproven as yet, that older workers may be at greater risk both to injury and accident on the night shift. There is a strong need for future epidemiological studies of the combined effects of shift work and age on injuries and accidents, and that these should attempt to separate the effects of age per se from those of generation.  相似文献   

18.
The amplitude and phasing of circadian rhythms are under discussion as possible predictors of tolerance to night work. In a field study, subjective sleepiness and oral temperature of 147 female nurses were measured at 2-hour intervals during a period with one morning shift and two consecutive night shifts. The nurses also filled out a questionnaire. Two types of tolerance indices were constructed: The “health index” was based on questions referring to general fatigue, gastrointestinal symptoms, and sleep disturbances, and the “sleepiness index” on the actual subjective ratings of sleepiness. According to the health index, the group with good tolerance had a larger circadian amplitude of the oral temperature rhythm on the day of the morning shift than the group with poor tolerance. However, with regard to the sleepiness index, the corresponding difference between the groups with good or poor tolerance was not significant. The data did not confirm the hypothesis that predicts a quick adjustment of the circadian rhythm when the circadian amplitude is small before the change to night work. The contradictory results found in this and in other studies do not yet permit prediction of tolerance to night work.  相似文献   

19.
Most night workers are unable to adjust their circadian rhythms to the atypical hours of sleep and wake. Between 10% and 30% of shiftworkers report symptoms of excessive sleepiness and/or insomnia consistent with a diagnosis of shift work disorder (SWD). Difficulties in attaining appropriate shifts in circadian phase, in response to night work, may explain why some individuals develop SWD. In the present study, it was hypothesized that disturbances of sleep and wakefulness in shiftworkers are related to the degree of mismatch between their endogenous circadian rhythms and the night-work schedule of sleep during the day and wake activities at night. Five asymptomatic night workers (ANWs) (3 females; [mean?±?SD] age: 39.2?±?12.5 yrs; mean yrs on shift?=?9.3) and five night workers meeting diagnostic criteria (International Classification of Sleep Disorders [ICSD]-2) for SWD (3 females; age: 35.6?±?8.6 yrs; mean years on shift?=?8.4) participated. All participants were admitted to the sleep center at 16:00?h, where they stayed in a dim light (<10 lux) private room for the study period of 25 consecutive hours. Saliva samples for melatonin assessment were collected at 30-min intervals. Circadian phase was determined from circadian rhythms of salivary melatonin onset (dim light melatonin onset, DLMO) calculated for each individual melatonin profile. Objective sleepiness was assessed using the multiple sleep latency test (MSLT; 13 trials, 2-h intervals starting at 17:00?h). A Mann-Whitney U test was used for evaluation of differences between groups. The DLMO in ANW group was 04:42?±?3.25?h, whereas in the SWD group it was 20:42?±?2.21?h (z = 2.4; p?<?.05). Sleep did not differ between groups, except the SWD group showed an earlier bedtime on off days from work relative to that in ANW group. The MSLT corresponding to night work time (01:00–09:00?h) was significantly shorter (3.6?±?.90?min: [M?±?SEM]) in the SWD group compared with that in ANW group (6.8?±?.93?min). DLMO was significantly correlated with insomnia severity (r = ?.68; p < .03), indicating that the workers with more severe insomnia symptoms had an earlier timing of DLMO. Finally, SWD subjects were exposed to more morning light (between 05:00 and 11:00?h) as than ANW ones (798 vs. 180 lux [M?±?SD], respectively z?=??1.7; p?<?.05). These data provide evidence of an internal physiological delay of the circadian pacemaker in asymptomatic night-shift workers. In contrast, individuals with SWD maintain a circadian phase position similar to day workers, leading to a mismatch/conflict between their endogenous rhythms and their sleep-wake schedule. (Author correspondence: )  相似文献   

20.
The amplitude and phasing of circadian rhythms are under discussion as possible predictors of tolerance to night work. In a field study, subjective sleepiness and oral temperature of 147 female nurses were measured at 2-hour intervals during a period with one morning shift and two consecutive night shifts. The nurses also filled out a questionnaire. Two types of tolerance indices were constructed: The “health index” was based on questions referring to general fatigue, gastrointestinal symptoms, and sleep disturbances, and the “sleepiness index” on the actual subjective ratings of sleepiness. According to the health index, the group with good tolerance had a larger circadian amplitude of the oral temperature rhythm on the day of the morning shift than the group with poor tolerance. However, with regard to the sleepiness index, the corresponding difference between the groups with good or poor tolerance was not significant. The data did not confirm the hypothesis that predicts a quick adjustment of the circadian rhythm when the circadian amplitude is small before the change to night work. The contradictory results found in this and in other studies do not yet permit prediction of tolerance to night work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号