首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 891 毫秒
1.
Previously extensive tracts of primary rain forest have been degraded by human activities, and we examined how the effects of forest disturbance arising from habitat fragmentation and commercial selective logging affected ecosystem functioning in these habitats by studying leaf litter decomposition rates in litter bags placed on the forest floor. The rain forests of Borneo are dominated by trees from the family Dipterocarpaceae, and we compared leaf litter decomposition rates of three dipterocarp species at eight forest fragment sites (area 3–3529 ha) that had different histories of disturbance pre‐fragmentation: four fragments had been selectively logged prior to fragmentation and four had been formed from previously undisturbed forest. We compared these logged and unlogged forest fragments with sites in continuous forest that had been selectively logged (two sites) and fully protected and undisturbed (two sites). After 120 d, undisturbed continuous forest sites had the fastest rates of decomposition (52% mass loss). Forest fragments formed from unlogged forest (32% mass loss) had faster decomposition rates than logged forest fragments (28% mass loss), but slower rates than continuous logged forest (39% mass loss). Leaves of a light‐demanding species (Parashorea malaanonan) decomposed faster than those of a shade‐tolerant species (Hopea nervosa), but decomposition of all three dipterocarp species that we studied responded similarly to logging and fragmentation effects. Reduced decomposition rates in logged and fragmented forest sites may affect nutrient cycling and thus have detrimental consequences for forest regeneration. Conservation management to improve forest quality should be a priority, particularly in logged forest fragments.  相似文献   

2.
Making generalizations about the impact of commercial selective logging on biodiversity has so far remained elusive. Species responses to logging depend on a number of factors, many of which have not been studied in detail. These factors may include the natural forest conditions (forest types) under which logging impacts are investigated; but this question has so far remained unexamined. In a large‐scale replicate study we aimed at clarifying the relationship between logging and forest types on leaf litter frogs. We contrast three distinct and naturally occurring forest types, including wet evergreen, moist evergreen and semi‐deciduous forests. Selectively logged sites were compared with primary forest sites for each forest type. We found that the response of frog communities to logging varies in different forest types. In the wet evergreen forest, richness was higher in logged forest than primary forest, while diversity measures were not different between logged and primary forest habitats. In the moist evergreen, richness and diversity were higher in selectively logged areas compared with primary forest habitats. In the semi‐deciduous, logged forests were characterized by drastic loss of forest specialists, reduced richness, and diversity. These results indicate that the net effect of logging varies with respect to forest type. Forest types that are characterized by adverse climatic conditions (i.e., low rainfall and protracted dry seasons) are more likely to produce negative effects on leaf litter anuran communities. For comparisons of the impact of logging on species to be effective, future research must endeavor to include details of forest type.  相似文献   

3.
The level and distribution of genetic diversity can be influenced by species life history traits and demographic factors, including perturbations that might produce population bottlenecks. Deforestation and forest fragmentation are common sources of population disturbance in contemporary populations of forest ecosystems. Although the genetic effects of forest fragmentation and deforestation have been examined by assessing levels of genetic variation in forest fragments that remain after logging, few considerations have been made of the populations that re-colonize once-cleared areas. Here we examine the effects of human-mediated population bottlenecks on the level and distribution of genetic diversity in natural populations of the long-lived forest tree species, Acer saccharum (sugar maple). We compared genetic variation and structure for populations of sugar maple found within old-growth forested area and in area that has re-colonized since logging. In this study the percent polymorphic loci and allelic richness estimates were reduced in the logged populations compared to old-growth populations. Jackknifed estimates of population genetic differentiation showed significantly higher differentiation among logged populations, with this result being consistently seen when individuals within populations were grouped according to diameter at breast height. The result of decreased genetic variation and higher levels of genetic structure among logged populations suggests that even one extensive bout of logging can alter the level and distribution of genetic variation in this forest tree species.  相似文献   

4.
K. S. Seshadri 《Biotropica》2014,46(5):615-623
Vast areas of tropical evergreen forests have been selectively logged in the past, and many areas continue to be logged. The impacts of such logging on amphibians are poorly understood. I examined the response of anuran communities to historical selective logging in a wet evergreen forest in south India. Anuran assemblages in unlogged forest were compared with assemblages in selectively logged forest. Forty 10 m × 10 m quadrats in forest, riparian zones, and streams of unlogged and selectively logged forests were searched at night for anurans. Species richness did not appear to be affected by logging. However, anuran density varied significantly and was 42 percent lower in selectively logged forests compared to unlogged forests. Anuran densities also varied significantly across microhabitats, with highest densities in streams of both selectively logged and unlogged forests. Patterns of niche overlap varied with selective logging as niche breadth either expanded, contracted, or remained neutral for different species. Ordination analysis explained 95 percent of the variation in species assemblage across selectively logged and unlogged forests. The assemblage in selectively logged forest was nested within unlogged forest. Among the habitat characteristics, litter thickness and water depth had the highest influence on the assemblage. This was followed by litter/water temperature, air temperature, and lastly relative humidity. It appears that species richness and composition of anurans in selectively logged forests is converging with unlogged forests, but the effects of historical logging seem to persist on anuran densities and their niche characteristics even ca 40 yr since logging ceased.  相似文献   

5.
We compared bird diversity and frequency in selection logged and unlogged forest to determine the effects of recent selection logging on avian biodiversity in a subtropical, moist evergreen forest. We used a combination of mist netting and fixed-radius point counts to assess bird communities in February and March 1993 in northwestern Belize. Vegetation structure and composition was similar in logged and unlogged forest. The 66 most common species occurred with statistically similar frequency in logged and unlogged forest although 13 species were two times more frequent in intact forest. Numbers of total bird species were similar between logging gaps and the logged forest matrix, and between the logged forest matrix and unlogged forests. A comparison of numbers of species in 26 guilds based on migration strategy, diet, foraging substrate, and height strata also showed them to be similar regardless of logging history. Our results differed from previous studies that reported lower bird species richness and abundance of individual species in logged tropical forests than in unlogged forest. The differences might be explained by the lower logging intensity and/or greater levels of natural disturbance in our study area compared to previous studies.  相似文献   

6.
7.
  • 1 Rising economic demands for boreal forest resources along with current and predicted increases in wildfire activity have increased salvage logging of burned forests. Currently, the ecological consequences of post‐fire salvage logging are insufficiently understood to develop effective management guidelines or to adequately inform policy decision‐makers.
  • 2 We used both field and laboratory studies to examine the effects of post‐fire salvage logging on populations of the white‐spotted sawyer Monochamus scutellatus scutellatus (Say) (Coleoptera: Cerambycidae) and its ecological function in boreal forest.
  • 3 Monochamus s. scutellatus adults were relatively abundant in both burned and clear‐cut logged sites but were absent from salvage logged sites.
  • 4 An in situ mesocosm experiment showed that the abundance of M. s. scutellatus larvae in burned white spruce bolts was linked to changes in total organic nitrogen and carbon in mineral soil.
  • 5 Organic nutrient inputs in the form of M. s. scutellatus frass increased mineral soil microbial respiration rates by more than three‐fold and altered the availability of nitrogen. Changes in nitrogen availability corresponded with decreased germination and growth of Epilobium angustifolium and Populus spp. but not Calamagrostis canadensis.
  • 6 Although the present study focused on local scale effects, the reported findings suggest that continued economic emphasis on post‐fire salvage logging may have implications beyond the local scale for biodiversity conservation, nutrient cycling and plant community composition in forest ecosystems recovering from wildfire.
  相似文献   

8.
Aim The effects of logging and habitat degradation on the richness and abundance of small mammals in Asian rain forests are largely unknown. This work compares the species richness, dominance and evenness of small non‐volant mammals between logged and unlogged forests, and assesses whether assemblage variability (β‐diversity) is similar between forest types. Location Southeast Asia, northern Borneo (Sabah, Malaysia), Sunda‐shelf. Methods We surveyed species‐rich assemblages of small non‐volant mammals in three unlogged and three logged forests for 2 years. At each forest site, we sampled a permanently marked transect and two additional sites in three trapping sessions. All analyses were performed at both levels to include the effects of local abundances and point estimates, separately from the relative abundances of species on a more regional scale. Results We trapped a total of 1218 individuals of 28 species. Eleven common species accounted for 95% of all captures. Species richness and diversity were significantly higher in unlogged forest (27 species) than in logged forest (17 species). This was mainly attributable to the smaller number of rarely recorded species in logged forest (five compared with 16 in unlogged forest, with a total of fewer than 10 captures). However, all common species were present in both logged and unlogged forests, and our analyses revealed similar patterns of dominance, evenness and fluctuations in abundance. Hence overall assemblage composition in multivariate space did not differ greatly between forest types. Assemblages of Muridae and Tupaiidae showed similar population fluctuations in space and time, indicating that the ecology of these taxa may be partially driven by the same environmental factors. Main conclusions Although species were distributed patchily within sites, analyses at local and regional scales revealed similar patterns in diversity and assemblage variability, suggesting that effects of forest modification did not differ extensively locally and regionally, but had a profound effect on rare species. Our results emphasize the importance and conservation value of logged forest stands that are able to hold a large proportion of the small mammals also found in unlogged forests. Rare and more specialized species are more vulnerable to forest degradation than commonly caught species, resulting in the complete loss, or a decrease in numbers, of certain groups, such as arboreal small mammals and Viverridae.  相似文献   

9.
ABSTRACT

Background: Lianas are an important component of tropical forests that respond to logging disturbance. Determining liana response to selective logging chronosequence is important for understanding long-term logging effects on lianas and tropical forests.

Aims: Our objective was to quantify the response of liana communities to selective logging chronosequence in a moist semi-deciduous forest in Ghana.

Methods: Liana community characteristics were determined in ten 40 m × 40 m plots randomly and homogenously distributed in each of four selectively logged forest stands that had been logged 2, 14, 40 and 68 years before the surveys and in an old-growth forest stand (ca. >200 years).

Results: Liana species composition differed significantly among the forest stands, as a function of logging time span, while species richness fluctuated along the chronosequence. The abundance of liana communities and of reproductive and climbing guilds was lower in the logged forests than in the old-growth forest. The ratio of liana abundance and basal area to those of trees was similar in the logged forests, but significantly lower than those in the old-growth forest.

Conclusions: Logging impacts on liana community structure and functional traits were largely evident, though no clear chronosequence trends were recorded, except for species composition.  相似文献   

10.
Tropical forest degradation is a global environmental issue. In degraded forests, seedling recruitment of canopy trees is vital for forest regeneration and recovery. We investigated how selective logging, a pervasive driver of tropical forest degradation, impacts canopy tree seedling recruitment, focusing on an endemic dipterocarp Dryobalanops lanceolata in Sabah, Borneo. During a mast‐fruiting event in intensively logged and nearby unlogged forest, we examined four stages of the seedling recruitment process: seed production, seed predation, and negative density‐dependent germination and seedling survival. Our results suggest that each stage of the seedling recruitment process is altered in logged forest. The seed crop of D. lanceolata trees in logged forest was one‐third smaller than that produced by trees in unlogged forest. The functional role of vertebrates in seed predation increased in logged forest while that of non‐vertebrates declined. Seeds in logged forest were less likely to germinate than those in unlogged forest. Germination increased with local‐scale conspecific seed density in unlogged forest, but seedling survival tended to decline. However, both germination and seedling survival increased with local‐scale conspecific seed density in logged forest. Notably, seed crop size, germination, and seedling survival tended to increase for larger trees in both unlogged and logged forests, suggesting that sustainable timber extraction and silvicultural practices designed to minimize damage to the residual stand are important to prevent seedling recruitment failure. Overall, these impacts sustained by several aspects of seedling recruitment in a mast‐fruiting year suggest that intensive selective logging may affect long‐term population dynamics of D. lanceolata. It is necessary to establish if other dipterocarp species, many of which are threatened by the timber trade, are similarly affected in tropical forests degraded by intensive selective logging.  相似文献   

11.
Selective logging is driving the proliferation of roads throughout tropical rain forests, particularly narrow, unpaved logging roads. However, little is known about the extent of road edge effects or their influence on the movements of tropical understory animal species. Here, we used forest rats to address the following questions: (a) Does the occupancy of rats differ from road edges to forest interior within logged forests? (b) Do roads inhibit the movements of rats within these forests? We established trapping grids along a road edge‐to‐forest interior gradient at four roads and in three control sites within a logged forest in Sabah, Malaysia. To quantify the probability of road crossing, rats were captured, translocated across a road, and then recaptured on subsequent nights. We caught 216 individuals of eight species on 3,024 trap nights. Rat occupancy did not differ across the gradient from road edge to interior, and 48 percent of the 105 translocated individuals crossed the roads and were recaptured. This proportion was not significantly different from that of rats returning in control sites (38% of 60 individuals), suggesting that small roads were not barriers to rat movements within logged forests. Subadults were significantly more likely to return from translocation than adults in both road and control sites. Our results are encouraging for the ecology of small mammal communities in heavily logged forests, because small logging roads do not restrict the movements of rats and therefore are unlikely to create an edge effect or influence habitat selection.  相似文献   

12.
Currently, the timber company Industrie Forestiére du Batalimo is selectively logging the Ngotto Forest in the Central African Republic. The forest is home to a population of chimpanzees (Pan troglodytes troglodytes) and gorillas (Gorilla gorilla gorilla) and provides the Bofi-speaking people of Grima with food, medicine, housing material, and other commodities. Over a 7-month period, the research team conducted a line-transect survey of the great ape population in the forests to the south of Grima to document their distribution. For comparison purposes, the team also surveyed a section of adjacent forest that had already been logged. Ape nests were significantly rarer in the logged forest than in the unlogged forest, and ape nests were most common in the more pristine forests to the south. This report further discusses the effects of logging and other human activities.  相似文献   

13.
Mature tropical forests at agricultural frontiers are of global conservation concern as the leading edge of global deforestation. In the Ituri Forest of DRC, as in other tropical forest areas, road creation associated with selective logging results in spontaneous human colonization, leading to the clearing of mature forest for agricultural purposes. Following 1-3 years of cultivation, farmlands are left fallow for periods that may exceed 20 years, resulting in extensive secondary forest areas impacted by both selective logging and swidden agriculture. In this study, we assessed forest structure, tree species composition and diversity and the regeneration of timber trees in secondary forest stands (5-10 and ~40 years old), selectively logged forest stands, and undisturbed forests at two sites in the Ituri region. Stem density was lower in old secondary forests (~40 years old) than in either young secondary or mature forests. Overall tree diversity did not significantly differ between forest types, but the diversity of trees ≥10 cm dbh was substantially lower in young secondary forest stands than in old secondary or mature forests. The species composition of secondary forests differed from that of mature forests, with the dominant Caesalpinoid legume species of mature forests poorly represented in secondary forests. However, in spite of prior logging, the regeneration of high value timber trees such as African mahoganies (Khaya anthotheca and Entandrophragma spp.) was at least 10 times greater in young secondary forests than in mature forests. We argue that, if properly managed and protected, secondary forests, even those impacted by both selective logging and small-scale shifting agriculture, may have high potential conservation and economic value.  相似文献   

14.
  1. Selective logging dominates forested landscapes across the tropics. Despite the structural damage incurred, selectively logged forests typically retain more biodiversity than other forest disturbances. Most logging impact studies consider conventional metrics, like species richness, but these can conceal subtle biodiversity impacts. The mass–abundance relationship is an integral feature of ecological communities, describing the negative relationship between body mass and population abundance, where, in a system without anthropogenic influence, larger species are less abundant due to higher energy requirements. Changes in this relationship can indicate community structure and function changes.
  2. We investigated the impacts of selective logging on the mass–abundance scaling of avian communities by conducting a meta‐analysis to examine its pantropical trend. We divide our analysis between studies using mist netting, sampling the understory avian community, and point counts, sampling the entire community.
  3. Across 19 mist‐netting studies, we found no consistent effects of selective logging on mass–abundance scaling relative to primary forests, except for the omnivore guild where there were fewer larger‐bodied species after logging. In eleven point‐count studies, we found a more negative relationship in the whole community after logging, likely driven by the frugivore guild, showing a similar pattern.
  4. Limited effects of logging on mass–abundance scaling may suggest high species turnover in logged communities, with like‐for‐like replacement of lost species with similar‐sized species. The increased negative mass–abundance relationship found in some logged communities could result from resource depletion, density compensation, or increased hunting; potentially indicating downstream impacts on ecosystem functions.
  5. Synthesis and applications. Our results suggest that size distributions of avian communities in logged forests are relatively robust to disturbance, potentially maintaining ecosystem processes in these forests, thus underscoring the high conservation value of logged tropical forests, indicating an urgent need to focus on their protection from further degradation and deforestation.
  相似文献   

15.
Selective logging systems have been used to prevent the rapid decline of forest resources in Southeast Asia, but little is known about the impacts of selective logging on the genetic diversity of Southeast Asian rainforests. We evaluated the effects of silvicultural systems with differing cutting rotations and enrichment planting regimes on the genetic diversity of Shorea parvifolia, an abundant and ecologically important tree in Southeast Asian rainforests. Our result showed that in most respects the genetic diversity is not significantly different between primary forest and the other silvicultural systems; however, the proportion of private alleles is significantly different between them. Intensive second-rotation (L3) harvesting of individuals >40 cm in diameter at breast height (dbh) resulted in a sizable reduction in the number of reproductive trees and a dramatic decrease in the numbers of rare and private alleles, suggesting a negative impact on the genetic diversity of the remaining tree population. Enrichment planting with S. parvifolia in the logged forest improved some genetic parameters, significantly increasing the number of rare alleles in L3 in particular. We conclude that the genetic diversity of logged tropical forests gradually decreases depending on logging rotation times, especially with respect to sensitive genetic parameters such as the numbers of rare and private alleles, and that enrichment planting with native dipterocarps can maintain or even increase the genetic diversity of logged tropical forests in Southeast Asia.  相似文献   

16.
Tropical rain forests worldwide are affected by anthropogenic disturbances, and secondary forests that develop afterwards are often dominated by pioneer tree species, but the consequences of different anthropogenic disturbances on nutrient cycling are poorly understood. Because most nutrient cycling in tropical rain forests occurs through litterfall and in the soil organic layer, we measured litterfall of a widespread and dominant pioneer tree, okoume (Aucoumea klaineana, Burseraceae) in Gabon, in one forest previously disturbed by logging and in another by agriculture. Litterfall of okoume trees, measured over 14 months, was 18.2 Mg ha−1 year−1 in the formerly logged forest, which was 72.6% greater than in the forest more recently disturbed by agriculture (10.6 Mg ha−1 year−1). Litter decomposition rates were more rapid in the formerly logged forest, and this may explain why litter thickness was 32% lower in the formerly logged forest, despite the greater litterfall within it. Our results highlight that two widespread anthropogenic disturbances in Gabonese rain forests have significantly different consequences on litterfall of a dominant tree and therefore are likely to have different effects on nutrient cycling and forest ecosystem function.  相似文献   

17.
  1. The effects of timber harvest in the moist coniferous forests of western North America are not well documented for ecologically important arthropods such as moths.
  2. We assessed the response of macromoth community structure (abundance, sample size-corrected estimates of species richness and diversity, and overall community composition) to time since deforestation at 20 previously logged sites (1–95 years post-harvest), and compared the macromoth communities at these stands to four old growth stands.
  3. As stand age increased following timber harvest, the number of macromoths captured in ultraviolet light traps increased and the relative abundance of dietary generalists declined, but sample size-corrected estimates of species richness and diversity did not vary. Macromoth community composition of the youngest stands (<10 years post-harvest) differed markedly from each other but converged soon thereafter.
  4. Macromoth communities at old growth sites featured higher capture rates, lower dominance by dietary generalists, and higher sample size-corrected estimates of species richness and diversity than at previously logged sites. Community composition profiles for old growth sites differed from all previously logged sites, but the differences were subtle except in comparison to the youngest logged sites. None of the 188 species we sampled were old growth specialists.
  5. Our results reveal dramatic initial impacts of deforestation on macromoth communities in moist coniferous forests of western North America. Such effects are largely reversed within two decades post-harvest but some effects persist for at least 95-years following logging.
  相似文献   

18.
The impact of logging on plant communities was studied in forest that has been logged selectively 1, 5 and 10 years previously (following a certified procedure): diversity was compared with that of primary rain forest in the Berau region of East Kalimantan, Indonesia. Four sets of 20 transects located within an area of 6 ha were sampled for all trees, saplings and seedlings, and records were made of topographic position, structure, composition and species diversity. There was a high level of floristic similarity between primary forests at the study sites compared to primary forest elsewhere in Kalimantan. The impact of logging is therefore likely to be the most important factor determining any differences between the plant communities of the selectively logged and primary forest sites. We found differences in species composition and abundance of most plants between selectively logged and primary forest. Overall, stem densities of trees in the primary forest were higher than in the three selectively logged forest sites. Stem densities of saplings were equivalent in all four forests. Seedling stem densities were higher in the forest site logged 10 years previously than in primary forest. Our results showed that the forests logged selectively under certified regimes still have a high plant diversity, possibly indicating that biodiversity values may be conserved by following certification procedures.  相似文献   

19.
Tropical peat swamp forests (PSFs) are globally important carbon stores under threat. In Southeast Asia, 35% of peatlands had been drained and converted to plantations by 2010, and much of the remaining forest had been logged, contributing significantly to global carbon emissions. Yet, tropical forests have the capacity to regain biomass quickly and forests on drained peatlands may grow faster in response to soil aeration, so the net effect of humans on forest biomass remains poorly understood. In this study, two lidar surveys (made in 2011 and 2014) are compared to map forest biomass dynamics across 96 km2 of PSF in Kalimantan, Indonesia. The peatland is now legally protected for conservation, but large expanses were logged under concessions until 1998 and illegal logging continues in accessible portions. It was hypothesized that historically logged areas would be recovering biomass while recently logged areas would be losing biomass. We found that historically logged forests were recovering biomass near old canals and railways used by the concessions. Lidar detected substantial illegal logging activity—579 km of logging canals were located beneath the canopy. Some patches close to these canals have been logged in the 2011–2104 period (i.e. substantial biomass loss) but, on aggregate, these illegally logged regions were also recovering. Unexpectedly, rapid growth was also observed in intact forest that had not been logged and was over a kilometre from the nearest known canal, perhaps in response to greater aeration of surface peat. Comparing these results with flux measurements taken at other nearby sites, we find that carbon sequestration in above‐ground biomass may have offset roughly half the carbon efflux from peat oxidation. This study demonstrates the power of repeat lidar survey to map fine‐scale forest dynamics in remote areas, revealing previously unrecognized impacts of anthropogenic global change.  相似文献   

20.

Key message

We could show long-term effects of logging operation in a Malaysian forest. A forest selectively logged about 50 years ago had a longer sunfleck time and a less heterogeneous light spatially than primary forests.

Abstract

We compared forest light environments between a primary lowland tropical rainforest and a rainforest selectively logged 50 years ago in the Pasoh Forest Reserve, Peninsular Malaysia using two different approaches to assess forest light environments, hemispherical canopy photographs and continuous measurements of forest photosynthetic photon flux density (PPFD) and showed clear evidence of the long-term impact of selective logging on forest light environments. The selectively logged forest canopy consisted of shorter and smaller crowns with less variations of height and crown area than the primary forest. From the canopy structural characteristics of the selectively logged forest, we predicted that the selectively logged forest has brighter and more homogeneous forest light than the primary forest. Both hemispherical canopy photographs and measurements of PPFD showed that the selectively logged forest had more open canopies and longer sunfleck time than the primary forest. A significantly smaller variance of canopy openness and a shorter autocorrelation range in the selectively logged forest than in the primary forest were found, indicating that the selectively logged forest had a less heterogeneous light environment spatially than the primary forest. Therefore our predictions were confirmed. The results suggest that different light environments for the primary forest and forest after logging might promote different forest dynamics between them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号