首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The diverse damaging effects of dopamine (DA) oxidation products on brain subcellular components including mitochondrial electron transport chain have been implicated in dopaminergic neuronal death in Parkinson's disease. It has been shown in this study that DA (50–200?μM) causes dose-dependent inhibition of Na+, K+-ATPase activity of rat brain crude synaptosomal–mitochondrial fraction during in vitro incubation up to 2?h. The enzyme inactivation is prevented by catalase and the metal-chelator (diethylenetriamine penta-acetic acid) but not by superoxide dismutase or hydroxyl-radical scavengers like mannitol and dimethylsulphoxide (DMSO). Further, reduced glutathione and cysteine, markedly prevent DA-mediated inactivation of Na+, K+-ATPase. Under similar conditions of incubation, DA (200?μM) leads to the formation of quinoprotein adducts (protein-cysteinyl catechol) with synaptosomal–mitochondrial proteins and the phenomenon is also prevented by glutathione (5?mM) or cysteine (5?mM).

The available data imply that the inactivation of Na+, K+-ATPase in this system involves both H2O2 and metal ions. The reactive quinones by forming adducts with protein thiols also probably contribute to the process, since reduced glutathione and cysteine which scavenge quinones from the system protect Na+, K+-ATPase from DA-mediated damage. The inactivation of neuronal Na+, K+-ATPase by DA may give rise to various toxic sequelae with potential implications for dopaminergic cell death in Parkinson's disease.  相似文献   

2.
The effects of NaCl-adaptation and NaCl-stress on in vivo H+ extrusion and microsomal vanadate- and bafilomycin-sensitive ATPase and PPase activities were studied in tomato cell suspensions. Acidification of the external medium by 50 mM NaCl-adapted and non-adapted (control) tomato cells was similar. Extracellular acidification by both types of cells during the first hour of incubation with 2 μM fusicoccin (FC) in the presence of 100 mM NaCl was lightly increased while in the presence of 100 mM KCl it was increased by 3 (control)- and 6.5 (adapted)-fold. Extracellular alkalinization after 2 h of cell incubation in 100 mM NaCl indicated the possibility that a Na+/H+ exchange activity could be operating in both types of cells. Moreover, acidification induced by adding 100 mM NaCl + FC to non-adapted cells was relatively less affected by vanadate than that induced by 5 mM KCl + FC, which suggested that salt stress could induce some component other than H+ extrusion by H+-ATPase. In addition, no differences were observed in microsomal vanadate-sensitive ATPase activity among control, NaCl-adapted and NaCl-stressed cells, while K+-stimulated H+-PPase and bafilomycin-sensitive H+-ATPase activities were higher in microsomes from NaCl-adapted than in those from control cells. Likewise, the stimulation of in vivo H+ extrusion in NaCl adapted cells under NaCl or KCl stress in the presence of FC occurred with an inhibition of H+-PPase and bafilomycin-sensitive H+-ATPase activities and without changes in the vanadate-sensitive H+-ATPase activity. These results suggest that the stimulation of tonoplast proton pumps in NaCl-adapted cells, without changes in plasmalemma H+-ATPase, could serve to energize Na+ efflux across the plasmalemma and Na+ fluxes into vacuoles catalyzed by the Na+/H+ antiports. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Carrot cells (Daucus carota L.) in suspension culture exposed to medium containing 150 mM NaCl plasmolyzed immediately and deplasmolyzed within 35 to 40 hr. Three days after exposure to NaCl the cells resumed proliferation. Accommodation to salinity and renewal of growth was accompanied by absorption of Na+ from the external medium. On completion of deplasmolysis, K+ concentration in the cytosol doubled and Na+ concentration approximated that of K+. The vacuolar K+ concentration was practically unchanged while Na+ accumulated to a concentration double that of K+. Cl−- accumulation started later and eventually exceeded that of Na+ plus K+. Malate was redistributed during accommodation to salinity and eventually returned to its initial level. Amino acid content in the cytosol increased fivefold, while in the vacuole it remained unchanged. These results show that: 1) recovery from osmotic shock requires absorption of easily penetrating solute, mainly Na+; 2) distribution of solutes, absorbed or synthesized in cells exposed to salinity, is a dynamic process; 3) cells could grow and proliferate in high NaCl content in the cytosol; 4) red beet root cells grown in the presence of NaCl contain higher cytoplasmic Na+ than K+; and 5) during adjustment to salinity small spherical carrot cells survive the osmotic shock and do not show any detectable damage.  相似文献   

4.
M. Katsuhara  M. Tazawa 《Protoplasma》1986,135(2-3):155-161
Summary The mechanism of salt tolerance was studied using isolated internodal cells of the charophyteNitellopsis obtusa grown in fresh water. When 100 mM NaCl was added to artificial pond water (0.1 mM each of NaCl, KC1, CaCl2), no cell survived for more than one day. Within the first 30 minutes, membrane potential (Em) depolarized and membrane resistance (Rm) decreased markedly. Simultaneously, cytoplasmic Na+ increased and K+ decreased greatly. At steady state the increase in Na+ content was roughly equal to the decrease in K+ content. The Cl content of the cytoplasm did not change. These results suggest that Na+ enters the cytoplasm by exchange with cytoplasmic K+. Both the entry of Na+ and the exit of K+ are assumed to be passive and the latter being caused by membrane depolarization. Vacuolar K+, Na+, and Cl remained virtually constant, suggesting that rapid influx of Na+ from the cytoplasm did not occur.In 100 mM NaCl containing 10 mM CaCl2, membrane depolarization, membrane resistance decrease and changes in cytoplasmic [Na+] and [K+] did not occur, and cells survived for many days. When cells treated with 100 mM NaCl were transferred within 1 hour to 100 mM NaCl containing 10 mM CaCl2, Em decreased, Rm increased, cytoplasmic Na+ and K+ returned to their initial levels, and cells survived. Two possible mechanisms for the role of Ca2+ in salt tolerance inNitellopsis are discussed; one a reduction in plasmalemma permeability to Na+ and the other a stimulation of active Na+-extrusion.  相似文献   

5.
Prosopis farcta was grown on hydroculture with additions of 0.5, 10, 50, and 100 mM NaCl and without salt treatment. In plants from a 0.5 mM NaCl treatment, Cl? was taken up into stems and leaves, but Na+ was withheld from the shoot. At 10 mM NaCl, shoot K+ concentration was below that of the control; Na+ and Cl? were taken up to stems and cotyledons in nearly equimolar amounts. However, in the leaves, Na+ concentrations were only half of those of Cl?. With increasing salt stress, Na+ and Cl? were transported to the shoot, but kept at relatively low levels in the roots. Na+/ K+ ratios in roots did not increase proportionally to those in the solution. At an external Na+/K+ of > 5 and a root Na+/K+ of >1 (10 mM NaCl treatment), K+ selectivity was induced which rose exponentially with increasing salt stress; and cell wall protuberances were discovered in the hypodermis at the zone of side root formation. These transfer cells were found neither in roots from the 0.5 mM NaCl treatment nor in the controls. Their possible role in the Na+/K+ selectivity of the roots of Prosopis farcta is discussed.  相似文献   

6.
The membrane potential of the Ehrlich ascites tumor cell was shown to be influenced by its amino acid content and the activity of the Na+: K+ pump. The membrane potential (monitored by the fluorescent dye, 3,3′-dipropylthiodicarbocyanine iodide) varied with the size of the endogenous amino acid pool and with the concentration of accumulated 2-aminoisobutyrate. When cellular amino acid content was high, the cells were hyperpolarized; as the pool declined in size, the cells were depolarized. The hyperpolarization seen with cellular amino acid required cellular Na+ but not cellular ATP. Na+ efflux was more rapid from cells containing 2-aminoisobutyrate than from cells low in internal amino acids. These observations indicate that the hyperpolarization recorded in cells with high cellular amino acid content resulted from the electrogenic co-efflux of Na+ and amino acids.Cellular ATP levels were found to decline rapidly in the presence of the dye and hence the influence of the pump was seen only if glucose was added to the cells. When the cells contained normal Na+ (approx. 30 mM), the Na+: K+ pump was shown to have little effect on the membrane potential (the addition of ouabain had little effect on the potential). When cellular Na+ was raised to 60 mM, the activity of the pump changed the membrane potential from the range ?25 to ?30 mV to ?44 to ?63 mV. This hyperpolarization required external K+ and was inhibited by ouabain.  相似文献   

7.
Role of oxidative stress and Na+,K+-ATPase in the cytotoxicity of hexachlorocyclohexane (HCH) on Ehrlich Ascites tumor (EAT) cells has been studied. HCH caused dose dependent cell death as measured by trypan blue exclusion and lactate dehydrogenase (LDH) leakage from the cells. HCH induced oxidative stress in EAT cells which was characterized by glutathione depletion, lipid peroxidation (LPO), reactive oxygen species (ROS) production and inhibition of antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT). Protective effect of antioxidants on HCH induced oxidative stress was assessed, among the antioxidants used only quercetin inhibited HCH-induced LPO and ROS production as well as cell death whereas α -tocopherol, ascorbic acid and BHA inhibited LPO but not cell death. Inhibition of membrane bound Na+,K+-ATPase was a characteristic feature of HCH cytotoxicity in EAT cells. Experimental evidence indicates that HCH-induced cell death involves oxidative stress due to ROS production and membrane perturbation in EAT cells.  相似文献   

8.
The cell sap of the internode ofNitella flexilis was replaced with the isotonic artificial pond water of high Ca2+-concentration (0.1 mM KCl, 0.1 mM NaCl, 10 mM CaCl2 and 275 mM mannitol) and changes in osmotic value and concentrations of K+, Na+ and Cl of the cells were followed. When the operated cells were incubated in the artificial pond water containing 0.1 mM each of KCl, NaCl, CaCl2, they survived for only a short period of time (<10 hr). The cells did not absorb ions from the artificial pond water and showed a conspicuous decrease in the rate of cytoplasmic streaming. In such cell the concentration of K+ in the protoplasm decreased significantly. In order to reverse normal concentration gradients of K+ and Na+ across the protoplasmic layer, the cells of low vacuolar ionic concentrations were incubated in the artificial cell sap (90 mM KCl, 40 mM NaCl, 15 mM CaCl2, 10 mM MgCl2). It was found that the cells rapidly absorbed much K+, Na+ and Cl and survived for a longer period (1–2 days). During this period the rate of cytoplasmic streaming was nearly normal. Furthermore, the cell lost much mannitol, indicating an enormous increase in permeability to it. Since both absorption of ions and leakage of mannitol at 1 C occurred at nearly the same rates as at 22 C, the processes are assumed to be passive.  相似文献   

9.
Twenty days’ exposure to 50 or 100 mM NaCl in the rooting medium substantially increased fresh and dry weights of seedling shoots of the recretohalophyte Limonium sinense while 200 or 300 mM were increasingly inhibitory. KCl treatment was only slightly stimulating (50 mM) or strongly inhibitory (100–300 mM). Lesser effects on leaf area were also seen. Diameter of foliar salt glands was significantly larger than that of controls in 100 and 200 mM NaCl with the effect being reversed at higher concentrations. Gland enlargement was also observed in the presence of 100 mM KCl, while larger concentrations reduced gland size. Generally, gland diameter was larger in the presence of NaCl than in KCl. NaCl and KCl also increased gland number per leaf and secretion rate per gland. At 100 and 200 mM NaCl or KCl, Na+ secretion per leaf from NaCl-treated plants exceeded K+ secretion rate from KCl-treated plants while at 200 mM, Na+ secretion per gland was significantly higher for Na+ than for K+. Evidence of cell death in leaves of salt-treated plants using Evans blue staining indicates that release of cell contents through loss of membrane integrity contributed to the secretion values. We conclude that the greater tolerance of L. sinenseto to NaCl compared to KCl is linked to the more effective secretion of Na+ than of K+ and, in turn, to a greater stimulation of salt gland formation and activity and larger gland diameter.  相似文献   

10.
The expansion of illuminated sugar-beet leaf discs floating on aqueous solutions is stimulated by 10 mM NaCl. During expansion, protons are pumped out of the cell and NaCl increases this proton flux by about 40%. The nett flux of K+ and Na+ into the discs was also evaluated. During the expansion period K+ decreases while Na+ increases markedly. The results indicate the existence of a sodium-stimulated proton pump which is active during cell enlargement.Abbreviations IAA indole-3-acetic acid - PEG polyethylene glycol  相似文献   

11.
Salt stress- and salicylic acid (SA)-induced cell death can be activated by various signaling pathways including ethylene (ET) signaling in intact tomato plants. In tomato suspension cultures, a treatment with 250 mM NaCl increased the production of reactive oxygen species (ROS), nitric oxide (NO), and ET. The 10?3 M SA-induced cell death was also accompanied by ROS and NO production, but ET emanation, the most characteristic difference between the two cell death programs, did not change. ET synthesis was enhanced by addition of ET precursor 1-aminocyclopropane-1-carboxylic acid, which, after 2 h, increased the ROS production in the case of both stressors and accelerated cell death under salt stress. However, it did not change the viability and NO levels in SA-treated samples. The effect of ET induced by salt stress could be blocked with silver thiosulfate (STS), an inhibitor of ET action. STS reduced the death of cells which is in accordance with the decrease in ROS production of cells exposed to high salinity. Unexpectedly, application of STS together with SA resulted in increasing ROS and reduced NO accumulation which led to a faster cell death. NaCl- and SA-induced cell death was blocked by Ca2+ chelator EGTA and calmodulin inhibitor W-7, or with the inhibitors of ROS. The inhibitor of MAPKs, PD98059, and the cysteine protease inhibitor E-64 reduced cell death in both cases. These results show that NaCl induces cell death mainly by ET-induced ROS production, but ROS generated by SA was not controlled by ET in tomato cell suspension.  相似文献   

12.
The effects of extracellular Na+, K+ and Cl? on neurite outgrowth of PC12 pheochromocytoma cells were studied. Nerve growth factor (NGF)-induced neurite formation was inhibited upon substitution of choline chloride for NaCl under normal culture conditions. It was found that neurite formation increased proportionately with the concentration of Na+ in medium up to 150 mM. When PC12 cells were exposed to NGF in suspension culture followed by transfer to new dishes, they showed neurite extention in response to NGF in an RNA- and protein synthesis-independent manner. Under these conditions, neurite outgrowth occurred normally in 60–150 mM Na+, whereas it decreased significantly at lower concentrations of Na+. Na+ dependency was also observed for cyclic AMP-mediated neurite formation of PC12 cells. In contrast, neurite outgrowth was independent of K+ in the range 5–106 mM, suggesting that membrane potential did not play a role in this process. No alterations were observed in neurite outgrowth with Cl? replaced by NO?3, SO2?4, or 2-hydroxyethanesulfonate. Thus, extracellular Na+ plays a role in controlling neurite formation of these cells. An attempt was made to relate this effect to a decrease in cytoplasmic Ca2+ concentration monitored by a fluorescent dye sensitive to Ca2+.  相似文献   

13.
In the present study we tried to evaluate the effect of salicylic acid (SA) in alleviating the negative effects of salinity stress. NaCl stress (50 and 100 mM) declines the shoot and root length and maximum decrease was observed at 100 mM concentration of NaCl. Similarly shoot dry weight decreased by 57.14% and root dry weight by 67.24% with 100 mM NaCl stress. The pigments and leaf relative water content (LRWC) were also observed to decline with increase in NaCl concentration. However, supplementation of SA to NaCl stressed seedlings showed enhanced length and dry weight of shoot and root. The pigment and LRWC also increased by the application of SA in the present study. NaCl stress also enhanced proline and glycine betaine (GB) by 3.01 and 2.04 folds, respectively; further enhancement was recorded by the application of SA. Hydrogen peroxide (H2O2) and malondialdehyde (MDA) content also showed rise in accumulation, however, seedlings treated with SA and NaCl (100 mM + SA) declines the H2O2 accumulation to 1.90 from 2.45 folds and MDA to 1.69 from 2.34 folds over the control. Antioxidants were observed to increase with NaCl concentration and further increase was recorded by the application of SA. Indoleacetic acid (IAA) and indole butyric acid (IBA) decreased by 36.60 and 44.16%, respectively, and ABA increased by 750% with 100 mM NaCl. Addition of SA to NaCl stressed seedlings enhanced the IAA and IBA and decreased the ABA concentration to appreciable level. NaCl is also responsible for the higher accumulation of Na+ and Na+/K+ ratio and decreased uptake of Ca2+ and K+. Supplementation of SA decreased the Na+ accumulation and enhanced the uptake of Ca2+ and K+ in NaCl stressed seedlings. In conclusion, SA supplementation mitigates the negative effects of NaCl toxicity in faba bean seedlings through the modulation of different osmoprotectants, antioxidants and nutrients uptake.  相似文献   

14.
The effects of Si nutrition on transpiration, leaf anatomy, accumulation of Na+, K+, Cl?, P, Fe and B and some reactive oxygen species related parameters were investigated in canola plants under salinity. Plants were grown hydroponically in growth chamber under controlled conditions at 0 and 100?mM NaCl each supplied with or without 1.7?mM silicon (Si) as sodium silicate. Salinity imposed significant reduction in growth parameters of plants like fresh weights of roots and shoots and leaf area. It also led to accumulation of Na+ and Cl? and a decrease in the concentration of K+, P, B and Fe. Reduction of transpiration, stomatal density and specific leaf area in leaves and an increase in leaf thickness were amongst other symptoms in salt-affected plants. Salinity led to higher concentration of hydrogen peroxide, increased lipid peroxidation and decrease of catalase and peroxidase activity, which suggests the induction of oxidative stress in plants. Silicon nutrition could prevent toxic ions (Na+ and Cl?) accumulation while higher levels of essential minerals like K+, P and Fe were maintained in plants. Consequently, silicon nutrition decreased oxidative stress in plants, evidenced by increase in antioxidant enzyme activity, reduction in hydrogen peroxide and lipid peroxidation.  相似文献   

15.
Populus euphratica is a plant model intensively studied for elucidating physiological and molecular mechanisms of salt tolerance in woody species. Several studies have shown that vacuolar potassium (K+) ion channels of the two-pore K+ (TPK) family play an important role in maintaining K+ homeostasis. Here, we cloned a putative TPK channel gene from P. euphratica, termed PeTPK. Sequence analysis of PeTPK1 identified the universal K-channel-specific pore signature, TXGYGD. Over-expression of PeTPK1 in tobacco BY-2 cells improved salt tolerance, but did not enhance tolerance to hyperosmotic stress caused by mannitol (200?C600?mM). After 3?weeks of NaCl stress (100 and 150?mM), PeTPK1-transgenic cells had higher fresh and dry weights than wild-type cells. Salt treatment caused significantly higher Na+ accumulation and K+ loss in wild-type cells compared to transgenic cells. During short-term salt stress (100?mM NaCl, 24-h), PeTPK1-transgenic cells showed higher cell viability and reduced membrane permeabilization compared to wild-type cells. Scanning ion-selective electrode data revealed that salt-shock elicited a significantly higher transient K+ efflux from PeTPK1-transgenic callus cells and protoplasts compared to that observed in wild-type cells and protoplasts. We concluded that salt tolerance in P. euphratica is most likely mediated through PeTPK1. We propose that, under salt stress, PeTPK1 functions as an outward-rectifying, K+ efflux channel in the vacuole that transfers K+ to the cytosol to maintain K+ homeostasis.  相似文献   

16.
Cell lines of Oryza sativa L. (cv. Taipei-309) were adapted to 30 mM LiCl and 150 mM NaCl. Both adapted lines were considerably more tolerant than non adapted line when grown on 200, 250 and 300 mM NaCl and 30 mM LiCl stresses. The tolerance of LiCl-adapted line to NaCl (150 to 300 mM) and the tolerance of NaCl-adapted cells line to LiCl (30 mM) indicated that there was a cross-adaptation towards alkali metals (Na+ and Li+) not the Cl. Na+ and K+ contents of all lines which increased with increasing medium salinity but to a different degree. The increase in Na+ and K+ content in NaCl-adapted and non-adapted lines were comparable, while LiCl-adapted line accumulated significantly lower Na+and higher K+ content. Proline content of all lines increased with the increase in NaCl-stress but the magnitude of increase was much higher in the LiCl-adapted than other lines. The differential response of adapted lines to NaCl stress in accumulating proline and maintaining the ionic contents reveals that adapted lines have evolved different features of adaptation to cope with NaCl stress.  相似文献   

17.
Summary Growth and physiological responses of date palm. Phoenix dactylifera L. cv. Barhee, callus to salinity stress were examined. Callus induced from shoot tips of offshoots was cultured on Murashige and Skoog medium supplemented with NaCl at concentrations ranging from 0 to 225 mM, in consective increments of 25 mM. Data obtained after 6 wk of exposure to salt have shown a significant increase in callus proliferation in response to 25 mM NaCl the lowest level tested, beyond which callus weight decreased. At 125 mM NaCl and higher, callus growth was nearly completely inhibited. Physiological studies on callus exposed to salt stress have shown an increase in proline accumulation in response to increased salinity. Proline accumulation was correlated to callus growth inhibition. Furthermore, increasing the concentration of NaCl in the culture medium generally resulted in a steady increase in Na+ and reduction in K+ concentrations. However, at 25 mM NaCl, the only level at which callus growth was significantly enhanced, an increase in K+ content was noted, in comparison to the NaCl free control. In response to increasing external NaCl level, the Na+/K+ ratio increased The Na+/K+ ratio was positively correlated to proline accumulation and hence callus growth inhibition. This study provides, an understanding of the response of date palm callus to salinity, which is important for future studies aimed at developing strategies for selecting and characterizing somaclonal variants tolerant to salt stress.  相似文献   

18.
The endosomal LeNHX2 ion transporter exchanges H+ with K+ and, to lesser extent, Na+. Here, we investigated the response to NaCl supply and K+ deprivation in transgenic tomato (Solanum lycopersicum L.) overexpressing LeNHX2 and show that transformed tomato plants grew better in saline conditions than untransformed controls, whereas in the absence of K+ the opposite was found. Analysis of mineral composition showed a higher K+ content in roots, shoots and xylem sap of transgenic plants and no differences in Na+ content between transgenic and untransformed plants grown either in the presence or the absence of 120 mm NaCl. Transgenic plants showed higher Na+/H+ and, above all, K+/H+ transport activity in root intracellular membrane vesicles. Under K+ limiting conditions, transgenic plants enhanced root expression of the high‐affinity K+ uptake system HAK5 compared to untransformed controls. Furthermore, tomato overexpressing LeNHX2 showed twofold higher K+ depletion rates and half cytosolic K+ activity than untransformed controls. Under NaCl stress, transgenic plants showed higher uptake velocity for K+ and lower cytosolic K+ activity than untransformed plants. These results indicate the fundamental role of K+ homeostasis in the better performance of LeNHX2 overexpressing tomato under NaCl stress.  相似文献   

19.
The relationship between sodium uptake and cyanobacterial salt (NaCl) tolerance has been examined in two filamentous, heterocystous, nitrogen-fixing species of Anabaena. During diazotrophic growth at neutral pH of the growth medium, Anabaena sp. strain L-31, a freshwater strain, showed threefold higher uptake of Na+ than Anabaena torulosa, a brackish-water strain, and was considerably less salt tolerant (50% lethal dose of NaCl, 55 mM) than the latter (50% lethal dose of NaCl, 170 mM). Alkaline pH or excess K+ (>25 mM) in the medium causes membrane depolarization and inhibits Na+ influx in both cyanobacteria (S. K. Apte and J. Thomas, Eur. J. Biochem. 154:395-401, 1986). The presence of nitrate or ammonium in the medium caused inhibition of Na+ influx accompanied by membrane depolarization. These experimental manipulations affecting Na+ uptake demonstrated a good negative correlation between Na+ influx and salt tolerance. All treatments which inhibited Na+ influx (such as alkaline pH, K+ above 25 mM, NO3, and NH4+), enhanced salt tolerance of not only the brackish-water but also the freshwater cyanobacterium. The results indicate that curtailment of Na+ influx, whether inherent or effected by certain environmental factors (e.g., combined nitrogen, alkaline pH), is a major mechanism of salt tolerance in cyanobacteria.  相似文献   

20.
Ascorbic acid (AsA) is naturally occurring compound with antioxidant activity and plays a pivotal role in plant cell adaptation to salinity stress. The objective of this work was to assess the influence of exogenous AsA on the embryogenic callus of indica rice (Oryza sativa L.) cv. MRQ74 cultivated under saline conditions. NaCl (200 mM) decreased callus fresh and dry masses, relative growth rate, and K+ and Ca+2 content, and increased Na+ content and Na+/K+ ratio. Application of AsA (0.5 or 1 mM) alleviated these effects of salinity. Activities of peroxidase, catalase, superoxide dismutase, as well as content of proline increased due to the NaCl treatment, and these parameters were mostly further increased by 0.5 mM AsA. Thus, AsA can increase callus tolerance to NaCl stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号