首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
To investigate the influence of central venous pressure (CVP) changes on plasma arginine vasopressin (pAVP), 8 normal male subjects were studied twice before, during and after immersion to the neck in water at 35.1 degrees +/- 0.1 degrees C (mean +/- SE) for 6 h. After 2 h of immersion, blood volume was either expanded (WIEXP) by intravenous infusion of 2.0 1 of isotonic saline during 2 h or reduced by loss of 0.5 1 of blood during 30 min (WIHEM). The two studies were randomised between subjects. WIEXP increased CVP, systolic arterial pressure (SAP), diuresis, natriuresis, kaliuresis and osmolar clearance compared to WIHEM while haematocrit, haemoglobin concentration and urine osmolality decreased. Heart rate, mean arterial (MAP) and diastolic arterial pressure, plasma osmolality, plasma sodium, plasma potassium and free water clearance did not differ significantly in the two studies. pAVP was significantly higher after 6 h in WIHEM than after 6 h in WIEXP (2.0 +/- 0.2 vs. 1.6 +/- 0.2 pg X ml-1, mean +/- SE; P less than 0.05). pAVP values were corrected for changes in plasma volume due to infusion in order properly to reflect AVP secretion. In conclusion, there was a weak, but significant, negative correlation between CVP and pAVP during the two studies, while during recovery from WIHEM and WIEXP decrements in SAP and MAP correlated significantly and strongly with increases in pAVP. It is therefore concluded that it is the arterial baroreceptors rather than the cardiopulmonary mechanoreceptors which are of importance in AVP regulation in man.  相似文献   

2.
After overnight food and fluid restriction, 8 normal healthy males were examined in the upright sitting position before (prestudy), during and after (recovery) negative pressure breathing (NPB) with a pressure (P = difference between airway pressure and barometric pressure) of -9.6 +/- 0.5 to -10.4 +/- 0.4 mm Hg for 30 min. Plasma arginine vasopressin (pAVP) did not change significantly comparing prestudy with 10 and 30 min of NPB or comparing recovery with NPB at 10, 20 or 30 min. However, at 20 min of NBP, pAVP was slightly lower than at prestudy (p less than 0.05). Central venous pressure (CVP) decreased significantly during NPB, and central transmural venous pressure (CVP-P) increased significantly from -0.9 +/- 0.8 mm Hg to 3.8 +/- 0.7, 4.3 +/- 0.7 and 4.5 +/- 0.6 mm Hg (p less than 0.001) after 10, 20 and 30 min, respectively. Systolic, diastolic and mean arterial pressure and heart rate did not change significantly during NPB. Diuresis, natriuresis, kaliuresis, osmotic excretion and clearance were slightly increased during the recovery hour after NPB compared to prestudy, while urine osmolality decreased during NPB (n = 6). However, none of these changes were significant. There was no significant correlation between CVP-P and pAVP. In conclusion, -10 mm Hg NPB for 30 min in upright sitting subjects did not change pAVP consistently, while CVP-P was significantly increased and HR and arterial pressures were unchanged. This lends support to the concept that arterial baroreceptors and not cardiopulmonary mechanoreceptors are of importance in regulating AVP secretion in man.  相似文献   

3.
The response of plasma atrial natriuretic peptide (ANP) and urinary cGMP excretion to central hypervolemia induced by water immersion was assessed twice in five healthy male subjects, once while immersed in water to the neck for 3 h and again on a control day. Plasma ANP and urinary cGMP were measured by radioimmunoassay. Compared with the control day, overall change in plasma ANP on the immersion day was significant (p less than 0.05). In response to water immersion, plasma ANP increased from a base-line level of 13.2 +/- 3.1 (mean +/- SEM) to 24.2 +/- 5.5 pg/mL by 0.5 h of immersion and was sustained at that level throughout the immersion period. Plasma ANP returned to the base-line level at 1 h postimmersion. Urinary cGMP excretion increased significantly by 1 h of immersion and was sustained at that level throughout water immersion and 1 h postimmersion (p less than 0.05). During water immersion urine flow, urinary sodium and potassium excretion, free water clearance, and osmolar clearance increased while plasma renin activity, serum aldosterone, and blood pressure fell; all changes were significant (p less than 0.05). Creatinine clearance and hematocrit did not show any significant changes. These data suggest that an increase in plasma ANP may contribute to the natriuretic and diuretic response to central hypervolemia, and that the measurement of urinary cGMP may be a valuable marker of ANP biological responsiveness.  相似文献   

4.
Changes in plasma volume (PV) throughout 12 h of thermoneutral (34.5 degrees C) water immersion (WI) were evaluated in eight subjects by an improved Evans blue (EB) technique and by measurements of hematocrit (Hct), hemoglobin (Hb), and plasma protein concentrations (Pprot). Appropriate time control studies (n = 6) showed no measurable change in PV. At 30 min of immersion, EB measurements demonstrated an increase in PV of 16 +/- 2% (457 +/- 70 ml). Calculations, however, based on concomitant changes in Hct, Hb, and Pprot showed an increase in PV of only 6.9 +/- 0.9 to 10.0 +/- 0.8% at 30 min of WI. PV values based on EB measurements subsequently declined throughout WI to (but not below) the preimmersion level. Concomitantly, changes in PV calculated from Pprot values remained increased, whereas estimations of changes in PV based on Hct and Hb values returned to prestudy levels after 4 h of immersion. It is concluded that PV initially increases by 16 +/- 2% during WI and does not decline below preimmersion and control levels during 12 h of immersion despite a loss of 0.9 +/- 0.2 liter of body fluid. Furthermore, changes in Hct, Hb, and Pprot do not provide accurate measures of the changes in PV during WI in humans.  相似文献   

5.
We hypothesized that the more-pronounced hypotensive and bradycardic effects of an antiorthostatic posture change from seated to supine than water immersion are caused by hydrostatic carotid baroreceptor stimulation. Ten seated healthy males underwent five interventions of 15-min each of 1) posture change to supine, 2) seated water immersion to the Xiphoid process (WI), 3) seated neck suction (NS), 4) WI with simultaneous neck suction (-22 mmHg) adjusted to simulate the carotid hydrostatic pressure increase during supine (WI + NS), and 5) seated control. Left atrial diameter increased similarly during supine, WI + NS, and WI and was unchanged during control and NS. Mean arterial pressure (MAP) decreased the most during supine (7 +/- 1 mmHg, P < 0.05) and less during WI + NS (4 +/- 1 mmHg) and NS (3 +/- 1 mmHg). The decrease in heart rate (HR) by 13 +/- 1 beats/min (P < 0.05) and the increase in arterial pulse pressure (PP) by 17 +/- 4 mmHg (P < 0.05) during supine was more pronounced (P < 0.05) than during WI + NS (10 +/- 2 beats/min and 7 +/- 2 mmHg, respectively) and WI (8 +/- 2 beats/min and 6 +/- 1 mmHg, respectively, P < 0.05). Plasma vasopressin decreased only during supine and WI, and plasma norepinephrine, in addition, decreased during WI + NS (P < 0.05). In conclusion, WI + NS is not sufficient to decrease MAP and HR to a similar extent as a 15-min seated to supine posture change. We suggest that not only static carotid baroreceptor stimulation but also the increase in PP combined with low-pressure receptor stimulation is a possible mechanism for the more-pronounced decrease in MAP and HR during the posture change.  相似文献   

6.
Atrial natriuretic factor (ANF) N-terminal (ANF 1-98) and C-terminal (ANF 99-126) fragments were determined by radioimmunoassay in human plasma. Mean basal plasma ANF N-terminal concentrations in 9 healthy subjects were 461 +/- 58 fmol/ml, significantly (p less than 0.0001) higher than ANF C-terminal concentrations (4.8 +/- 0.5 fmol/ml). Central volume stimulation by one hour head-out water immersion (WI) induced a significant (p less than 0.01) increase of the C-terminal peptide levels to 11.6 +/- 2.3 fmol/ml, paralleled by a significant (p less than 0.001) increase of the N-terminal fragment levels to 749 +/- 96 fmol/ml. Increases of plasma concentrations of both fragments upon WI correlated significantly (r = 0.71; p less than 0.05). These data suggest cosecretion of the N-terminal fragment with the C-terminal fragment of pro ANF 1-126 following a physiological stimulus of ANF release in man.  相似文献   

7.
Ten normal males rested sitting upright at an air temperature of 28 degrees C for 5.5 h (control, C) and underwent 4 h of graded water immersion (WI) to the umbilicus (UI), to the chest (CI), and to the neck (NI), respectively (water temperature = 34.5 degrees C), on different experimental days. Plasma arginine vasopressin (PAVP) was suppressed during WI compared with C and maximally so during NI. However, there was no change in PAVP comparing CI with UI even though central venous pressure (CVP) increased. CVP increased during CI and NI compared with C but was unchanged during UI, whereas cardiac output (rebreathing method), stroke volume, and plasma volume increased to approximately the same level during all three steps of WI compared with C. Heart rate and total peripheral vascular resistance decreased during UI, CI, and NI. Systolic arterial pressure (SAP) and pulse pressure (PP) were increased gradually from prestudy related to the degree of WI. Also diuresis, natriuresis, kaliuresis, osmotic excretion, and clearance were increased gradually compared with C, whereas free water clearance (CH2O) gradually decreased. There were weak negative but statistically significant correlations between PAVP and CVP and between changes in PAVP from prestudy and corresponding changes in SAP and PP. Furthermore, a statistically significant and negative correlation between CH2O and natriuresis could be established. We conclude that graded immersion gradually increases central blood volume and decreases PAVP. However, not only cardiopulmonary mechanoreceptors but also arterial baroreceptors may play a role in AVP suppression during WI in humans. In hydropenic subjects the suppression of PAVP during WI is apparently not effective in counteracting the decrease in CH2O induced by increased solute excretion.  相似文献   

8.
Six healthy males were exposed to 20 mm Hg lower body negative pressure (LBNP) for 8 min followed by 40 mm Hg LBNP for 8 min. Naloxone (0.1 mg.kg-1) was injected intravenously during a 1 h resting period after which the LBNP protocol was repeated. Systolic, mean, and diastolic arterial blood pressures (SAP, MAP, DAP), and central venous pressure (CVP) were obtained using indwelling catheters. Cardiac output (CO), forearm blood flow (FBF), heart rate (HR), left ventricular ejection time (LVET), and electromechanical systole (EMS) were measured non-invasively. Pulse pressure (PP), stroke volume (SV), total peripheral resistance (TPR), forearm vascular resistance (FVR), systolic ejection rate (SER), pre-ejection period (PEP), PEP/LVET and indices for the systolic time intervals (LVETI, EMSI, PEPI) were calculated. During the second LBNP exposure, only two parameters differed from the pre-injection values: DAP at LBNP = 40 mm Hg increased from 60.0 +/- 4.8 mm Hg to 64.8 +/- 4.1 mm Hg (N = 4, p less than 0.02) and LVETI at LBNP = 20 mm Hg increased from 384.4 +/- 5.2 ms to 396.8 +/- 6.2 ms (N = 6, p less than 0.02).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
High precision blood and plasma densitometry was used to measure transvascular fluid shifts during water immersion to the neck. Six men (28-49 years) undertook 30 min of standing immersion in water at 35.0 +/- 0.2 degrees C; immersion was preceded by 30 min control standing in air at 28 +/- 1 degrees C. Blood was sampled from an antecubital catheter for determination of blood density (BD), plasma density (PD), haematocrit (Ht), total plasma protein concentration (PPC), and plasma albumin concentration (PAC). Compared to control, significant decreases (p less than 0.01) in all these measures were observed after 20 min immersion. At 30 min, plasma volume had increased by 11.0 +/- 2.8%; the average density of the fluid shifted from extravascular fluid into the vascular compartment was 1006.3 g.l-1; albumin moved with the fluid and its albumin concentration was about one-third of the plasma protein concentration during early immersion. These calculations are based on the assumption that the F-cell ratio remained unchanged. No changes in erythrocyte water content during immersion were found. Thus, immersion-induced haemodilution is probably accompanied by protein (mainly albumin) augmentation which accompanies the intravascular fluid shift.  相似文献   

10.
The effect of cardiopulmonary bypass (CPB) using high dose fentanyl anaesthesia on the concentrations of plasma arginine vasopressin (pAVP), serum electrolytes and osmolality was studied in 12 patients by repeated sampling up to 4th postoperative day. These values were also followed in another 20 patients for the first postoperative day. Fentanyl abolished the pAVP response often seen in major operations but not that produced by CBP. The pAVP concentration 4.8 +/- 0.8 pg/ml immediately after sternotomy increased to 27.2 +/- 1.5 pg/ml (P less than 0.001) after 5-10 minutes on CPB. By the 4th postoperative day the pAVP levels had reached normal values. The main reason for the elevated pAVP concentrations seems to be the onset of CPB, which provokes a fall in mean arterial pressure leading to pAVP release.  相似文献   

11.
To investigate fluid, electrolyte, and plasma vasopressin (PVP) and renin activity (PRA) responses, six men (20-35 yr) were immersed to the neck (NI) in water at 34.5 degrees C for six h after overnight food and fluid restriction. Diuresis was 1,061 +/- 160 (SE) ml/6 h during immersion and water balance was -1,285 +/- 104 ml/6 h. Preimmersion PVP was 0.7 +/- 0.2 pg/ml and increased to 3.0 +/- 0.6 pg/ml (P less than 0.05) at 6 h. PVP was unchanged at 1.2 +/- 0.1 pg/ml in the 6-h seated nonimmersion experiment at 25 degrees C. Plasma volume increased by 7.8 +/- 1.6% (P less than 0.05) at 60 min of NI and decreased thereafter. Serum osmolality was constant (292 +/- 1 mosmol/kg) throughout NI, whereas PRA decreased progressively from 1.9 to 0.5 ng angiotensin I X ml-1 X h-1 (P less than 0.05) at the end of immersion. In spite of moderate thirst just before NI, thirst sensations were attenuated and no water was consumed ad libitum during immersion. These data indicate that PVP is not suppressed when there is no fluid intake during immersion and suggest that the action of factors other than PVP suppression are necessary to explain the mechanism of immersion diuresis.  相似文献   

12.
The hypothesis was tested that suppression of generation of ANG II is one of the mechanisms of the water immersion (WI)-induced natriuresis in humans. In one protocol, eight healthy young males were subjected to 3 h of 1) WI (WI + placebo), 2) WI combined with ANG II infusion of 0.5 ng. kg(-1). min(-1) (WI + ANG II-low), and 3) a seated time control (Con). In another almost identical protocol, 7-10 healthy young males were investigated to delineate the tubular site(s) of action of ANG II by the lithium clearance method (C(Li)) and were on an additional fourth study day subjected to infusion of ANG II at a rate of 1.5 ng. kg(-1). min(-1) (WI + ANG II-high). During WI + placebo, plasma concentration of ANG II decreased from 16 +/- 2 to 8 +/- 1 pg/ml (P < 0.05) and renal sodium excretion increased from 104 +/- 15 to 294 +/- 27 micromol/min (P < 0.05). During WI + ANG II-low, plasma ANG II was not suppressed by WI, and the natriuresis was blunted by 52 +/- 13% (P < 0.05). During WI + ANG II-low and WI + ANG II-high, an increase in C(Li) was prevented that was otherwise observed during WI, and fractional distal reabsorption of sodium was facilitated. In conclusion, maintaining plasma concentration of ANG II unchanged at the level of control attenuates the natriuresis of WI considerably in humans. Therefore, suppression of generation of ANG II is an important mechanism of the natriuresis of WI in humans. Furthermore, infusion of ANG II during WI prevents an otherwise induced increase in C(Li) and facilitates the fractional distal reabsorption of sodium, probably via an effect on aldosterone release.  相似文献   

13.
Because results in literature are discrepant with regard to the effects of water immersion (WI) on the release of norepinephrine (NE) in humans, the following study was performed. Simultaneous measurements of plasma NE, central cardiovascular variables, and renal sodium excretion were conducted in eight normal male subjects on 2 study days; 6 h of thermoneutral (35.0 degrees C) WI to the neck were preceded and followed by 1 h in the seated posture outside the water and 8 h of a seated control period. During the control period, the subjects wore a water-perfused garment (water temperature 34.6 degrees C) to obtain the same skin temperature as during WI. The subjects were fluid restricted overnight and kept in this condition throughout the study. Compared with the prestudy, post-study, and control periods, plasma NE decreased significantly by 61% during WI. Simultaneously, central venous pressure, cardiac output, stroke volume, systolic arterial pressure, and arterial pulse pressure increased, whereas heart rate decreased. Renal sodium excretion and urine flow rate increased. In conclusion, the release of NE is suppressed in humans during immersion. This decrease probably reflects a decrease in sympathetic nervous activity initiated by stimulation of low- and high-pressure baroreceptors. It is possible that the decrease in NE acts as one of several mechanisms of the natriuresis and diuresis of immersion in humans.  相似文献   

14.
To evaluate the effect of the standardized aqueous extract (AE) of Cecropia glaziovii Sneth on the plasma angiotensin I converting enzyme (ACE-EC 3.4.15.1) activity, rats were treated with a single dose of AE (1 g/kg, p.o.) or repeatedly (0.5 g/kg/bid, p.o.) for 60 days. Captopril (50 mg/kg, p.o.) was used as positive control on the same animals. The effects on the blood pressure were recorded directly from the femoral artery (single dose), or indirectly by the tail cuff method (repeated doses) in conscious rats. The plasma ACE activity was determined spectrofluorimetrically using Hypuril-Hystidine-Leucine as substrate. The arterial blood pressure, heart rate and plasma ACE activity were not significantly modified within 24 h after a single dose administration of AE. Comparatively, blood pressure in captopril treated rats was reduced by 7-16% and heart rate was increased by 10-20% from 30 min to 24 h after drug administration. ACE activity after captopril presented a dual response: an immediate inhibition peaking at 30 min and a slow reversal to 32% up-regulation after 24 h. To correlate the drug effects upon repeated administration of either compound, normotensive rats were separated in three groups: animals with high ACE (48.8+/-2.6 nmol/min/ml), intermediate ACE (39.4+/-1.4 nmol/min/ml) and low ACE (23.5+/-0.6 nmol/min/ml) activity, significantly different among them. Repeated treatment with AE reduced the mean systolic blood pressure (121.7+/-0.5 mm Hg) by 20 mm Hg after 14 days. The hypotension was reversed upon washout 60 days afterwards. Likely, repeated captopril administration decreased blood pressure by 20 mm Hg throughout treatment in all groups. After 30 days treatment with AE (0.5 g/kg/bid, p.o.) the plasma ACE activity was unchanged in any experimental group. After captopril (50 mg/kg/bid, p.o.) administration the plasma ACE activity was inhibited by 50% within 1 h treatment but it was up-regulated by 120% after 12 h in all groups. It is concluded that the hypotension produced by prolonged treatment with AE of C. glaziovii is unrelated to ACE inhibition.  相似文献   

15.
Free fatty acid availability and temperature regulation in cold water   总被引:1,自引:0,他引:1  
The purpose of this study was to investigate whether a reduced availability of plasma free fatty acids (FFA) would impair human temperature regulation during cold exposure. Seven seminude male subjects were immersed on two occasions in 18 degrees C water for 90 min or until their rectal temperature (Tre) decreased to 35.5 degrees C. The immersion occurred after 2 h of intermittent oral ingestion of either nicotinic acid (NIC) or a placebo (PLAC). Plasma FFA levels immediately before the immersion were significantly lower in NIC (87 +/- 15 mumol/l) than in PLAC (655 +/- 116 mumol/l, P less than 0.05). Although FFA levels increased by 73% in NIC during the immersion (P less than 0.05), they remained significantly lower than in PLAC (151 +/- 19 vs. 716 +/- 74 mumol/l, P less than 0.05) throughout the immersion. Muscle glycogen concentrations in the vastus lateralis decreased after cold water immersion in both trials (P less than 0.05), but the rate of glycogen utilization was similar, averaging 1.00 +/- 0.27 mmol glucose unit.kg dry muscle-1.min-1). Plasma glucose levels were significantly reduced after immersion in both trials (P less than 0.05), this decrease being greater in NIC (1.3 +/- 0.2 mmol/l) than in PLAC (0.7 +/- 0.1 mmol/l, P less than 0.05). O2 uptake increased to 3.8 +/- 0.3 times preimmersion values in both trials (P less than 0.05). Mean respiratory exchange ratio (RER) immediately before the immersion was greater in NIC (0.87 +/- 0.02) than in PLAC (0.77 +/- 0.01, P less than 0.05). Cold exposure increased RER in PLAC but not in NIC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
To investigate the effects of lower body positive pressure (LBPP) on kidney function while controlling certain cardiovascular and endocrine responses, seven men [35 +/- 2 (SE) yr] underwent 30 min of sitting and then 4.5 h of 70 degrees head-up tilt. An antigravity suit was applied (60 Torr legs, 30 Torr abdomen) during the last 3 h of tilt. A similar noninflation experiment was conducted where the suited subjects were tilted for 3.5 h. To provide adequate urine flow, the subjects were hydrated during the course of both experiments. Immediately after inflation, mean arterial pressure increased by 8 +/- 3 Torr and pulse rate decreased by 16 +/- 3 beats/min. Plasma renin activity and aldosterone were maximally suppressed (P less than 0.05) after 2.5 h of inflation. Plasma vasopressin decreased by 40-50% (P less than 0.05) and plasma sodium and potassium remained unchanged during both experiments. Glomerular filtration rate was not increased significantly by inflation, whereas inflation induced marked increases (P less than 0.05) in effective renal plasma flow (ERPF), urine flow, osmolar and free water clearances, and total and fractional sodium excretion. No such changes occurred during control. Thus, LBPP induces 1) a significant increase in ERPF and 2) significant changes in kidney excretory patterns similar to those observed during water immersion or the early phase of bed rest, situations that also result in central vascular volume expansion.  相似文献   

17.
Central venous pressure in humans during short periods of weightlessness   总被引:1,自引:0,他引:1  
Central venous pressure (CVP) was measured in 14 males during 23.3 +/- 0.6 s (mean +/- SE) of weightlessness (0.00 +/- 0.05 G) achieved in a Gulfstream-3 jet aircraft performing parabolic flight maneuvers and during either 60 or 120 s of +2 Gz (2.0 +/- 0.1 Gz). CVP was obtained using central venous catheters and strain-gauge pressure transducers. Heart rate (HR) was measured simultaneously in seven of the subjects. Measurements were compared with values obtained inflight at 1 G with the subjects in the supine (+1 Gx) and upright sitting (+1 Gz) positions, respectively. CVP was 2.6 +/- 1.5 mmHg during upright sitting and 5.0 +/- 0.7 mmHg in the supine position. During weightlessness, CVP increased significantly to 6.8 +/- 0.8 mmHg (P less than 0.005 compared with both upright sitting and supine inflight). During +2 Gz, CVP was 2.8 +/- 1.4 mmHg and only significantly lower than CVP during weightlessness (P less than 0.05). HR increased from 65 +/- 7 beats/min at supine and 70 +/- 5 beats/min during upright sitting to 79 +/- 7 beats/min (P less than 0.01 compared with supine) during weightlessness and to 80 +/- 6 beats/min (P less than 0.01 compared with upright sitting and P less than 0.001 compared with supine) during +2 Gz. We conclude that the immediate onset of weightlessness induces a significant increase in CVP, not only compared with the upright sitting position but also compared with the supine position at 1 G.  相似文献   

18.
To examine the development of pulmonary edema during experimental renal dysfunction, left atrial pressure was altered in 14 mongrel dogs divided into two groups. Group 1 was composed of seven control animals, and Group 2 was composed of seven animals with surgically induced renal failure (1 week of bilateral ureteral ligation). Data were obtained at two levels of matched transmural pulmonary vascular pressure (defined as mean left atrial pressure less serum protein osmotic pressure). In the animals with renal dysfunction, extravascular lung water (EVLW) (thermal-green dye technique) was higher at moderately (-1 to -2 mm Hg) and severely elevated (11 to 12 mm Hg) vascular driving pressures (11.5 +/- 1.2 cc/kg vs 10.6 +/- 0.8 cc/kg and 14.8 +/- 1.3 cc/kg vs 13.0 +/- 1.9 cc/kg, respectively, both P less than 0.05 vs control). Because protein osmotic pressure was lower in the renal failure group (15.0 +/- 1.8 mm Hg vs 18.4 +/- 1.4 mm Hg, P less than 0.05), greater accumulations of extravascular lung water occurred at lower levels of left atrial pressure (14.2 +/- 1.4 mm Hg vs 17.1 +/- 1.2 mm Hg, P less than 0.05; 26.8 +/- 2.6 mm Hg vs 29.5 +/- 2.3 mm Hg, P less than 0.01). In addition, when the ratio of EVLW/PBV (pulmonary blood volume) was examined in both groups at each stage of the experiment, the ratio was greater in the Group 2 animals at each elevated pressure, suggesting increased permeability with renal dysfunction. In conclusion, pulmonary edema formation occurs at lower left atrial pressures in the setting of sustained renal dysfunction, this phenomenon can be partially explained by lower protein osmotic pressure though altered pulmonary microvascular permeability may contribute to edema formation.  相似文献   

19.
This study examined the effects of an oral 30-mg dose of pyridostigmine bromide (PYR) on thermoregulatory and physiological responses of men undergoing cold stress. Six men were immersed in cold water (20 degrees C) for up to 180 min on two occasions, once each 2 h after ingestion of PYR and 2 h after ingestion of a placebo. With PRY, erythrocyte cholinesterase inhibition was 33 +/- 12% (SD) 110 min postingestion (10 min preimmersion) and 30 +/- 7% at termination of exposure (mean 117 min). Percent cholinesterase inhibition was significantly related to lean body mass (r = -0.91, P less than 0.01). Abdominal discomfort caused termination in three of six PYR experiments but in none of the control experiments (mean exposure time 142 min). During immersion, metabolic rate, ventilatory volume, and respiratory rate increased significantly (P less than 0.05) over preimmersion levels and metabolic rate increased with duration of immersion (P less than 0.01) in both treatment but did not differ between conditions. PYR had no significant effect on rectal temperature, mean body temperature, thermal sensations, heart rate, plasma cortisol, or change in plasma volume. It was concluded that a 30-mg dose of PYR does not increase an individual's susceptibility to hypothermia during cold water immersion; however, in combination with cold stress, PYR may result in marked abdominal cramping and limit cold tolerance.  相似文献   

20.
In order to verify the contribution of right atrial pressure to atrial natriuretic polypeptides (ANP) release, we measured plasma levels of immunoreactive (ir)-ANP when graded rise of right atrial pressure was executed in anesthetized dogs. Increasing right atrial pressure (RAP) from 2.7 +/- 0.6 to 9.0 +/- 0.7 mmHg, plasma levels of ir-ANP in aorta tended to increase by 33% but not significantly (p greater than 0.05). However, when RAP was increased from 9.0 +/- 0.7 to 17.0 +/- 1.1 mmHg, ir-ANP levels in aorta were significantly (p less than 0.05) increased by 132% of control within 5 min from the start of RAP elevation. The RAP elevation produced a sustained increase in plasma levels of ir-ANP. There was a positive correlation between right atrial pressure and plasma levels of ir-ANP. The plasma levels of ir-ANP were similar between aorta and pulmonary artery. These results demonstrate that increasing atrial pressure is closely correlated with ANP release and ANP is not greatly metabolized by pulmonary circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号