首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Serotonin (5HT) binding sites were studied in goldfish retinal membranes by radioligand experiments. The binding site of [3H]5HT was sensitive to pre-treatment of the membranes at 40° or 60° C. 5HT and 5-methoxy-N,N-dimethyltryptamine were the best inhibitors of [3H]5HT binding to retinal membranes. The 5HT2 agonist, 1-(-naphtyl)piperazine, was also a potent inhibitor, however, (+)-1-2,5-dimethoxy-4-iodopheny1-2-aminopropane was less efficient. The catecholaminergic agents haloperidol and clonidine did not display an important inhibition. Propranolol, also reported as 5HT1B antagonist, was a relatively potent blocker. Monoamine uptake blockers did not show potent inhibition. The GTP analog, GppNHp, inhibited the binding. The iterative analysis of saturation curves revealed two classes of binding sites, a high affinity component (Bmax 2.45 pmol/mg of protein, kd 6.86 nM), and a low affinity component (Bmax 53.46 pmol/mg of protein, Kd 232.07 nM). Analysis of the association and dissociation kinetics suggested a binding site (Kd 2 nM). The semilogarithmic plot of the dissociation kinetics gave curves concave to the upper side. The selectivity of the binding and the inhibition by GppNHp suggest the existance of 5HT1 receptors in goldfish retina. The low affinity interaction probably represents the transporter of 5HT or a suptype of receptor expressed in glial cells.Abbreviations used B max maximum binding capacity - CPP, 1 (3 chlorophenyl)piperazine - CLN clonidine - DMI desimipramine - DMT 5-methoxy-N,N-dimethyltryptamine - DOI (+)-1-(2,5-dimethoxy-4-iodophenyl-2-aminopropane - DPAT (+)-8-hydroxy-2-(D1-N-propylamino)tetralin - GppNHp 5-guanylylimidodiphosphate - HAL haloperidol - 5HT serotonin - IC50 concentration of drug producing 50% inhibition of binding - IMI imioramine - Kd equilibrium dissociation constant - MIAN mianserin - NOM nomifensin - NP 1-(1-napthyl)piperazine - PRP propranolol In memory of Dr. Boris Druian who died on Dec. 24, 1991.  相似文献   

2.
Mice deficient in the neural cell adhesion molecule (NCAM) show behavioral abnormalities as adults, including altered exploratory behavior, deficits in spatial learning, and increased intermale aggression. Here, we report increased anxiety‐like behavior of homozygous (NCAM−/−) and heterozygous (NCAM+/−) mutant mice in a light/dark avoidance test, independent of genetic background and gender. Anxiety‐like behavior was reduced in both NCAM+/+ and NCAM−/− mice by systemic administration of the benzodiazepine agonist diazepam and the 5‐HT1A receptor agonists buspirone and 8‐OH‐DPAT. However, NCAM−/− mice showed anxiolytic‐like effects at lower doses of buspirone and 8‐OH‐DPAT than NCAM+/+ mice. Such increased response to 5‐HT1A receptor stimulation suggests a functional change in the serotonergic system of NCAM−/− mice, likely involved in the control of anxiety and aggression. However, 5‐HT1A receptor binding and tissue content of serotonin and its metabolite 5‐hydroxyindolacetic acid were found unaltered in every brain area of NCAM−/− mice investigated, indicating that expression of 5‐HT1A receptors as well as synthesis and release of serotonin are largely unchanged in NCAM−/− mice. We hypothesize a critical involvement of endogenous NCAM in serotonergic transmission via 5‐HT1A receptors and inwardly rectifying K+ channels as the respective effector systems. © 1999 John Wiley & Sons, Inc. J Neurobiol 40: 343–355, 1999  相似文献   

3.
Abstract: Cross-reactions between dopamine D3 and σ receptor ligands were investigated using (±)-7-hydroxy-N,N-di-n-[3H]propyl-2-aminotetralin [(±)-7-OH-[3H]DPAT], a putative D3-selective radioligand, in conjunction with the unlabeled σ ligands 1,3-di(2-tolyl)guanidine (DTG), carbetapentane, and R(?)-N-(3-phenyl-1-propyl)-1-phenyl-2-aminopropane [R(?)-PPAP]. In transfected CCL1.3 mouse fibroblasts expressing the human D3 receptor, neither DTG nor carbetapentane (0.1 µM) displaced (±)-7-OH-[3H]DPAT binding. R(?)-PPAP (0.1 µM) displaced 39.6 ± 1.0% of total (±)-7-OH-[3H]DPAT binding. In striatal and nucleus accumbens homogenates, (±)-7-OH-[3H]DPAT labeled a single site (15–20 fmol/mg of protein) with high (1 nM) affinity. Competition analysis with carbetapentane defined both high- and low-affinity sites in striatal (35 and 65%, respectively) and nucleus accumbens (59 and 41%, respectively) tissue, yet R(?)-PPAP identified two sites in equal proportion. Carbetapentane and R(?)-PPAP (0.1 µM) displaced ~20–50% of total (±)-7-OH-[3H]DPAT binding in striatum, nucleus accumbens, and olfactory tubercle in autoradiographic studies, with the nucleus accumbens shell subregion exhibiting the greatest displacement. To determine directly (+)-7-OH-[3H]DPAT binding to σ receptors, saturation analysis was performed in the cerebellum while masking D3 receptors with 1 µM dopamine. Under these conditions (+)-7-OH-[3H]DPAT labeled σ receptors with an affinity of 24 nM. These results suggest that (a) (±)-7-OH-[3H]DPAT binds D3 receptors with high affinity in rat brain and (b) a significant proportion of (±)-7-OH-[3H]DPAT binding consists of σ1 sites and the percentages of these sites differ among the subregions of the striatum and nucleus accumbens.  相似文献   

4.
Abstract: The selective serotonin (5-HT) agonist 8-hydroxydipropylaminotetralin (8-OH-DPAT) has been extensively used to characterize the physiological, biochemical, and behavioral features of the 5-HT1A receptor. A further characterization of this receptor subtype was conducted with membrane preparations from rat cerebral cortex and hippocampus. The saturation binding isotherms of [3H]8- OH-DPAT (free ligand from 200 pM to 160 nM) revealed high-affinity 5-HT1A receptors (KH= 0.7–0.8 nM) and lowaffinity (KL= 22–36 nM) binding sites. The kinetics of [3H]8-OH-DPAT binding were examined at two ligand concentrations, i.e., 1 and 10 nM, and in each case revealed two dissociation rate constants supporting the existence of high- and low-affinity binding sites. When the high-affinity sites were labeled with a 1 nM concentration of [3H]8- OH-DPAT, the competition curves of agonist and antagonist drugs were best fit to a two-site model, indicating the presence of two different 5-HT1A binding sites or, alternatively, two affinity states, tentatively designated as 5-HT1AHIGH and 5-HT1ALOW. However, the low correlation between the affinities of various drugs for these sites indicates the existence of different and independent binding sites. To determine whether 5-HT1A sites are modulated by 5′-guanylylimidodiphosphate, inhibition experiments with 5-HT were performed in the presence or in the absence of 100 μM 5′-guanylylimidodiphosphate. The binding of 1 nM [3H]8-OH-DPAT to the 5-HT1AHIGH site was dramatically (80%) reduced by 5′-guanylylimidodiphosphate; in contrast, the low-affinity site, or 5-HT1ALOW, was seemingly insensitive to the guanine nucleotide. The findings suggest that the high-affinity 5-HT1AHIGH site corresponds to the classic 5-HT1A receptor, whereas the novel 5-HT1ALOW binding site, labeled by 1 nM [3H]8-OH-DPAT and having a micromolar affinity for 5-HT, may not belong to the G protein family of receptors. To further investigate the relationship of 5-HT1A sites and the 5-HT innervation, rats were treated with p-chlorophenylalanine or with the neurotoxin p-chloroamphetamine. The inhibition of 5-HT synthesis by p-chlorophenylalanine did not alter either of the two 5-HT1A sites, but deafferentation by p-chloroamphetamine caused a loss of the low-affinity [3H]8-OH- DPAT binding sites, indicating-that these novel binding sites may be located presynaptically on 5-HT fibers and/or nerve terminals.  相似文献   

5.
The presence of serotonin 5-HT1A receptors and their physiological role were further characterized in the goldfish retina. The effects of the 5-HT6/7 receptor antagonists pimozide, fluphenazine and amoxapine, the 5-HT1A receptor antagonist WAY-100,135, and the alkylating agent N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline, on the 5-HT1A receptor agonist [3H]8-hydroxy-2-(di-n-propylamino)tetralin binding to retinal membranes, were evaluated. In addition, the effects of serotonin, 8-hydroxy-2-(di-n-propylamino)tetralin, WAY-100,135, the adenylate cyclase inhibitors SQ22536 and MDL12330A, and the cyclic AMP analog 8-bromoadenosine-3:5 cyclic monophosphate were also studied on neuritic outgrowth from retinal explants. WAY-100,135 but not 5-HT6/7receptor antagonists inhibited [3H]8-hydroxy-2-(di-n-propylamino)tetralin binding to retinal membranes N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline decreased [3H]8-hydroxy-2-(di-n-propylamino)tetralin binding sites up to 70%, while receptor turnover was similar to that reported in other tissues. Serotonin and 8-hydroxy-2-(di-n-propylamino)tetralin stimulated cyclic AMP production, both ex vivo and in vitro, and these increases were related to inhibition of neuritic outgrowth. The inhibitory effect was reduced by SQ22536 and by WAY-100,135, and was mimicked by 8-bromoadenosine-3:5cyclic monophosphate. This study supports previous findings about the role of serotonin as a regulator of axonal outgrowth during in vitro regeneration of the goldfish retina and demonstrates that this effect is mediated, at least in part, by 5-HT1A receptors through a mechanism which involves an increase of cyclic AMP levels.  相似文献   

6.
Summary 1. Adenoregulin is an amphilic peptide isolated from skin mucus of the tree frog,Phyllomedusa bicolor. Synthetic adenoregulin enhanced the binding of agonists to several G-protein-coupled receptors in rat brain membranes.2. The maximal enhancement of agonist binding, and in parentheses, the concentration of adenoregulin affording maximal enhancement were as follows: 60% (20 µM) for A1-adenosine receptors, 30% (100 µM) for A2a-adenosine receptors, 20% (2 µM) for 2-adrenergic receptors, and 30% (100 µM) for 5HT1A receptors. High affinity agonist binding for A1-, 2-, and 5HT1A-receptors was virtually abolished by GTPS in the presence of adenoregulin, but was only partially abolished in its absence. Magnesium ions increased the binding of agonists to receptors and reduced the enhancement elicited by adenoregulin.3. The effect of adenoregulin on binding of N6-cyclohexyladenosine ([3H]CHA) to A1-receptors was relatively slow and was irreversible. Adenoregulin increased the Bmax value for [3H]CHA binding sites, and the proportion of high affinity states, and slowed the rate of [3H]CHA dissociation. Binding of the A1-selective antagonist, [3H]DPCPX, was maximally enhanced by only 13% at 2 µM adenoregulin. Basal and A1-adenosine receptor-stimulated binding of [35S]GTPS were maximally enhanced 45% and 23%, respectively, by 50 µM adenoregulin. In CHAPS-solubilized membranes from rat cortex, the binding of both [3H]CHA and [3H]DPCPX were enhanced by adenoregulin. Binding of [3H]CHA to membranes from DDT1 MF-2 cells was maximally enhanced 17% at 20 µM adenoregulin. In intact DDT1 MF-2 cells, 20 µM adenoregulin did not potentiate the inhibition of cyclic AMP accumulation mediatedvia the adenosine A1 receptor.4. It is proposed that adenoregulin enhances agonist binding through a mechanism involving enhancement of guanyl nucleotide exchange at G-proteins, resulting in a conversion of receptors into a high affinity state complexed with guanyl nucleotide-free G-protein.  相似文献   

7.
The effects of chronic administration of interferon (IFN; recombinant human IFN -A/D) on serotonergic binding sites in rat brain were investigated. IFN was injected daily for 2 weeks at a dose of 100000 I.U./kg, (i.p.) in male Wistar rats. IFN did not alter either [3H]ketanserin binding to 5-HT2A receptors or [3H]paroxetine binding to 5-HT transporters. Scatchard analysis of [3H]8-hydroxy-dipropylaminotetraline (8-OH-DPAT) binding to 5-HT1A receptors demonstrated the presence of high- and low-affinity binding sites in both treatment and control groups. IFN significantly increased both Kd and Bmax measures of [3H]8-OH-DPAT binding at low-affinity binding sites, but not at the high-affinity sites. These results suggest that IFN affects the low-affinity 5-HT1A receptors sites and may be involved in the development of IFN-induced psychiatric disturbances.  相似文献   

8.
9.
5-Hydroxytryptamine2A (5-HT2A) receptor kinetics was studied in cerebral cortex and brain stem of streptozotocin (STZ) induced diabetic rats. Scatchard analysis with [3H] (±) 2,3dimethoxyphenyl-1-[2-(4-piperidine)-methanol] ([3H]MDL100907) in cerebral cortex showed no significant change in maximal binding (Bmax) in diabetic rats compared to controls. Dissociation constant (Kd) of diabetic rats showed a significant decrease (p < 0.05) in cerebral cortex, which was reversed to normal by insulin treatment. Competition studies of [3H]MDL100907 binding in cerebral cortex with ketanserin showed the appearance of an additional low affinity site for 5-HT2A receptors in diabetic state, which was reversed to control pattern by insulin treatment. In brain stem, scatchard analysis showed a significant increase (p < 0.05) in Bmax accompanied by a significant increase (p < 0.05) in Kd. Competition analysis in brain stem also showed a shift in affinity towards a low affinity State for 5-HT2A receptors. All these parameters were reversed to control level by insulin treatment. These results show that in cerebral cortex there is an increase in affinity of 5-HT2A receptors without any change in its number and in the case of brain stem there is an increase in number of 5HT2A receptors accompanied by a decrease in its affinity during diabetes. Thus, from the results we suggest that the increase in affinity of 5-HT2A receptors in cerebral cortex and upregulation of 5-HT2A receptors in brain stem may lead to altered neuronal function in diabetes.  相似文献   

10.
Total 5-HT binding sites and 5-HT1A receptor density was measured in brain regions of rats treated with imipramine (5 mg/kg body wt), desipramine (10 mg/kg body wt) and clomipramine (10 mg/kg body wt), for 40 days, using [3H]5-HT and [3H]8-OH-DPAT, respectively. It was observed that chronic exposure to tricyclic antidepressants (TCAs) results in significant downregulation of total [3H]5-HT binding sites in cortex (42–76%) and hippocampus (35–67%). The 5-HT1A receptor density was, however, decreased significantly (32–60%) only in cortex with all the three drugs. Interestingly, in hippocampus imipramine treatment increased the 5-HT1A receptor density (14%). The affinity of [3H]8-OH-DPAT was increased only with imipramine treatment both in cortex and hippocampus. The affinity of [3H]5-HT to 5-HT binding sites in cortex was increased with imipramine treatment and decreased with desipramine and clomipramine treatment. 5-HT sensitive adenylyl cyclase (AC) activity was significantly increased in cortex with imipramine (72%) and clomipramine (17%) treatment, whereas in hippocampus only imipramine treatment significantly increased AC activity (50%). In conclusion, chronic treatment with TCAs results in downregulation of cortical 5-HT1A receptors along with concomitant increase in 5-HT stimulated AC activity suggesting the involvement of cortical 5-HT1A receptors in the mechanism of action of TCAs.  相似文献   

11.
The binding of tritiated 8-hydroxy-2-(di-n-propyl-amino)tetralin, or [3H]8-OH-DPAT, to membranes from rat cerebral cortex and hippocampus could be inhibited by serotonin (5-HT) and buspirone, and by the 5-HT antagonists propranolol, NAN-190, pindolol, pindobind-5-HT1A, WAY100135, spiperone and ritanserin. All competition curves, except for ritanserin, best fitted a two-site model. In vitro treatment of the membranes withN-ethylmaleimide (NEM), to alkylate sulfhydryl groups, caused dose-dependent decreases of binding; the inhibition curves were biphasic, and the effects irreversible. Reduction of disulfide bonds withl-dithiothreitol (L-DTT) also decreased binding, but in a monophasic way; these effects were fully reversible in cortex, but only partially reversible in hippocampus. In the latter region, but not in cerebral cortex, previous occupancy by [3H]8-OH-DPAT partially protected binding from the effects of bothL-DTT and NEM, suggesting that the thiol groups in the receptor recognition site(s) of this brain region are readily accessible. The binding characteristics were examined with the aid of saturation curves, carried out with increasing concentrations, up to 140 nM, of [3H]8-OH-DPAT. The saturation data were suggestive of a two-site receptor model incorporating a high-affinity site (Kh of 0.3–0.5 nM) corresponding to the 5-HT1A receptor, and a low-affinity site (Kl ofca 25 nM). After in vivo alkylations, carried out by treating rats withN-ethoxycarbonyl-2-ethoxy-1,2-dihydro-quinoline (EEDQ), the saturation curves from both control and EEDQ-treated rats were again best fitted to a two-site model. For EEDQ-treated animals, a drastic decrease of 5-HT1A receptor activity was noted; this loss was greater in hippocampus than in cerebral cortex. Since the decrease in 5-HT1A receptors was not associated with changes in low-affinity binding, the results suggest independent regulations of the two [3H]8-OH-DPAT binding proteins. Altogether, the present data further supports the notion that [3H]8-OH-DPAT, besides labelling 5-HT1A receptors, also binds to other structures in rat cerebral cortex and hippocampus. Special issue dedicated to Dr. Kinya Kuriyama  相似文献   

12.
Abstract

To study the regulation of 5-HT1A receptors in the brainstem, the region most relevant to the serotonin syndrome and to serotonin-responsive human myoclonic disorders, we chronically treated rats with various 5-HT1A agonists and labeled 5-HT1A sites with [3H]8-OH-DPAT. Daily injection for 30 consecutive days of 10 mg/kg ip 8-OH-DPAT (pre- and post-synaptic 5-HT1A agonist) significantly decreased 8-OH-DPAT-evoked flat body posture, forelimb myoclonus, and hypothermia compared to chronic vehicle injection. There was no cross tolerance to 8-OH-DPAT in rats chronically injected with ipsapirone or buspirone (presynaptic 5-HT1A agonists). However, none of the 5HT1A agonists significantly altered Bmax of brainstem 5-HT1A binding sites. Chronic injection with other drugs such as 1-propranolol, (±) pindolol and spiperone (5-HT1A and 5-HT2 antagonists), methysergide (5-HT1 and 5-HT2 antagonist), and agonists and antagonists at various other 5-HT receptors also had no effect on binding parameters. These data demonstrate lack of cross-tolerance between pre- and post-synaptically acting 5-HT1A agonists and absence of down-regulation of presynaptic 5-HT1A sites at doses which induced tolerance of 5-HT1A-mediated behaviors of the serotonin syndrome. They suggest changes in the post-synaptic cell rather than the receptor recognition site as the mechanism of tolerance.  相似文献   

13.
Adenosine A2B receptors of native human and rodent cell lines were investigated using [3H]PSB-298 [(8-{4-[2-(2-hydroxyethylamino)-2-oxoethoxy]phenyl}-1-propylxanthine] in radioligand binding studies. [3H]PSB-298 showed saturable and reversible binding. It exhibited a KD value of 60 ± 1 nM and limited capacity (Bmax = 3.511 fmol per milligram protein) at recombinant human adenosine A2B receptors expressed in human embryonic kidney cells (HEK-293). The addition of sodium chloride (100 mM) led to a threefold increase in the number of binding sites recognized by the radioligand. The curve of the agonist 5′-N-ethylcarboxamidoadenosine (NECA) was shifted to the right in the presence of NaCl, while the curve of the antagonist PSB-298 was shifted to the left, indicating that PSB-298 may be an inverse agonist at A2B receptors. Adenosine A2B receptors were shown to be the major adenosine A2 receptor subtype on the mouse neuroblastoma x rat glioma hybrid cell line NG108-15 cells. Binding studies at rat INS-1 cells (insulin secreting cell line) demonstrated that [3H]PSB-298 is a selective radioligand for adenosine A2B binding sites in this cell line.  相似文献   

14.
Some G protein-coupled receptors (GPCRs) have functional links to cancer biology, yet the manifestation of GPCRs in tumor types is little studied to date. Using a battery of radioligand binding assays, we sought to characterize GPCR recognition binding sites on HeLaS3 tumor cells. High levels of binding of the selective serotonin 5-HT1A receptor agonist [3H]8-OH-DPAT were observed in these cells. Saturation and homologous competition experiments indicated that [3H]8-OH-DPAT bound different populations of high- and low-affinity sites. In competition experiments, several serotonergic compounds displaced [3H]8-OH-DPAT binding with low potency from its high-affinity binding sites, suggesting that low-affinity binding is the predominant mode of binding. A variety of drugs targeting different classes of receptors did not affect [3H]8-OH-DPAT binding. These observations may help elucidate the pathophysiological and functional relevance of 5-HT receptors in tumor cells and link GPCRs and tumorigenic mechanisms to pharmacological and chemotherapeutic paradigms.  相似文献   

15.
The adenosine A2B receptor is the least well characterized of the four adenosine subtypes due to the lack of potent and selective agonists and antagonists. Despite the widespread distribution of A2B receptor mRNA, little information is available with regard to their function. The characterization of A2B receptors, through radioligand binding studies, has been performed, until now, by using low-affinity and non-selective antagonists like 1,3-dipropyl-8-cyclopentylxanthine ([3H]DPCPX),(4-(2-[7-amino-2-(2-furyl)-[1,2,4]triazolo-[2,3-a][1,3,5]triazin-5-ylamino]ethyl)-phenol ([3H]ZM 241385) and 3-(3,4-aminobenzyl)-8-(4-oxyacetate)phenyl-1-propyl-xanthine ([125I]ABOPX). Recently, high-affinity radioligands for A2B receptors, [N-(4-cyanophenyl)-2-[4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dipropyl-1H-purin-8-yl)-phenoxy]acetamide ([3H]MRS 1754), N-(2-(2-Phenyl-6-[4-(2,2,3,3-tetratritrio-3-phenylpropyl)-piperazine-1-carbonyl]-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino)-ethyl)-acetamide ([3H]OSIP339391) and N-benzo[1,3]dioxol-5-yl-2-[5-(1,3-dipropyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-8-yl)-1-methyl-1H-pyrazol-3-yloxy]-acetamide] ([3H]MRE 2029F20), have been introduced. This minireview offers an overview of these recently developed radioligands and the most important applications of drugs towards A2B receptors.  相似文献   

16.
Abstract: Previous work from this laboratory has shown that retinal adenosine A2 binding sites are localized over outer and inner segments of photoreceptors in rabbit and mouse retinal sections. In the present study, adenosine receptor binding has been characterized and localized in membranes from bovine rod outer segments (ROS). Saturation studies with varying concentrations (10–150 nM) of 5′-(N-[2,8-3H]ethylcarboxamido)adenosine ([3H]NECA) and 100 μg of ROS membrane protein show a single site with a KD of 103 nM and a Bmax of 1.3 pM/mg of protein. Cold Scatchards, which used nonradiolabeled NECA (concentrations ranging from 10 nM to 250 nM) in competition with a fixed amount of [3H]NECA (30 nM), demonstrated the presence of a low-affinity site (KD, 50 μM) in addition to the high-affinity site. To confirm the presence of A2abinding sites, saturation analyses with 2-p-(2-[3H]-carboxyethyl)phenylamino-5′-N-ethylcarboxamido adenosine (0–80 nM) also revealed a single population of high-affinity A2a receptors (KD, 9.4 nM). The binding sites labeled by [3H]NECA appear to be A2 receptor sites because binding was displaced by increasing concentrations of 5′-(N-methylcarboxamido)adenosine and 2-chloroadenosine. ROS were fractionated into plasma and disk membranes for localization studies. Receptor binding assays, used to determine specific binding, showed that the greatest concentration of A2 receptors was on the plasma membranes. Therefore, adenosine A2 receptors are in a position to respond to changes in the concentration of extracellular adenosine, which may exhibit a circadian rhythm.  相似文献   

17.
The bovine striatal dopamine D1 receptor was solubilized with a combination of sodium cholate and NaCl in the presence of phospholipids, following treatment of membranes with a dopaminergic agonist (SKF-82526-J) or antagonist (SCH-23390). The solubilized receptors were subsequently reconstituted into lipid vesicles by gel-filtration. A comparison of ligand-binding properties shows that the solubilized and reconstituted receptors bound [3H]SCH-23390 to a homogeneous site in a saturable, stereospecific and reversible manner with a Kd of 0.95 and 1.1 nM and a Bmax of 918 and 885 fmol/mg protein respectively for agonist- and antagonist-pretreated preparations. These values are very similar to those obtained for membrane-bound receptors. The competition of antagonists for [3H]SCH-23390 binding exhibited a clear D1 dopaminergic order in the reconstituted preparation obtained from either agonist or antagonist-pretreated membranes, except that (+)butaclamol was about four-fold more potent thancis-flupentixol in displacing [3H]SCH-23390 binding in preparation obtained from agonist-pretreated membranes compared to antagonist-pretreated membranes. The agonist/[3H]SCH-23390 competition studies revealed the presence of a highaffinity component of agonist binding in both the reconstituted receptor preparations. The number of high-affinity agonist binding sites, however, is 40–80% higher in reconstituted preparation obtained from antagonist-treated membrane compared to that obrained from the agonist-treated membrane. In both the preparations, 100 M guanylylimidodiphosphate (Gpp(NH)p) completely abolished the high-affinity component of agonist binding compared to partial abolition in the native membranes, indicating a close association of a G-protein with the solubilized receptors. Whether the receptor was solubilized following agonist or antagonist preincubation of the membranes, the receptor-detergent complex eluted from a steric-exclusion HPLC column with an apparent molecular size of 360,000. Preincubation of the solubilized preparations with Gpp(NH)p had virtually no effect on the elution profile suggesting a lack of guanine nucleotide-dependent dissociation of G-protein receptor complex.  相似文献   

18.
1. The serotonin type 1A (5-HT1A) receptors are members of a superfamily of seven transmembrane domain receptors that couple to GTP-binding regulatory proteins (G-proteins). We have studied the modulation of agonist binding to 5-HT1A receptors from bovine hippocampus by metal ions and guanine nucleotide.2. Bovine hippocampal membranes containing the 5-HT1A receptor were isolated. These membranes exhibited high-affinity binding sites for the specific agonist [3H]OH-DPAT.3. The agonist binding is inhibited by monovalent cations Na+, K+, and Li+ in a concentration-dependent manner. Divalent cations such as Ca2+, Mg2+, and Mn2+, on the other hand, show more complex behavior and induce enhancement of agonist binding up to a certain concentration. The effect of the metal ions on agonist binding is strongly modulated in the presence of GTP--S, a nonhydrolyzable analogue of GTP, indicating that these receptors are coupled to G-proteins.4. To gain further insight into the mechanisms of agonist binding to bovine hippocampal 5-HT1A receptors under these conditions, the binding affinities and binding sites have been analyzed by Scatchard analysis of saturation binding data. Our results are relevant to ongoing analyses of the overall regulation of receptor activity for G-protein-coupled seven transmembrane domain receptors.  相似文献   

19.
Tien LT  Ma T  Fan LW  Loh HH  Ho IK 《Neurochemical research》2007,32(11):1891-1897
Anatomical evidence indicates that γ-aminobutyric acid (GABA)-ergic and opioidergic systems are closely linked and act on the same neurons. However, the regulatory mechanisms between GABAergic and opioidergic system have not been well characterized. In the present study, we investigated whether there are changes in GABAA receptors in mice lacking μ-opioid receptor gene. The GABAA receptor binding was carried out by autoradiography using [3H]-muscimol (GABAA), [3H]-flunitrazepam (FNZ, native type 1 benzodiazepine) and [35S]-t-butylbicyclophosphorothionate (TBPS, binding to GABAA-gated chloride channels) in brain slices of wild type and μ-opioid receptor knockout mice. The binding of [3H]-FNZ in μ-opioid receptor knockout mice was significantly higher than that of the wild type controls in most of the cortex and hippocampal CA1 and CA2 formations. μ-Opioid receptor knockout mice show significantly lower binding of [35S]-TBPS than that of the wild type mice in few of the cortical areas including ectorhinal cortex layers I, III, and V, but not in the hippocampus. There was no significant difference in binding of [3H]-muscimol between μ-opioid receptor knockout and wild type mice in the cortex and hippocampus. These data indicate that there are specific regional changes in GABAA receptor binding sites in μ-opioid receptor knockout mice. These data also suggest that there are compensatory up-regulation of benzodiazepine binding site of GABAA receptors in the cortex and hippocampus and down-regulation of GABA-gated chloride channel binding site of GABAA receptors in the cortex of the μ-opioid receptor knockout mice.  相似文献   

20.
Kinetic analysis of binding of [3H][N-[2-[4-(2-[O-methyl-3H]methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexane carboxamide ([3H]WAY100635) to 5-HT1A receptors in rat hippocampal membranes has revealed complex regulation mechanism for this radioligand. Saturation binding experiments revealed that [3H]WAY100635 binds to a single class of receptors with very high apparent affinity (K D = 87 ± 4 pM, B max = 15.1 ± 0.2 fmol/mg protein). The binding was almost irreversible, as the dissociation rate constant obtained k off = (7.8 ± 1.1) × 10−3 min−1, means that equilibrium with this radioligand cannot be achieved before 7.5 h incubation at 25°C. Systematic association kinetic studies of [3H]WAY100635 binding revealed sharp reaction acceleration at higher radioligand concentration, proposing mechanism of positive cooperativity. The affinities of antagonists determined from competition with [3H]WAY100635 did not coincide with their abilities to inhibit 5-HT-dependent activation of [35S]GTPγS binding probably due to the ligand’s kinetic peculiarities. Thus, [3H]WAY100635 appears to be an excellent tool for determining receptor binding sites, but its applicability in equilibrium studies is strongly limited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号