首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
SUMMARY. 1. Phytoplankton production was measured during 1981–82 in Bahia de Puno. a large polymictic system that is part of LakeTiticaca in the tropical Andes (Peru-Bolivia), Photosynthesis followed aweak seasonal pattern through each 12-month cycle but the largestvariations occurrud between years. 2. The large temporal variations in productivity appeared to becontrolled by biological events rather than by the direct effeets ofseasonal or aseasonal physical processes. Major shifts in production overthe 2-year period were attributable to the proportional abundance andactivity of N2-fixing blue-green algae. Production was uncorrelated withthe seasonal radiation cycle. 3. In vivo fluorescence and photosynthetic assays revealed largechanges in phytoplankton community structure over time and depth.The shifts in vertical structure were associated with changes in transparency and water column stabilily.Physiological as well as floristiceffects dictated the variations in fluorescence per unit chlorophyll a. 4. An analysis of twenty-seven primary productivity data sets fromdifferent latitudes shtiwed that Bahia dc Puno resembled other tropicallakes in its relatively weak coupling between algal photosynthesis andseasonal variations in light. Productivity in the temperate zone correlated with the annual cycle of incoming radiation while the tropicalproduction data did not. For many of the tropical lakes, but fewtemperate lakes, the between-month variance in primary production wassignificantly higher than the between-month variance for incomingradiation. There was a significant positive relationship between maximum production variance explained hy light (maximum r2 for each dataset) and latitude. 5. As in many tropical lakes. Bahia de Puno experiences moderatelylarge variations in algal photosynthesis.The muted seasonal cycle of light explains only a small portion of the total variation In productivity, and other factors such as weuther-related events are disproportionately important.  相似文献   

2.
A. K. Rai 《Limnology》2000,1(1):33-46
Limnological characteristics were studied and analyzed in the subtropical Lakes Phewa, Begnas, and Rupa of Pokhara Valley, Nepal, from 1993 to 1997. The annual water temperature ranged from 12° to 29°C in all lakes. Lake Phewa and Lake Begnas were monomictic and anoxic in the hypolimnion during thermal stratification from April to September. Dissolved oxygen was drastically depleted in April and/or May in shallow Lake Rupa when the macrophyte community began to decompose. NH4 +-N accumulated below 5 m during March–September when dissolved oxygen was depleted in Lakes Phewa and Begnas. The PC : PP ratio was higher, but the PC : PN and PN : PP ratios were close to the Redfield ratio (106C : 16N : 1P) in Lakes Phewa and Begnas, denoting that P was limited. Annual net primary production showed that the lakes were productive but will tend to become heterotrophic in the future. The seasonal variation of chlorophyll a concentration was high, but its annual variation was low. Ceratium hirundinella and Peridinium spp. in Lake Phewa, Microcystis aeruginosa and Aulacoseira granulata in Lake Begnas, and Tabellaria fenestra in Lake Rupa were the dominant species. The zooplankton population and species varied irregularly. On the basis of chlorophyll a concentration in the euphotic zone and phytoplankton species composition, the lakes seem to be oligoeutrophic and to have some characteristics of temperate lakes rather than tropical lakes. Received: April 26, 1999 / Accepted: September 20, 1999  相似文献   

3.
Published data and analyses from temperate and tropical aquatic systems are used to summarize knowledge about the potential impact of land-use alteration on the nitrogen biogeochemistry of tropical aquatic ecosystems, identify important patterns and recommend key needs for research. The tropical N-cycle is traced from pre-disturbance conditions through the phases of disturbance, highlighting major differences between tropical and temperate systems that might influence development strategies in the tropics. Analyses suggest that tropical freshwaters are more frequently N-limited than temperate zones, while tropical marine systems may show more frequent P limitation. These analyses indicate that disturbances to pristine tropical lands will lead to greatly increased primary production in freshwaters and large changes in tropical freshwater communities. Increased freshwater nutrient flux will also lead to an expansion of the high production, N- and light-limited zones around river deltas, a switch from P- to N-limitation in calcareous marine systems, with large changes in the community composition of fragile mangrove and reef systems. Key information gaps are highlighted, including data on mechanisms of nutrient transport and atmospheric deposition in the tropics, nutrient and material retention capacities of tropical impoundments, and N/P coupling and stoichiometric impacts of nutrient supplies on tropical aquatic communities. The current base of biogeochemical data suggests that alterations in the N-cycle will have greater impacts on tropical aquatic ecosystems than those already observed in the temperate zone.  相似文献   

4.
J. Kalff  Watson 《Hydrobiologia》1986,138(1):161-176
Temporal patterns of phytoplankton biomass and community structure are described for two Kenyan lakes and subsequently compared with patterns reported in other tropical and temperate lakes. Lake Naivasha had a lower and more seasonally variable (10×) biomass, with a seasonal shift between diatoms and blue-greens, while the L. Oloidien biomass was less variable (3.7×) and dominated by blue-greens. Biomass and chlorophyll a were strongly correlated and in turn were coupled to the level of total phosphorus. A total of 143 and 94 taxa were described for L. Naivasha and L. Oloidien, respectively.The comparative analysis showed: a) a paucity of exclusively tropical species; b) that more than 30 percent of the species in two highly saline Kenyan lakes were also present in the two freshwater lakes; c) no evidence for a postulated decline of phytoplankton species abundance with latitude from the temperate zone to the tropics; d) that the low fraction of chrysophyte biomass in tropical lakes is a function of trophy rather than of latitude; e) that the fraction of chlorophyte biomass in tropical lakes is generally higher than in temperate lakes; f) that the proportion of nannoplankton in the two Kenyan freshwater lakes is not different from that in temperate lakes of the same trophy; g) that seasonal or annual biomass oscillations in the tropics are not systematically lower than in the temperate zone; h) evidence for large inter-year difference in the max.:min. biomass ratio in the only tropical lake (L. Naivasha) for which such data are available; i) that an average biomass ratio appears predictable for tropical lakes from the proportion of the sediment surface in contact with epilimnetic water. Overall, no evidence was found that the freshwater tropical phytoplankton composition or dynamics differ in any fundamental fashion from that observed in the temperate lakes during the summer.Contribution number 147 of the Limnology Research Centre, McGill University.  相似文献   

5.
Reproductive patterns vary widely among species and populations of squamates. In general, patterns can be divided into cyclic and acyclic. Cyclic patterns are common in tropical and temperate species of seasonal environments, while acyclic ones are characteristic of tropical species that inhabit less variable environments. We studied the reproductive cycle of Sceloporus jalapae, one of the smallest species of Sceloporus, in an arid environment at Zapotitlán Salinas, Puebla, Mexico. Both sexes mature in the first year following hatching and exhibit a seasonal reproductive pattern with maximum activity in spring and summer that appears to be influenced by temperature. Unlike small species of Sceloporus that inhabit pine–oak and tropical forests, S. jalapae exhibits an extended period of reproductive activity that allows females to produce at least two clutches of 3–7 eggs each, and contrary to other species of Sceloporus, in this species there is no correlation between female length and clutch size. The reproductive pattern of S. jalapae is like that shown by other oviparous species of the genus; nevertheless, some life history traits of this species are shared with oviparous and viviparous species of small size.  相似文献   

6.
Seasonality in Southern Hemisphere freshwater phytoplankton assemblages   总被引:3,自引:3,他引:0  
P. J. Ashton 《Hydrobiologia》1985,125(1):179-190
Seasonal climatic cycles induce corresponding fluctuations in phytoplankton abundance and productivity at all latitudes, the magnitude of these fluctuations tending to increase with distance from the Equator. In equatorial regions seasonality is dependent on prevailing wind and rainfall patterns while annual temperature fluctuations exert increasing control over seasonal events at higher latitudes. The small annual temperature range of equatorial aquatic systems increases their sensitivity to localized climatic events which can bring about diel changes that exceed normal month-to-month variations. Long-term hydrological cycles with a periodicity greater than one year can also cause dramatic changes in equatorial and tropical aquatic systems leading to greater unpredictability.The factors regulating seasonal patterns of phytoplankton abundance and species composition in equatorial and low-latitude temperate regions of the Southern Hemisphere are examined and compared with similar features in the Northern Hemisphere. Despite the striking diversity of phytoplankton populations and the wide variety of habitats they occupy, seasonal succession follows a common sequence controlled, successively, by physical, chemical and biotic factors. This permits a high degree of predictability in the environmental conditions promoting growth of different taxa.Examination of Southern Hemisphere data indicates that, at class level, phytoplankton successional sequences in Southern Hemisphere aquatic systems are in agreement with the successional paradigm formulated for northern tropical and temperate latitudes. Diatoms characterize early successional episodes and these are followed by chlorophytes, and finally blue-green algae. Extreme habitat modification (e.g. hypertrophy, salinity) tends to lead to dominance of the habitat by a single taxon, often represented by a single species. Predictions of within-taxon species succession in phytoplankton assemblages are far less precise.  相似文献   

7.
The ability of virgin Drosophila melanogaster adults to retain eggs is thought to be an adaptation to persisting in temperate areas, based on differences in this trait between European and African populations, and based on seasonal changes in this trait in France. By retaining eggs in the absence of males and under conditions of poorer nutrition (conditions common in temperate areas during colder months), females reduce the wastage of resources and increase their probability of surviving spring into summer, enabling them to initiate summer population expansions. To test for variation in virgin egg retention along a climatic gradient, we characterized clinal variation in strains collected from eastern Australia extending from temperate Tasmania to tropical northern Queensland. Despite testing a large number of strains and repeated testing of the cline ends, we did not detect any evidence for clinal variation in virgin egg retention. Therefore although D. melanogaster in temperate Australia overwinter at the adult stage, there is no evidence for selection on virgin retention capacity producing clinal patterns. This contrasts with other evidence for clinal variation in egg production patterns over winter.  相似文献   

8.
Many ruminant species show seasonal patterns of reproduction. Causes for this are widely debated, and include adaptations to seasonal availability of resources (with cues either from body condition in more tropical, or from photoperiodism in higher latitude habitats) and/or defence strategies against predators. Conclusions so far are limited to datasets with less than 30 species. Here, we use a dataset on 110 wild ruminant species kept in captivity in temperate‐zone zoos to describe their reproductive patterns quantitatively [determining the birth peak breadth (BPB) as the number of days in which 80% of all births occur]; then we link this pattern to various biological characteristics [latitude of origin, mother‐young‐relationship (hider/follower), proportion of grass in the natural diet (grazer/browser), sexual size dimorphism/mating system], and compare it with reports for free‐ranging animals. When comparing taxonomic subgroups, variance in BPB is highly correlated to the minimum, but not the maximum BPB, suggesting that a high BPB (i.e. an aseasonal reproductive pattern) is the plesiomorphic character in ruminants. Globally, latitude of natural origin is highly correlated to the BPB observed in captivity, supporting an overruling impact of photoperiodism on ruminant reproduction. Feeding type has no additional influence; the hider/follower dichotomy, associated with the anti‐predator strategy of ‘swamping’, has additional influence in the subset of African species only. Sexual size dimorphism and mating system are marginally associated with the BPB, potentially indicating a facilitation of polygamy under seasonal conditions. The difference in the calculated Julian date of conception between captive populations and that reported for free‐ranging ones corresponds to the one expected if absolute day length was the main trigger in highly seasonal species: calculated day length at the time of conception between free‐ranging and captive populations followed a y = x relationship. Only 11 species (all originating from lower latitudes) were considered to change their reproductive pattern distinctively between the wild and captivity, with 10 becoming less seasonal (but not aseasonal) in human care, indicating that seasonality observed in the wild was partly resource‐associated. Only one species (Antidorcas marsupialis) became more seasonal in captivity, presumably because resource availability in the wild overrules the innate photoperiodic response. Reproductive seasonality explains additional variance in the body mass–gestation period relationship, with more seasonal species having shorter gestation periods for their body size. We conclude that photoperiodism, and in particular absolute day length, are genetically fixed triggers for reproduction that may be malleable to some extent by body condition, and that plasticity in gestation length is an important facilitator that may partly explain the success of ruminant radiation to high latitudes. Evidence for an anti‐predator strategy involving seasonal reproduction is limited to African species. Reproductive seasonality following rainfall patterns may not be an adaptation to give birth in periods of high resource availability but an adaptation to allow conception only at times of good body condition.  相似文献   

9.
10.
Traditionally, compared with the tropics, temperate systems are believed to: (i) have environments which are less favourable (i.e. harsher, more variable and less predictable); and (ii) support communities which are less diverse. Explanations for differences between temperate and tropical communities, including differences in diversity, generally rely on the former notion. The evidence for these ideas is, at best, equivocal. Organisms are subjected to physical stresses and disturbances on both temperate and tropical reefs. Communities on temperate reefs are not invariably less diverse than those in the tropics, at least at small spatial scales. Finally, there is as yet little evidence of genuine differences between the ecology of temperate and tropical communities. There is, however, much small-scale, spatial patchiness in the structure of reef communities and their physical environment. This patchiness in structure may result from patchiness in biological factors (e.g. recruitment) or in the physical environment. This small-scale variation in environmental factors may prove to be a more important determinant of community structure than the large-scale, latitudinal trends some ecologists have been obsessed with.  相似文献   

11.
The life history and seasonal variation in egg production of Daphnia carinata King, with reference to the seasonal variation in physico-chemical as well as biological factors of a tropical temporary pond, were studied. Laboratory observations on the life history of D. carinata were also made. The seasonal events of D. carinata are discussed in relation to recent studies on Cladocerans.  相似文献   

12.
Limnological survey of Lake Amvrakia, western Greece   总被引:1,自引:1,他引:0  
Limnological characteristics of lake Amvrakia, a deep warm monomictic and sulphate lake in western Greece, are presented. A set of physical and chemical variables were monitored for one year cycle (October 1988–September 1989). Phytoplankton community structure and biomass are given for the entire depth of the water column. The trophic status of the lake is compared to that of other temperate and tropical lakes.  相似文献   

13.
Shallowness and tropicality primarily relate to physical aspects of environmental regulation. These concern water input and output, with correlates associated with water level and salinity; energy balance and heat distribution, with correlates of temperature and density stratification; and largely wind-driven water movements, with consequences in chemical and biological distributions. Shallowness in a water-column affects the quantitative relationship between many stock quantities and flux rates per unit surface area. Evaporative loss of water is one familiar example; sensitivity to surface energy exchanges provides others. Somewhat different are processes that depend upon transmission with depth. Here light penetration, convective penetration and wind-generated turbulence with flow-depth relations are illustrative. Tropicality further influences by climatic factors, especially of solar radiation and rainfall. Energy balance tends to yield year-long elevated water temperature at all depths, but at a level dependent upon altitude. The magnitude and seasonal periodicity of water input is widely dependent upon the inter-tropical convergence zone in atmospheric circulation. Over the arid and semi-arid tropics, the lakes may lie in closed drainage basins and be influenced by evaporative concentration with salinization. Shallow lakes of tropical Africa are used to illustrate these varied environmental constraints and some of their biological consequences.  相似文献   

14.
三峡大老岭植物区系的垂直梯度分析   总被引:13,自引:0,他引:13  
为探讨山地植物区系构成特征及其垂直梯度的生态意义,根据对三峡大老岭地区植被垂直样带 调查获得的植物区系资料,分析了该地区植物区系成分构成的基本特征及其随海拔梯度的变化趋势,寻找了区系平衡点的位置;并利用聚类方法分析了山地气候垂直分异对区系成分构成的影响。结果表明:①大老岭植物区系具有温带性质,但仍反映了与热带区系的历史联系,有强烈的区域性;②属的分布区类型可归为热带分布、温带分布、地中海—中亚中心和东亚中心4组,各组区系成分的垂直梯度特征不同;热带、亚热带成分与温带成分的平衡点大致位于海拔650m;③区系成分构成和属的物种数量构成的聚类分析结果一致显示了植物区系构成与山地气候和植被垂直带相对应的格局。  相似文献   

15.
Summary I assayed phenolic and tannin concentrations in a number of species of temperate and tropical brown algae of the genera Sargassum and Turbinaria. Tropical species in both genera contained consistently low levels of phenolics and tannins (species means ranged between 0 and 1.6% [measured as % dry weight of the thallus]). Levels of phenolics in temperate species of Sargassum were variable and consistently much higher than in tropical species (species means ranged between 3 and 12% by dry weight). This pattern of latitudinal variation in phenolic levels in Sargassum conflicts with previous predictions for latitudinal variation in the chemical defenses of marine organisms. The low levels of phenolics present in the tropical species that I analyzed may also explain recent results (Hay 1984; Lewis 1985) demonstrating that tropical Sargassum and Turbinaria are often preferentially consumed by herbivorous fishes and echinoids.  相似文献   

16.
Ecological resources and services (e.g. organisms, nutrient cycling) are distributed heterogeneously across landscapes. While spatial variation has been studied extensively, the pattern of hotspots and coolspots persisting over time – called persistent spatial variation (PSV) – has not. Yet this pattern imparts key information to managers about whether resources will be found consistently in certain locations or vary unpredictably. Anticipating whether an ecosystem variable will display PSV is thus a valuable prospect. We tested the ability of attributes of variables (e.g. niche breadth, abundance, temporal scale) to predict the occurrence of PSV. Using a new measure of PSV based on the F‐value of analysis of variance, we were able to 1) decompose the pattern of persistent hotspots into spatial and temporal components – ‘spatial variation’ of site mean values and ‘stability’ of time series at each site – and 2) identify predictors of these patterns in temperate lakes and tropical coastal rock pools. We found PSV to be highly predictable (R2 = up to 0.80) from an estimate of stability taken at a single site, as well as from other factors related to stability. These factors included whether the variable was environmental (stable, slow) or was an aggregate of other variables (stabilized by statistical averaging). Species properties like niche position and abundance were modest predictors because they correlated with PSV components of site occupancy, spatial variation and stability. We conclude that PSV and the distribution of resources in space and time might be predicted from simple temporal indicators (e.g. stability at a single location) when data are scarce.  相似文献   

17.
A new scheme of altitudinal and latitudinal vegetation zonation is proposed for eastern Asia. The latitudinal patterns of mountain vegetation zonation show a clear boundary at ca. 20°–30° N. For the tropical mountains south of 20° N, the altitudinal series includes tropical lowland, tropical lower montane, and tropical upper montane zones. For the temperate mountains north of 30° N, the series includes temperate lowland, temperate lower montane, and temperate upper montane zones. The mountains located between 20° and 30° N show a transitional zonation pattern; the lower two zones are comparable to the lower two of the tropical zonation (tropical lowland and tropical lower montane), and the upper two zones are comparable to those of the temperate zonation (temperate lower montane and temperate upper montane). The tropical upper montane zone is not found north of 20°–30° N, while the tropical lower montane zone reaches down to sea level and constitutes the temperate lowland zone. Thus the zonation between 20° and 30° N includes tropical lowland, tropical lower montane/temperate lowland, temperate lower montane, and temperate upper montane zones. The latitudinal series of lowland rain forests follows the scheme of climatic division into tropical, subtropical/warm-temperate, cool-temperate and cold-temperate, with a shift of the respective life forms, evergreen, evergreen notophyllous, deciduous, and evergreen needle-leaved. The tropical lower montane forest can be correlated to the horizontal subtropical/ warm-temperate zone. The temperate altitudinal and latitudinal zonations above 30° N are correlated and show an inclined parallel pattern from high altitudes in the south to low altitudes down to sea level in the north.  相似文献   

18.
Latitudinal patterns of diversity are one of the most striking large-scale biological phenomena and several hypotheses have been proposed to explain them. Using data from literature-surveys we investigated how phylogenetic patterns in microorganisms, plants, and, metazoans communities differ between the tropical and temperate regions and then explored possible ecological and evolutionary process that could shape such patterns. Using the Net Relatedness Index, we analyzed data from 1486 biological communities, collected in 32 articles that considered the phylogenetic structure of biological communities. We found a pattern of phylogenetic clustering in both regions for microorganisms, while for plants we found phylogenetic clustering in temperate regions and phylogenetic overdispersion in the tropics. We did not detect a clear pattern of clustering or overdispersion in tropical or temperate regions in metazoans. From these patterns we explore different ecological and evolutionary processes that have shaped these communities over space and time.  相似文献   

19.
Phytoplankton succession in Lake Valencia,Venezuela   总被引:4,自引:4,他引:0  
Phytoplankton counts and supporting physical and chemical data were taken on Lake Valencia, Venezuela, over a five-year interval. The data are used to test the validity of a successional paradigm for class-level taxa. According to the paradigm, formulated from previous studies of Lake Lanao, Philippines, and from data on temperate lakes, the order of taxa from early to late succession is: diatoms, chlorophytes, blue-green algae, dinoflagellates. A successional episode is considered to begin when stability of a water column is restored after deep mixing. As the episode progresses, there is a steady decrease in concentration of the limiting macronutrient (in this case, N). In a test of the validity of the paradigm for Lake Valencia, dates of exceptional population increase or decrease were obtained for each taxon. Since nitrate concentration declines steadily as succession progresses, the entry of a given taxon into the successional sequence is indicated quantitatively by the mean nitrate concentration on dates of exceptional increase in population density, and exit from the successional sequence is indicated by mean nitrate concentration on dates of exceptional population declines. The successional position of each major taxon, bounded by its entry and exit in the sequence, can be mapped on the complete spectrum of nitrate concentrations observed in the lake. For Lake Valencia, the nitrate mapping procedure agrees exactly with the predictions based on the successional paradigm. Conformance of Lake Valencia phytoplankton with predictions made a priori suggests that there is a generalized pattern in the phytoplankton succession of the mixed layers of temperate and tropical lakes.  相似文献   

20.
Summary The tropical marine cyanobacteriumLyngbya majuscula produces a series of cytotoxic and antimicrobial cyclic peptides. The total structure of the two major components, laxaphycins A and B, was determined by interpretation of physical data, principally high field NMR, FAB MS and MS/MS, in combination with chemical derivatization and degradation schemes. Absolute stereochemistries of the natural and ‘exotic’ amino acids were determined. The two cyclic peptides exhibited an unusual biological synergism when tested for antifungal or cytotoxic effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号