首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Roman  Charles T.  Barrett  Nels E.  Portnoy  John W. 《Hydrobiologia》2001,443(1-3):31-42
The species composition and relative abundance of aquatic macrophytes was evaluated in five Cape Cod, Massachusetts, freshwater kettle ponds, representing a range of trophic conditions from oligotrophic to eutrophic. At each pond, aquatic vegetation and environmental variables (slope, water depth, sediment bulk density, sediment grain size, sediment organic content and porewater inorganic nutrients) were measured along five transects extending perpendicular to the shoreline from the upland border into the pond. Based on a variety of multivariate methods, including Detrended Correspondence Analysis (DCA), an indirect gradient analysis technique, and Canonical Correspondence Analysis (CCA), a direct gradient approach, it was determined that the eutrophic Herring Pond was dominated by floating aquatic vegetation (Brasenia schreberi, Nymphoides cordata, Nymphaea odorata), and the algal stonewort, Nitella. Partial CCA suggested that high porewater PO4-P concentrations and fine-grained sediments strongly influenced the vegetation of this eutrophic pond. In contrast, vegetation of the oligotrophic Duck Pond was sparse, contained no floating aquatics, and was dominated by emergent plants. Low porewater nutrients, low sediment organic content, high water clarity and low pH (4.8) best defined the environmental characteristics of this oligotrophic pond. Gull Pond, with inorganic nitrogen-enriched sediments, also exhibited a flora quite different from the oligotrophic Duck Pond. The species composition and relative abundance of aquatic macrophytes provide good indicators of the trophic status of freshwater ponds and should be incorporated into long-term monitoring programs aimed at detecting responses to anthropogenically-derived nutrient loading.  相似文献   

2.
Floristic differentiation and vegetation definition is an important step to recognize biome distribution and for biodiversity conservation. Here, we aim to verify if the distribution of the costal lowland vegetation in Brazilian littoral is congruent with climatic gradient and the previous vegetation definitions. Additionally we discussed the importance of terms for the Atlantic Forest conservation. Our study was based on floristic and geo-climatic data from 58 published surveys. We generate a checklist of 1088 woody species and verified species distribution according to environmental gradient using a Detrended Correspondence Analysis (DCA). We compared DCA??s groups with the a priori vegetation definition and generate an a posteriori classification using TWINSPAN. DCA and TWINSPAN resulted in groups determined mainly by rainfall (r = ?0.65) and soil sandiness (r = ?0.71). Those groups were not congruent with both the previous vegetation definitions. The coastal lowland vegetation comprises two distinctive floristic groups representing forests and scrubs that occur in wetter climates (Ombrophilous lowland forests) in the Brazilian states of Santa Catarina, Paraná and São Paulo and in drier climates of Espírito Santo, Rio de Janeiro (Restinga-Northern group) and Rio Grande do Sul (Restinga-Southern group) states. The floristic and historical relationships between Ombrophylous lowland forests and Restingas suggest that conservation initiatives should be more conservative and treat collectively all coastal lowland vegetation as a biodiversity hotspot.  相似文献   

3.
The relationship between vegetation and environmental variables has been studied in 100 sample plots, each 0.25 m2, in old-growth spruce forest at Høgkollen, ØOstmarka Nature Reserve, SE Norway. Each sample plot was supplied with measurements of 13 environmental and 5 biotic variables. Parallel application of three ordination techniques, PCA, DCA and LNMDS, resulted in different sample plot configurations. PCA performed poorest due to strong influence of outliers and circumstantial evidence indicated better performance of LNMDS than DCA. Statistical analyses of the relationships between vegetation and ecological data revealed a parallel gradient in soil moisture (decreasing) and canopy closure (increasing) as the most important for differentiation of the vegetation. Species number and field layer cover decreased, while bottom layer cover increased, due to increasing cover of Dicranum majus , with decreasing soil moisture and increasing canopy closure. Constrained canonical correspondence analysis (CCA) was used to partition the variation of the species-sample plot matrix into spatial, environmental and unexplained variation, and combinations. The fraction of unexplained variation was high (80.9 %), most likely due to small sample plot size and short gradient lengths. Most of the explained variation was attributable to environmental factors alone (54.5%). Only 6.3% was shared between environmental and spatial variation, which indicated minor importance of broad-scale and geographically structured environmental variation. Strictly spatial variation constituted 39.3%. However, the spatially structured environmental variation was low, so the causes of spatial variation were likely not to be found among the measured environmental variables.  相似文献   

4.
Tertiary‐relict Hyrcanian (Caspian) forest along the shores of the southern Caspian Sea is a center of biodiversity. Still, there is little information on plant diversity patterns in this area. This study evaluated plant diversity, variation in life forms, and geographical distribution of the zonal vegetation types and their relationships with environmental variables, in the educational and experimental forest of Kheyrudkenar, an important protected area in the central Hyrcanian forest of northern Iran. For this purpose, 226 vegetation plots of 400 m2 were laid out along two altitudinal transects from the lowlands (100 m a.s.l.) to the timberline (2000 m a.s.l.). Four vegetation types were identified using modified TWINSPAN, indirect and direct gradient analyses. Species‐related (species diversity indices, life form and phytogeographical elements) and environmental variables (climate, topographic and soil variables) were calculated and subjected to one‐way ANOVA among the vegetation types. Both constrained (CCA) and unconstrained (DCA) ordination analyses showed an almost identical variation of the floristic composition along their axes and demonstrated that there are two main gradients in the Hyrcanian forest. Elevation together with annual precipitation and mean annual temperature were the most important factors controlling the floristic composition in the area. Topographic features such as slope inclination and heat index were found to be important within an elevation zone/vegetation type. Soil physical and chemical properties were of secondary importance for the separation of the vegetation types. This knowledge will be useful for forest management and conservation practices in the Hyrcanian area with its distinct and unique flora and vegetation.  相似文献   

5.
J.-T. Zhang 《Plant Ecology》1994,115(2):115-121
This paper examines one possible way of Fuzzy Set Ordination by using multi-environmental variables. FSO's function is improved through combination with Detrended Correspondence Analysis which is used to summarize environmental information. It can be used to analyse the relationships between vegetation and environment no matter how many environmental variables are involved. An example with vegetation and environmental data collected from upland grasslands in Northern Snowdonia, Wales, is presented. Its results are consistent with that of CCA and DCCA.Abbreviations FSO Fuzzy set ordination - DCA Detrended correspondence analysis - CCA Canonical correspondence analysis - DCCA Detrended canonical correspondence analysis  相似文献   

6.
The aims of this study were to explore the environmental factors that determine the distribution of plant communities in temporary rock pools and provide a quantitative analysis of vegetation–environment relationships for five study sites on the island of Gavdos, southwest of Crete, Greece. Data from 99 rock pools were collected and analysed using Two-Way Indicator Species Analysis (TWINSPAN), Detrended Correspondence Analysis (DCA) and Canonical Correspondence Analysis (CCA) to identify the principal communities and environmental gradients that are linked to community distribution. A total of 46 species belonging to 21 families were recorded within the study area. The dominant families were Labiatae, Gramineae and Compositae while therophytes and chamaephytes were the most frequent life forms. The samples were classified into six community types using TWINSPAN, which were also corroborated by CCA analysis. The principal gradients for vegetation distribution, identified by CCA, were associated with water storage and water retention ability, as expressed by pool perimeter and water depth. Generalised Additive Models (GAMs) were employed to identify responses of four dominant rock pool species to water depth. The resulting species response curves showed niche differentiation in the cases of Callitriche pulchra and Tillaea vaillantii and revealed competition between Zannichellia pedunculata and Chara vulgaris. The use of classification in combination with ordination techniques resulted in a good discrimination between plant communities. Generalised Additive Models are a powerful tool in investigating species response curves to environmental gradients. The methodology adopted can be employed for improving baseline information on plant community ecology and distribution in Mediterranean ephemeral pools. Handling editor: S. M. Thomaz  相似文献   

7.
Phytogenic sandy hillocks (Arab. ‘nabkha’) are very frequently occurring aeolian deposits along the coastal plain of Kuwait. We investigated the vegetation of 42 nabkhas in a coastal habitat of Jal Az-Zor National Park, Kuwait. Sixty-two species were recorded (47 annuals and 15 perennials) in the studied nabkhas. Four vegetation types were recognized after classifying the vegetation of the nabkhas by TWINSPAN. They were named after their dominating host species which are Nitraria retusa, Zygophyllum qatarense, Haloxylon salicornicum and Panicum turgidum. Using Detrended Correspondence Analysis (DCA) and Canonical Correspondence Analysis (CCA), we assessed the relationships between environmental gradients, floristic composition, species diversity, and geomorphology aspects of the studied habitats. Notable environmental variables affecting the distribution of the vegetation types in the study area were: geomorphological aspect, size of plants forming the core of the nabkha, moisture and nutrients contents, salinity, sand and silt components, and pH.  相似文献   

8.
Phytosociological attributes of plant species and associated environmental factors were measured in order to identify the environmental gradients of major plant communities in the Naran Valley, Himalayas. The valley occupies a distinctive geographical setting on the edge of the Western Himalaya near the Hindukush range and supports a high biodiversity; pastoralism is the main land use. There have been no previous quantitative ecological studies in this region. This study was undertaken to (i) analyze and describe vegetation using classification and ordination techniques, (ii) identify environmental gradients responsible for plant community distributions and (iii) assess the anthropogenic pressures on the vegetation and identify priorities for conservation. Phytosociological characteristics of species were measured alongside environmental variables. A total of 198 species from 68 families were quantified at 144 stations along 24 transects across an elevation range of 2450–4100 m. Correspondence Analysis techniques i.e., Detrended Correspondence Analysis (DCA) and Canonical Correspondence Analysis (CCA) were used to determine vegetation–environment relationships. Results show vegetation changes with altitude from moist-cool temperate communities characterized by woody species, to more dry-cold subalpine and alpine herbaceous communities. Plant species diversity is optimal at middle altitudes (2800–3400 m); at lower altitudes (2400–2800 m) it is reduced by anthropogenic impacts and at higher altitudes (3400–4100 m) by shallow soils and high summer grazing pressure. A large number of plant species of conservation concern were identified in the study and an assessment made of the main threats to their survival.  相似文献   

9.
《Biologia》2011,66(5):886-892
The longitudinal distribution patterns of fish species are affected by both natural and anthropogenic variables. The role of these factors on the formation of species assemblages is well documented in North America and Western Europe, but detailed information is lacking from Central and Eastern Europe, and the Carpathian region especially. Therefore, we examined the structure of fish assemblages in response to six key environmental parameters in a natural stream system (Udava stream basin, Slovakia). We used the indirect ordination method of gradient analysis (Detrended Correspondence Analysis, DCA) to analyse the species groups and their connections to the sampled sites and to recognize the strongest gradient of assemblage composition. Subsequently, we used the direct ordination method (Canonical Correspondence Analysis, CCA) to identify the strongest gradients in relation to selected variables. Two major gradients were identified that follow the upstream-downstream pattern of fish communities and three variables (distance from source, depth and site slope) are correlated with the first CCA axis (P < 0.05) and two variables (depth and vegetation cover) are correlated with the second CCA axis (P < 0.05). We assume that these factors influence the temperature and the amount of dissolved oxygen that can cause oxygen and temperature stress to intolerant species (e.g., salmonids). Based on these results, we assume that the economically important species, brown trout and grayling, are not native to the stream basin and this status is only the consequence of natural factors. Furthermore, the results suggest that the Udava stream offers favourable conditions for fish species distribution — a view supported by the high variability of particular variables within the proposed model.  相似文献   

10.
Abstract. The relationship between vegetation and environment was investigated for calcareous grasslands in a region in the west of Spain, France, Britain and Ireland defined by climatic criteria. Vegetation was sampled using objective methods and data collected on soils, land cover, location and management. Climate data were obtained from an available database. Examination of the first axis of vegetation variation as defined by Detrended Correspondence Analysis (DCA) showed a gradient from the Irish and British samples to those from France. The Spanish samples formed a separate group on the second axis. The species composition along the gradients is discussed. Correlations between the vegetation gradients and environmental variables were determined. The strongest correlations with the first DCA axis were for temperature, latitude, soil organic matter, grazing and land cover. The second DCA axis was highly correlated with rainfall, altitude and land cover. The third and fourth DCA axes were more difficult to interpret but appeared to be related to land cover. The results indicate that climate factors are important at this scale, but should not be considered in isolation and that factors relating to land cover and management should also be taken into account.  相似文献   

11.
Question: Which environmental variables affect the floristic composition of south Patagonian bog vegetation along a gradient of climate and biogeochemical changes with increasing distance from the Pacific ocean? Location: Trans‐Andean transect (53° S), southern Patagonia Material and Methods: Floristic composition, peat characteristics (water level, decomposition, pH, total nitrogen, total carbon, ash content and plant available P, K, Na, Ca, Mg, Fe, Mn, Zn, and Al) and climatic constraints of ombrotrophic peat‐lands were measured at 82 plots along a gradient of increasing distance from the Pacific Ocean. Results: Climatic constraints and biogeochemical peat characteristics significantly change with increasing distance from the Pacific. Peatland vegetation shifted from hyperoceanic blanket bogs dominated by cushion forming vascular plants to the west to Sphagnum bogs to the east. Climatic and biogeochemical variables explained a large proportion of the floristic variation along the first DCA axis. The second axis represented a water level gradient. When ‘distance to the Pacific’ was defined as a covariable in partial CCA, the proportion of variance explained declined for most other variables, especially in the case of annual precipitation and exchangeable base cations and related traits. The differences in biogeochemical characteristics related to peat were mainly attributed to the input of sea‐borne cations. Conclusions: While variation in vegetation composition along a longitudinal gradient crossing the southern Andes was attributed to climatic constraints as expected, vegetation composition was also strongly affected by the biogeochemical characteristics of peat. Sea spray was of high ecological importance to peat chemistry and, consequently, to floristic composition. Presumably, south Patagonian peat bogs represent a glimpse of pre‐industrial environments, so that these peat bogs may act as reference systems with respect to atmospheric inputs in mire ecology research.  相似文献   

12.
The present study compares the vegetation characteristics of two large forested and one large non-forested solution dolines in Hungary. We investigated the species composition and vegetation pattern along north to south transects (across the doline bottoms) and compared the richness of different species groups (dry and wet groups) on the doline slopes. We applied linear regression models for each slope to explore the effects of topography on species richness, and Detrended Correspondence Analysis (DCA) to detect the major gradients of floristic variation within each site. We found that the vegetation changed significantly along all transects; and, regardless of the vegetation cover, the doline bottoms contained several cool-adapted species. Variations within the two species groups were more pronounced on the south-facing slopes. The changes were similar in the forested dolines, indicating the role of forest cover in maintaining many cool-adapted species on the north-facing slopes as well. However, the number of cool-adapted species increased significantly along both slopes of the non-forested doline from the upper edge to the bottom. Contrary to our expectations, the species turnover along the slopes of the non-forested doline was lower than that along the slopes of the forested ones. We conclude that both the forested and non-forested dolines serve as refuges for many plant species adapted to different environmental conditions. Apart from providing an understanding of population patterns along environmental gradients, our results may also contribute to our understanding of an even more fundamental question for a future research agenda: the probable effects of climate change on vegetation characteristics in climatic islands with environmental conditions substantially different from the surrounding areas.  相似文献   

13.
Correspondence analysis of functional groups in a riparian landscape   总被引:1,自引:0,他引:1  
Lyon  Jonathan  Sagers  Cynthia L. 《Plant Ecology》2003,164(2):171-183
We used multivariate analysis and ordinations to characterize thecomposition and distribution of woody vegetation within the Ozark NationalScenic Riverways (ONSR), Missouri, USA. The objectives of the study were to: 1)evaluate patterns of woody species distributions along existing environmentalgradients; 2) determine if different classes of woody plants (i.e., dominantoverstory trees, all trees, understory trees, and shrubs) responded similarlytothe same suite of environmental variables; and 3) determine if discreteecotonaland/or ecoclinal vegetation patterns were present across the landscape. Woodyvegetation was sampled from 94 plots along 35 transects positioned at rightangles to the river channel. Sample plots were analyzed with DetrendedCorrespondence Analysis (DCA), Canonical Correspondence Analysis (CCA), andTWINSPAN. Overall, woody vegetation was correlated with several environmentalgradients, including elevation of the plot above the river, soil pH, soilmoisture, and soil particle size. Responses to secondary gradients differedamong the four classes of plants analyzed, however. CCA biplots of understorytrees indicated that patterns of those species were strongly correlated withslope through the plot and sand content of soil. CCA biplots of shrubs showedthat CCA axes were most strongly correlated with soil organic matter content,soil moisture, and silt content. Further, there was limited evidence fordiscrete assemblages of woody species, with the exception of streamsidevegetation. Instead, mixing of woody species was observed across a broadtransition zone. Because there is little correspondence between vegetationlayers, our results demonstrate including plant classes other than a subset ofcanopy dominant trees can provide additional resolution in characterizingvegetation responses along complex environmental gradients.  相似文献   

14.
Abstract. Four classes of functional and morphological plant traits – established strategies (the CSR scheme sensu Grime 1979), life‐forms (sensu Raunkiaer 1934), morphology, and regenerative strategies – are used as tools for explaining vegetation gradients at summer farms in the mountains of western Norway. These farms are assembly points for free‐ranging domestic grazers, and differ floristically and ecologically from the surrounding heath or woodland vegetation. DCA and TWINSPAN are used to relate major gradients in a floristic data set from 12 summer farms to two sets of explanatory variables: (1) environmental variables representing physical factors, plot position, soils, and land use, and (2) the 4 classification schemes. The main floristic gradient parallels a spatial gradient from the centres of the farms to the surrounding vegetation. A functional interpretation based on the concurrent use of the 2 sets of explanatory variables suggests that the gradient is one of decreasing disturbance and increasing environmental stress caused by decreasing grazing and manure effects away from farms. Partial CCA is used to investigate the relationships between the 4 functional/morphological plant trait classes. The 4 classification schemes are partially redundant, and do not represent different trends of specialization within the landscape. There is no strong evidence for decoupling of the traits of the vegetative and regenerative phases within the data. The combination of general process‐based theories and specific plant attribute responses enhances the generality and interpretability of the study.  相似文献   

15.
Aim of the research was the recognition of ecological species groups in beech forests south of the Caspian Sea (Northern Iran) and the determination of the main effective environmental factors explaining the distribution of plant ecological groups. Selective stratification sampling was used to locate samples. A total of 120 samples (400 m2 each) were selected in Fagetum communities within the study area. At each sample, a floristic list of the plot and an estimate of percent cover and abundance of all vascular plants were recorded in separate strata using the Braun-Blanquet scale. At the center of each vegetation plot, two soil samples were taken of 0–10 and 10–30 cm depth levels for physico-chemical analyses. Cluster analysis was used for the classification of vegetation samples and Multi-response Permutation Procedure (MRPP) was used to test the hypothesis of no difference between ecological groups in the species space. Indicator species analysis was used to identify indicator species for each group. A Tukey test was used to compare environmental variables among groups. Detrended Correspondence Analysis (DCA) was used to analyze the relationships between the ecological groups and environmental variables.  相似文献   

16.
The Alborz Mountains, the second largest range in Iran, is, on its southern slopes, mainly covered by steppe vegetation. These dry slopes also include ‘green islands’ of wetland. Floristic diversity and environmental characteristics of 45 of these little-studied wetland sites have been assessed along an altitudinal gradient using one-way ANOVA, Pearson r and detrended correspondence analysis/canonical correspondence analysis (DCA/CCA) analyses. The wetlands proved to be of conservation importance with 310 plant taxa, including 35 endemics or subendemics. Predictably, and consistent with the phytosociological classification of Klein [2001. La végétation altitudinale de L’Alborz Central (Iran): Entre les régions Irano-Touranienne et Euro-sibérienne. Institut Français de Recherche en Iran, Téhéran], there were parallel changes in vegetation both within wetlands and the surrounding steppes and in DCA/CCA analyses altitude appeared to be the primary determinant of floristic composition. Upper mountain wetlands are particularly species-rich and contain many endemics and other species of a narrow phytogeographical distribution. Soil pH declined with altitude, perhaps in part as a consequence of low salinity (and high pH) in the mountains. Consistent with the work of Raunkiaer [1934. The life forms of plants and statistical plant geography. Clarendon Press, Oxford], hemicryptophytes are mainly restricted to upper mountain areas. Though correlated both directly with altitude and with correlation in DCA/CCA plots, phytogeography, life-form and soil pH fail to adequately explain the ecological processes that maintain the altitudinal gradient in vegetation types and species composition. Further studies on site productivity, soil chemistry and climate-related variables are, therefore, on-going in an attempt to understand more fully the ecosystem processes maintaining the diversity of these important wetland sites.  相似文献   

17.
Abstract. Multivariate analysis was used to describe the composition and distribution of vegetation types on the slopes of the volcanoes Tláloc and Pelado, Mexico. These volcanoes are situated in the transitional zone between the Holarctic and Neotropical floristic regions, which offers a partial explanation for the relatively high α and β diversities. Previous research argued that human activities, i.e. burning and grazing, rather than abiotic factors, play a major role in determining the distribution and floristic composition of the vegetation. TWINSPAN, Detrended Correspondence Analysis and Canonical Correspondence Analysis were used to test this hypothesis. Floristic and environmental data from 138 relevés and seven explanatory environmental variables were included: elevation, soil depth, soil moisture, percentage litter cover, percentage cover of bare ground, burning and grazing were included in the analysis. Soil moisture and elevation accounted for ca. 63% of the residual inertia and none of the remaining explanatory variables proved to be correlated significantly with the first two axes. The present results suggest that burning and grazing operate on a finer scale. In conclusion, soil moisture and elevation are the most relevant variables to explain the distribution of the vegetation under study.  相似文献   

18.
Abstract. In a study of the relationships between vegetation and environment in North Snowdonian grasslands, 166 quadrats on 10 altitudinal transects were analysed with Detrended Correspondence Analysis, Detrended Canonical Correspondence Analysis and Fuzzy Set Ordination. These techniques provide consistent results. DCCA and FSO, both using floristic community data and environmental information, simplify the procedure of vegetation-environment analysis. FSO analyses and synthesizes ecological information; it may yield more reasonable and interpretable results.  相似文献   

19.
《农业工程》2020,40(5):398-411
Understanding how topography-soil-disturbance drives spatial distribution of vegetation is the interest of ecologists. This study was, conducted to investigate the topography-soil-disturbance and vegetation relationships in Abune Yosef mountain range, Ethiopia. A total of 85 nested sample plots measuring 400 m2, 25 m2 and 1 m2 were established for trees, shrubs and herbs respectively. Topographic, soil and disturbance variables were also assessed from each plot. Plant community classification was described and identified by agglomerative hierarchical clustering using Ward's minimum variance clustering methods. Shannon diversity index was employed to determine community diversity. After detecting the length of the first Detrended Correspondence Analysis (DCA) axis, Canonical Correspondence Analysis (CCA) forward and backward stepwise selection of environmental variables was performed based on their p-value by running permutation tests. The first axis explained 43.63% of the overall inertia and is correlated with Elevation, pH, slope aspect, total Nitrogen, soil organic Carbon & Clay. On the other hand, the second axis explained 32.06% of the total inertia and is correlated with bulk density, slope, logging, & available Phosphorus. The present study revealed that topographic variables have a profound influence on vegetation spatial distribution than soil and disturbance factors.  相似文献   

20.
Abstract. We present a gradient analysis of 620 vegetation samples covering most of the floristic and environmental variation in semi‐natural grassland vegetation on well‐drained soils in Denmark. Vegetation was sampled using frequency in subplots. Explanatory variables were surface inclination, aspect, pH, geographical co‐ordinates together with indications of soil type. Detrended Correspondence Analysis revealed four floristic gradients that could be interpreted in ecological terms by measured variables supplemented with site calibrations based on weighted averaging of Ellenberg's indicator values. All four axes were interpreted using rank correlation statistics, and linear and non‐linear multiple regression of sample scores on explanatory variables. The first gradient was from dry calcareous to humid acidic grasslands; the second reflected an underlying gradient in fertility; the third reflected regional differentiation and the fourth was associated with variation in intensity of competition as indicated by association with calibrated Grime‐CSR values for the plots. We applied subset ordination to the data as a supplement to traditional permutation and correlation statistics to assess the consistency of ordination results. DCA axes 1 and 2 were consistent in space and time. This gradient analysis is discussed in a context of plant strategy theory and species diversity models. Ecocline patterns lend support to the view that grazing not only favours the ruderal strategy but also the stress‐tolerant strategy. The low rank of competition as an explanatory variable for the floristical gradients supports the notion that competitive effects play a subordinate role for species composition compared to microclimate and soil conditions in infertile semi‐natural grasslands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号