首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Objective

Early life nutrition is critical for the development of hypothalamic neurons involved in energy homeostasis. We previously showed that intrauterine and early postnatal overnutrition programmed hypothalamic neurons expressing the appetite stimulator neuropeptide Y (NPY) and suppressor proopiomelanocortin (POMC) in offspring at weaning. However, the long-term effects of such programming and its interactions with post-weaning high-fat-diet (HFD) consumption are unclear.

Research Design and Methods

Female Sprague Dawley rats were exposed to chow or HFD for 5 weeks before mating, throughout gestation and lactation. On postnatal day 1, litters were adjusted to 3/litter to induce postnatal overnutrition (vs. 12 in control). At postnatal day 20, half of the rats from each maternal group were weaned onto chow or HFD for 15 weeks. Hypothalamic appetite regulators, and fuel (glucose and lipid) metabolic markers were measured.

Results

Offspring from obese dams gained more weight than those from lean dams independent of post-weaning diet. Maternal obesity interacted with post-weaning HFD consumption to cause greater levels of hyperphagia, adiposity, hyperlipidemia, and glucose intolerance in offspring. This was linked to increased hypothalamic NPY signaling and leptin resistance in adult offspring. Litter size reduction had a detrimental impact on insulin and adiponectin, while hypothalamic NPY and POMC mRNA expression were suppressed in the face of normal energy intake and weight gain.

Conclusions

Maternal obesity, postnatal litter size reduction and post-weaning HFD consumption caused obesity via different neuroendocrine mechanims. There were strong additive effects of maternal obesity and post-weaning HFD consumption to increase the metabolic disorders in offspring.  相似文献   

2.
Caruso V  Chen H  Morris MJ 《PloS one》2011,6(9):e25261

Background

Intrauterine and postnatal overnutrition program hyperphagia, adiposity and glucose intolerance in offspring. Single-nucleotide polymorphisms (SNPs) of the fat mass and obesity associated (FTO) gene have been linked to increased risk of obesity. FTO is highly expressed in hypothalamic regions critical for energy balance and hyperphagic phenotypes were linked with FTO SNPs. As nutrition during fetal development can influence the expression of genes involved in metabolic function, we investigated the impact of maternal obesity on FTO.

Methods

Female Sprague Dawley rats were exposed to chow or high fat diet (HFD) for 5 weeks before mating, throughout gestation and lactation. On postnatal day 1 (PND1), some litters were adjusted to 3 pups (vs. 12 control) to induce postnatal overnutrition. At PND20, rats were weaned onto chow or HFD for 15 weeks. FTO mRNA expression in the hypothalamus and liver, as well as hepatic markers of lipid metabolism were measured.

Results

At weaning, hypothalamic FTO mRNA expression was increased significantly in offspring of obese mothers and FTO was correlated with both visceral and epididymal fat mass (P<0.05); body weight approached significance (P = 0.07). Hepatic FTO and Fatty Acid Synthase mRNA expression were decreased by maternal obesity. At 18 weeks, FTO mRNA expression did not differ between groups; however body weight was significantly correlated with hypothalamic FTO. Postnatal HFD feeding significantly reduced hepatic Carnitine Palmitoyltransferase-1a but did not affect the expression of other hepatic markers investigated. FTO was not affected by chronic HFD feeding.

Significance

Maternal obesity significantly impacted FTO expression in both hypothalamus and liver at weaning. Early overexpression of hypothalamic FTO correlated with increased adiposity and later food intake of siblings exposed to HFD suggesting upregulation of FTO may contribute to subsequent hyperphagia, in line with some human data. No effect of maternal obesity was observed on FTO in adulthood.  相似文献   

3.
Postnatal early overnutrition (EO) is a risk factor for future obesity and metabolic disorders. Rats raised in small litters (SLs) develop overweight, hyperphagia, hyperleptinemia, hyperinsulinemia and hypertension when adults. As obesity is related to hyperleptinemia, leptin resistance and metabolic syndrome, we aimed to investigate body composition, plasma hormone levels, glucose tolerance and the leptin signaling pathway in hypothalamus from early overfed animals at weaning and adulthood. To induce postnatal EO, we reduced litter size to three pups/litter (SL), and the groups with normal litter size (10 pups/litter) were used as control. Rats had free access to standard diet and water postweaning. Body weight and food intake were monitored daily, and offspring were killed at 21 (weaning) and 180 days old (adulthood). Postnatal EO group had higher body weight and total and visceral fat mass at both periods. Lean mass and serum high-density lipoprotein cholesterol (HDL-C) were higher at 21 days and lower at 180 days. Small litter rats presented higher levels of globulins at both periods, while albumin levels were higher at weaning and lower at adulthood. There was higher leptin, insulin and glucose serum concentrations at 21 days old, while no glucose intolerance was observed in adulthood. Leptin signaling pathway was unaffected at weaning. However, postnatal EO induced lower JAK2 and p-STAT3, and higher SOCS3 expression in adult animals, indicating central leptin resistance in adulthood. In conclusion, postnatal EO induces obesity, higher total and visceral fat mass, lower HDL-C and central leptin resistance in adult life.  相似文献   

4.

Objective

Leptin resistance is a common hallmark of obesity. Rats on a free-choice high-fat high-sugar (fcHFHS) diet are resistant to peripherally administered leptin. The aim of this study was to investigate feeding responses to central leptin as well as the associated changes in mRNA levels in hypothalamic and mesolimbic brain areas.

Design and Methods

Rats on a CHOW or fcHFHS diet for 8 days received leptin or vehicle intracerebro(lateral)ventricularly (ICV) and food intake was measured 5 h and 24 h later. Four days later, rats were sacrificed after ICV leptin or vehicle and mRNA levels were quantified for hypothalamic pro-opiomelanocortin (POMC) and neuropeptide Y (NPY) and for preproenkephalin (ppENK) in nucleus accumbens and tyrosine hydroxylase (TH) in ventral tegmental area (VTA).

Results

ICV leptin decreased caloric intake both in CHOW and fcHFHS rats. In fcHFHS, leptin preferentially decreased chow and fat intake. Leptin increased POMC and decreased NPY mRNA in CHOW, but not in fcHFHS rats. In CHOW rats, leptin had no effect on ppENK mRNA and decreased TH mRNA. In fcHFHS, leptin decreased ppENK mRNA and increased TH mRNA.

Conclusion

Despite peripheral and arcuate leptin resistance, central leptin suppresses feeding in fcHFHS rats. As the VTA and nucleus accumbens are still responsive to leptin, these brain areas may therefore, at least partly, account for the leptin-induced feeding suppression in rats on a fcHFHS diet.  相似文献   

5.

Background

Metabolic and endocrine environment during early life is crucial for metabolic imprinting. When dams were fed a high fat diet (HF diet), rat offspring developed hypothalamic leptin resistance with lean phenotype when weaned on a normal diet. Interestingly, when grown on the HF diet, they appeared to be protected against the effects of HF diet as compared to offspring of normally fed dams. The mechanisms involved in the protective effect of maternal HF diet are unclear.

Methodology/Principal Findings

We thus investigated the impact of maternal high fat diet on offspring subjected to normal or high palatable diet (P diet) on metabolic and endocrine parameters. We compared offspring born to dams fed P or HF diet. Offspring born to dams fed control or P diet, when fed P diet exhibited a higher body weight, altered hypothalamic leptin sensitivity and metabolic parameters suggesting that maternal P diet has no protective effect on offspring. Whereas, maternal HF diet reduces body weight gain and circulating triglycerides, and ameliorates corpulence index of offspring, even when subjected to P diet. Interestingly, this protective effect is differently expressed in male and female offspring. Male offspring exhibited higher energy expenditure as mirrored by increased hypothalamic UCP-2 and liver AdipoR1/R2 expression, and a profound change in the arcuate nucleus astrocytic organization. In female offspring, the most striking impact of maternal HF diet is the reduced hypothalamic expression of NPY and POMC.

Conclusions/Significance

HF diet given during gestation and lactation protects, at least partially, offspring from excessive weight gain through several mechanisms depending upon gender including changes in arcuate nucleus astrocytic organization and increased hypothalamic UCP-2 and liver AdipoR1/2 expression in males and reduced hypothalamic expression of NPY and POMC in females. Taken together our results reveal new mechanisms involved in the protective effect of maternal HF diet.  相似文献   

6.

Background

The ability to characterize the development of metabolic function in neonatal rodents has been limited due to technological constraints. Low respiratory volumes and flows at rest pose unique problems, making it difficult to reliably measure O2 consumption, CO2 production, respiratory quotient (RQ), and energy expenditure (EE). Our aim was to develop and validate a commercial-grade indirect calorimetry system capable of characterizing the metabolic phenotype of individual neonatal rodents.

Methodology/Principal Findings

To address this research need, we developed a novel, highly sensitive open-circuit indirect calorimetry system capable of analyzing respiratory gas exchange in a single neonatal rodent pup. Additionally, we derived an equation from known metabolic relationships to estimate inlet flow rates, improving the efficiency of data collection. To validate the neonatal rodent indirect calorimetry system and evaluate the applicability of the derived equation for predicting appropriate flow rates, we conducted a series of experiments evaluating the impact of sex, litter size, time of day (during the light phase), and ambient temperature on neonatal rat metabolic parameters. Data revealed that the only metabolic parameter influenced by litter size is a neonatal rat''s RQ, with rat pups reared in a small litter (5 pups) having lower RQ''s than rat pups reared in either medium (8 pups) or large (11 pups) litters. Furthermore, data showed that ambient temperature affected all metabolic parameters measured, with colder temperatures being associated with higher CO2 production, higher O2 consumption, and higher energy expenditure.

Conclusion/Significance

The results of this study demonstrate that the modified Panlab Oxylet system reliably assesses early postnatal metabolism in individual neonatal rodents. This system will be of paramount importance to further our understanding of processes associated with the developmental origins of adult metabolic disease.  相似文献   

7.

Background

Postnatal overfeeding (OF) in rodents induces a permanent moderate increase in body weight in adulthood. However, the repercussions of postnatal OF on cardiac gene expression, cardiac metabolism and nitro-oxidative stress are less well known.

Methodology/Principal Findings

Immediately after birth, litters of C57BL/6 mice were either maintained at 10 (normal-fed group, NF), or reduced to 3 in order to induce OF. At weaning, mice of both groups received a standard diet. The cardiac gene expression profile was determined at weaning and cardiac metabolism and oxidative stress were assessed at 7 months. The cardiac expression of several genes, including members of the extracellular matrix and apelin pathway, was modified in juvenile OF mice. In adult mice, OF led to an increase in body weight (+30%) and to significant increases in plasma cholesterol, insulin and leptin levels. Myocardial oxidative stress, SOD and catalase activity and mRNA expression were increased in OF mice. In vivo, diastolic and systolic blood pressures were significantly higher and LV shortening and ejection fraction were decreased in OF mice. Ex vivo, after 30 min of ischemia, hearts isolated from OF mice showed lower functional recovery and larger infarct size (31% vs. 54%, p<0.05). Increases in collagen deposition and expression/activity of matrix-metalloproteinase-2 were observed in adult OF mouse hearts. Moreover, an increase in the expression of SOCS-3 and a decrease in STAT-3 phosphorylation were observed in ventricular tissues from OF mice.

Conclusions/Significance

Our study emphasizes that over-nutrition during the immediate postnatal period in mice leads to early changes in cardiac gene expression, which may permanently modify the heart’s structural organization and metabolism and could contribute to a greater susceptibility to myocardial ischemia-reperfusion injury.  相似文献   

8.
Evidence has shown that postnatal undernutrition, overnutrition and cold stress are associated with imbalanced metabolic regulation as rodents achieve adulthood. In this study, we used a breeding colony of Brandt's voles (Lasiopodomys brandtii), a wild rodent species from the Inner Mongolia grasslands in China, to examine the effects of pre- and post-weaning cold exposure on the adult body (fat) mass, serum hormones and hypothalamic neuropeptides. Unlike laboratory rodents, vole offspring exposed to pre-weaning cold did not exhibit overweight or obese phenotypes in adulthood compared with unexposed controls. Moreover, adult male voles that remained in colder conditions had less body mass and lower serum leptin levels despite having higher food intake compared to other groups. To understand the mechanism of this unexpected regulation, hypothalamic gene expression was assessed for pre- and post-weaning cold exposure. Voles exposed to cold before weaning increased hypothalamic, orexigenic agouti-related protein (AgRP) and decreased anorexigenic proopiomelanocortin (POMC) mRNA expression at weaning. These expression changes were associated with hyperphagia and catch-up growth after weaning. Interestingly, these changes in hypothalamic neuropeptides were short lasting because in adult voles these differences were no longer apparent, which might explain why the pre-weaning, cold-exposed voles did not become obese in adulthood. These data suggest that some species do not develop an obese phenotype in response to early life cold stress.  相似文献   

9.

Background

Obesity is a risk factor for the development of certain respiratory diseases, and neonatal overfeeding results in an early onset of obesity in adulthood. However, the influence of neonatal overfeeding on respiratory diseases has rarely been studied. Therefore, this paper is aimed at investigating the effect of neonatal overfeeding on airway responsiveness and inflammation.

Methodology/Principal Findings

The neonatal overfeeding was induced by reducing litter size to three pups per litter (small litter, SL) in contrast to the normal litter size with ten pups per litter (NL) on postnatal day 3 (P3) in male ICR mice. On P21, mice were weaned to standard chow diet. Airway responsiveness to methacholine was measured either on P21 or P150. Total and classified inflammatory cells in bronchoalveolar lavage fluid (BALF) were counted, lung inflammatory cells were evaluated through staining with hematoxylin & eosin and F4/80 immunohistochemistry; lung fibrosis was evaluated through staining with Masson and α-SAM immunohistochemistry. Leptin levels in serum were measured by RIA; TNF-α levels in serum and BALF were quantified by ELISA; mRNA levels of TNF-α, CTGF and TGF-β1 in lung tissues were measured using real-time PCR. Mice from SL exhibited accelerated body weight gain, impaired glucose tolerance and hyperleptinemia. Enhanced airway responsiveness to methacholine was observed in SL mice on P150, but not on P21. Pulmonary inflammation was evident in SL mice on P150, as reflected by inflammatory cells especially macrophages around bronchi and interstitium. BALF and serum TNF-α levels and lung TNF-α mRNA expression were significantly increased in SL mice on P150. More collagen accumulated surrounding the bronchi on P150; lung mRNA levels of TGF-β1 and CTGF were also increased on P150.

Conclusion

In addition to inducing a variety of metabolic defects, neonatal overfeeding enhanced lung inflammation, which may lead to airway remodeling and airway hyperresponsiveness in adulthood.  相似文献   

10.

Aims

The antidiabetic drug metformin is currently used prior and during pregnancy for polycystic ovary syndrome, as well as during gestational diabetes mellitus. We investigated the effects of prenatal metformin exposure on the metabolic phenotype of the offspring during adulthood in mice.

Methods

Metformin (300 mg/kg) or vehicle was administered orally to dams on regular diet from the embryonic day E0.5 to E17.5. Gene expression profiles in liver and brain were analysed from 4-day old offspring by microarray. Body weight development and several metabolic parameters of offspring were monitored both during regular diet (RD-phase) and high fat diet (HFD-phase). At the end of the study, two doses of metformin or vehicle were given acutely to mice at the age of 20 weeks, and Insig-1 and GLUT4 mRNA expressions in liver and fat tissue were analysed using qRT-PCR.

Results

Metformin exposed fetuses were lighter at E18.5. There was no effect of metformin on the maternal body weight development or food intake. Metformin exposed offspring gained more body weight and mesenteric fat during the HFD-phase. The male offspring also had impaired glucose tolerance and elevated fasting glucose during the HFD-phase. Moreover, the expression of GLUT4 mRNA was down-regulated in epididymal fat in male offspring prenatally exposed to metformin. Based on the microarray and subsequent qRT-PCR analyses, the expression of Insig-1 was changed in the liver of neonatal mice exposed to metformin prenatally. Furthermore, metformin up-regulated the expression of Insig-1 later in development. Gene set enrichment analysis based on preliminary microarray data identified several differentially enriched pathways both in control and metformin exposed mice.

Conclusions

The present study shows that prenatal metformin exposure causes long-term programming effects on the metabolic phenotype during high fat diet in mice. This should be taken into consideration when using metformin as a therapeutic agent during pregnancy.  相似文献   

11.

Background

Epidemiological data have shown long-term health adversity in low birth weight subjects, especially concerning the metabolic syndrome and ‘diabesity’ risk. Alterations in adult food intake have been suggested to be causally involved. Responsible mechanisms remain unclear.

Methods and Findings

By rearing in normal (NL) vs. small litters (SL), small-for-gestational-age (SGA) rats were neonatally exposed to either normal (SGA-in-NL) or over-feeding (SGA-in-SL), and followed up into late adult age as compared to normally reared appropriate-for-gestational-age control rats (AGA-in-NL). SGA-in-SL rats displayed rapid neonatal weight gain within one week after birth, while SGA-in-NL growth caught up only at juvenile age (day 60), as compared to AGA-in-NL controls. In adulthood, an increase in lipids, leptin, insulin, insulin/glucose-ratio (all p<0.05), and hyperphagia under normal chow as well as high-energy/high-fat diet, modelling modern ‘westernized’ lifestyle, were observed only in SGA-in-SL as compared to both SGA-in-NL and AGA-in-NL rats (p<0.05). Lasercapture microdissection (LMD)-based neuropeptide expression analyses in single neuron pools of the arcuate hypothalamic nucleus (ARC) revealed a significant shift towards down-regulation of the anorexigenic melanocortinergic system (proopiomelanocortin, Pomc) in SGA-in-SL rats (p<0.05). Neuropeptide expression within the orexigenic system (neuropeptide Y (Npy), agouti-related-peptide (Agrp) and galanin (Gal)) was not significantly altered. In essence, the ‘orexigenic index’, proposed here as a neuroendocrine ‘net-indicator’, was increased in SGA-in-SL regarding Npy/Pomc expression (p<0.01), correlated to food intake (p<0.05).

Conclusion

Adult SGA rats developed increased ‘diabesity’ risk only if exposed to neonatal overfeeding. Hypothalamic malprogramming towards decreased anorexigenic activity was involved into the pathophysiology of this neonatally acquired adverse phenotype. Neonatal overfeeding appears to be a critical long-term risk factor in ‘small-for-gestational-age babies’.  相似文献   

12.

Background

While prepubertal nutritional influences appear to play a role in sexual maturation, there is a need to clarify the potential contributions of maternal and childhood influences in setting the tempo of reproductive maturation. In the present study we employed an established model of nutritional programming to evaluate the relative influences of prenatal and postnatal nutrition on growth and ovarian function in female offspring.

Methods

Pregnant Wistar rats were fed either a calorie-restricted diet, a high fat diet, or a control diet during pregnancy and/or lactation. Offspring then were fed either a control or a high fat diet from the time of weaning to adulthood. Pubertal age was monitored and blood samples collected in adulthood for endocrine analyses.

Results

We report that in the female rat, pubertal timing and subsequent ovarian function is influenced by the animal''s nutritional status in utero, with both maternal caloric restriction and maternal high fat nutrition resulting in early pubertal onset. Depending on the offspring''s nutritional history during the prenatal and lactational periods, subsequent nutrition and body weight gain did not further influence offspring reproductive tempo, which was dominated by the effect of prenatal nutrition. Whereas maternal calorie restriction leads to early pubertal onset, it also leads to a reduction in adult progesterone levels later in life. In contrast, we found that maternal high fat feeding which also induces early maturation in offspring was associated with elevated progesterone concentrations.

Conclusions

These observations are suggestive of two distinct developmental pathways leading to the acceleration of pubertal timing but with different consequences for ovarian function. We suggest different adaptive explanations for these pathways and for their relationship to altered metabolic homeostasis.  相似文献   

13.
It has been suggested that nutritional manipulations during the first weeks of life can alter the development of the hypothalamic circuits involved in energy homeostasis. We studied the expression of a large number of the hypothalamic neuropeptide mRNAs that control body weight in mice that were overfed during breastfeeding (mice grown in a small litter, SL) and/or during adolescence (adolescent mice fed a high-fat diet, AHF). We also investigated possible alterations in mRNA levels after 50 days of a high-fat diet (high-fat challenge, CHF) at 19 weeks of age. Both SL and AHF conditions caused overweight during the period of developmental overfeeding. During adulthood, all of the mouse groups fed a CHF significantly gained weight in comparison with mice fed a low-fat diet, but the mice that had undergone both breast and adolescent overfeeding (SL-AHF-CHF mice) gained significantly more weight than the control CHF mice. Of the ten neuropeptide mRNAs studied, only neuropeptide Y (NPY) expression was decreased in all of the groups of developmentally overfed adult mice, but CHF during adulthood by itself induced a decrease in NPY, agouti-related protein (AgRP) and orexin (Orx) mRNA levels. Moreover, in the developmentally overfed CHF mice NPY, AgRP, galanin (GAL) and galanin-like peptide (GalP) mRNA levels significantly decreased in comparison with the control CHF mice. These results show that, during adulthood, hypothalamic neuropeptide systems are altered (NPY) and/or abnormally respond to a high-fat diet (NPY, AgRP, GAL and GalP) in mice overfed during critical developmental periods.  相似文献   

14.
Epidemiological and animal studies suggest that the alteration of hormonal and metabolic environment during fetal and neonatal development can contribute to development of metabolic syndrome in adulthood. In this paper, we investigated the impact of maternal high-fat (HF) diet on hypothalamic leptin sensitivity and body weight gain of offspring. Adult Wistar female rats received a HF or a control normal-fat (C) diet for 6 wk before gestation until the end of the suckling period. After weaning, pups received either C or HF diet during 6 wk. Body weight gain and metabolic and endocrine parameters were measured in the eight groups of rats formed according to a postweaning diet, maternal diet, and gender. To evaluate hypothalamic leptin sensitivity in each group, STAT-3 phosphorylation was measured in response to leptin or saline intraperitoneal bolus. Pups exhibited similar body weights at birth, but at weaning, those born to HF dams weighed significantly less (-12%) than those born to C dams. When given the HF diet, males and females born to HF dams exhibited smaller body weight and feed efficiency than those born to C dams, suggesting increased energy expenditure programmed by the maternal HF diet. Thus, maternal HF feeding could be protective against adverse effects of the HF diet as observed in male offspring of control dams: overweight (+17%) with hyperleptinemia and hyperinsulinemia. Furthermore, offspring of HF dams fed either C or HF diet exhibited an alteration in hypothalamic leptin-dependent STAT-3 phosphorylation. We conclude that maternal high-fat diet programs a hypothalamic leptin resistance in offspring, which, however, fails to increase the body weight gain until adulthood.  相似文献   

15.
Early life nutrition impacts on subsequent risk of obesity and hypertension. Several brain chemicals responsible for both feeding and cardiovascular regulation are altered in obesity. We examined effects of early postnatal overnutrition on blood pressure, brain neuropeptide Y (NPY), and adiposity markers. Rat pup litters were adjusted to either 3 or 12 male animals (overnutrition and control, respectively) on day 1 of life. After weaning, rats were given either a palatable high-fat diet or standard chow. Smaller litter pups were significantly heavier by 17 days of age. By 16 wk, the effect of litter size was masked by that of diet, postweaning. Small and normal litter animals fed a high-fat diet had similar increases in body weight, plasma insulin, leptin, and adiponectin concentrations, leptin mRNA, and fat masses relative to chow-fed animals. An increase in 11beta-hydroxysteroid dehydrogenase-1 mRNA in white adipose tissue, and a decrease in uncoupling protein-1 mRNA in brown adipose tissue in both small litter groups at 16 wk of age, may represent a programming effect of the altered litter size. NPY concentration in the paraventricular nucleus of the hypothalamus was reduced in high fat-fed groups. Blood pressure was significantly elevated at 13 wk in high-fat-fed animals. This study demonstrates that overnourishment during early postnatal development leads to profound changes in body weight at weaning, which tended to abate with maturation. Thus the effects of long-term dietary intervention postweaning can override those of litter size-induced obesity.  相似文献   

16.
17.
Rearing animals in small litters induces a permanent increase in body weight and body fat. To determine whether changes in sympathoadrenal activity contribute to this effect, litter size was adjusted the day after birth and maintained until weaning at 21 days. Sympathetic nervous system (SNS) activity was measured in adult animals using [(3)H]norepinephrine ([(3)H]NE) turnover in peripheral tissues. Although litter size was without effect on [(3)H]NE turnover in chow-fed animals, acceleration of [(3)H]NE turnover by dietary sucrose was completely abolished in heart and attenuated in interscapular brown adipose tissue and kidney of rats reared in small litters. Body and epididymal fat-pad weights were heavier in rats reared in small litters; however, weight gain in response to dietary enrichment with sucrose did not differ as a function of litter size. Thus litter size alters dietary activation of the SNS, and this effect presumably reflects changes in central nervous system regulation.  相似文献   

18.

Background

Obesity is a multifactorial disease that arises from complex interactions between genetic predisposition and environmental factors. Leptin is central to the regulation of energy metabolism and control of body weight in mammals.

Methodology/Principal Findings

To better recapitulate the complexity of human obesity syndrome, we applied N-ethyl-N-nitrosourea (ENU) mutagenesis in combination with a set of metabolic assays in screening mice for obesity. Mapping revealed linkage to the chromosome 6 within a region containing mouse Leptin gene. Sequencing on the candidate genes identified a novel T-to-A mutation in the third exon of Leptin gene, which translates to a V145E amino acid exchange in the leptin propeptide. Homozygous Leptin145E/145E mutant mice exhibited morbid obesity, accompanied by adipose hypertrophy, energy imbalance, and liver steatosis. This was further associated with severe insulin resistance, hyperinsulinemia, dyslipidemia, and hyperleptinemia, characteristics of human obesity syndrome. Hypothalamic leptin actions in inhibition of orexigenic peptides NPY and AgRP and induction of SOCS1 and SOCS3 were attenuated in Leptin145E/145E mice. Administration of exogenous wild-type leptin attenuated hyperphagia and body weight increase in Leptin145E/145E mice. However, mutant V145E leptin coimmunoprecipitated with leptin receptor, suggesting that the V145E mutation does not affect the binding of leptin to its receptor. Molecular modeling predicted that the mutated residue would form hydrogen bond with the adjacent residues, potentially affecting the structure and formation of an active complex with leptin receptor within that region.

Conclusions/Significance

Thus, our evolutionary, structural, and in vivo metabolic information suggests the residue 145 as of special function significance. The mouse model harboring leptin V145E mutation will provide new information on the current understanding of leptin biology and novel mouse model for the study of human obesity syndrome.  相似文献   

19.
The neonatal leptin surge, occurring from postnatal day (PND) 5 to 13 and peaking at PND9 in rodents, is important for the development of neuroendocrine circuits involved in metabolic control and reproductive function. We previously demonstrated that treatment with a leptin antagonist from PND 5 to 9, coincident with peak leptin levels in the neonatal surge, modified trophic factors and markers of cell turnover and neuronal maturation in the hypothalamus of peri-pubertal rats. The kisspeptin system and metabolic neuropeptide and hormone levels were also modified. Here our aim was to investigate if the timing of pubertal onset is altered by neonatal leptin antagonism and if the previously observed peripubertal modifications in hormones and neuropeptides persist into adulthood and affect male sexual behavior. To this end, male Wistar rats were treated with a pegylated super leptin antagonist (5 mg/kg, s.c.) from PND 5 to 9 and killed at PND102–103. The appearance of external signs of pubertal onset was delayed. Hypothalamic kiss1 mRNA levels were decreased in adult animals, but sexual behavior was not significantly modified. Although there was no effect on body weight or food intake, circulating leptin, insulin and triglyceride levels were increased, while hypothalamic leptin receptor, POMC and AgRP mRNA levels were decreased. In conclusion, alteration of the neonatal leptin surge can modify the timing of pubertal onset and have long-term effects on hypothalamic expression of reproductive and metabolic neuropeptides.  相似文献   

20.

Background

The OLETF rat is an animal model of early onset hyperphagia induced obesity, presenting multiple pre-obese characteristics during the suckling period. In the present study, we used a cross-fostering strategy to assess whether interactions with obese dams in the postnatal environment contributed to the development of obesity.

Methodology

On postnatal Day (PND)-1 OLETF and control LETO pups were cross-fostered to same or opposite strain dams. An independent ingestion test was performed on PND11 and a nursing test on PND18. Rats were sacrificed at weaning or on PND90, and plasma leptin, insulin, cholesterol, triglycerides and alanine aminotransferase (ALT) were assayed. Fat pads were collected and weighed and adipocyte size and number were estimated. Body weight and intake, as well as the estrous cycle of the female offspring were monitored.

Principal Findings

During the suckling period, the pups'' phenotype was almost completely determined by the strain of the mother. However, pups independently ingested food according to their genotype, regardless of their actual phenotype. At adulthood, cross fostered males of both strains and LETO females were affected in regard of their adiposity levels in the direction of the foster dam. On the other hand, OLETF females showed almost no alterations in adiposity but were affected by the strain of the dams in parameters related to the metabolic syndrome. Thus, OLETF females showed reduced liver adiposity and circulating levels of ALT, while LETO females presented a disrupted estrous cycle and increased cholesterol and triglycerides in the long term.

Conclusions

The present study provides further support for the early postnatal environment playing a sex-divergent role in programming later life phenotype. In addition, it plays a more central role in determining the functioning of mechanisms involved in energy balance that may provide protection from or sensitivity to later life obesity and pathologies related to the metabolic syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号