首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Photosynthesis-irradiance relationships were determined in the field for five species of littoral and shallow sublittoral marine benthic green algae (Chlorophyta) of differing morphologies. Each species exhibited a linear increase in photosynthetic rate with increasing irradiance up to a maximum light-saturated value. Full sunlight (1405 to 1956 μE·m?2·s?1) inhibited photosynthesis of all species except the thick, optically dense, Codium fragile (Sur.) Har. Compensation irradiances ranged from 6.1 μE·m?2·s?1 for Enteromorpha intestinalis (L.) Link to 11.4 μE·m?2·s?1 for Ulva lobata (Kütz) S. & G. and did not reveal a consistent relationship to seaweed morphology. Saturation irradiances were determined statistically (Ik) and visually from graphical plots. with the latter technique resulting in values three to eight times higher and different comparative rankings of species than the former. Ik saturation irradiances were highest for Chaetomorpha linum (Müll.) Kütz. (81.9 μE·m?2·s?1) and lowest for Codium fragile (49.6 μE·m?2·s?1) and did not reveal a relationship with seaweed morphology. Regression equations describing light-limited photosynthetic rates and the relative magnitudes of the maximal net photosynthetic responses both strongly suggested a relationship with seaweed morphology. Highest net photosynthetic rates were obtained for the thin, sheet-like algae Ulva lobata (9.2 mg C·g dry wt?1·h?1), U. rigida C. Ag. (6.5 mg C·g dry wt?1·h?1) and the tubular form, Enteromorpha intestinalis (7.3 mg C·g dry wt?1·h?1), while lowest rates occurred for Codium fragile (0.9 mg C·g dry wt?1·h?1). Similarly, steepest light-limited slopes were found for the algae of simpler morphology, while the most gradual slope was determined for Codium fragile, the alga with greatest thallus complexity.  相似文献   

2.
The growth rate of Laminaria saccharina (L.) Lamour. is dependent on inorganic nitrogen in culture. Growth rates were saturated between 5 and 10 μmol · L?1 nitrate. The activities of ribulose-1,5 bisphosphate carboxylase, phosphoenolpyruvate carboxykinase, mannitol-1-phosphate dehydrogenase, nitrate reductase and glutamine synthetase also varied with the concentration of inorganic nitrogen in the medium. All enzyme activities were lowest at 2.5 μmol · L?1 nitrate (the lowest concentration used) increasing to a maximum activity between 10 and 30 μmol · L?1 nitrate. Most enzyme activities followed a hyperbolic curve resembling those described by the Michaelis-Menten equation, with different half-saturation constants.  相似文献   

3.
The content of extractable polyphenols in the brown algae Ascophyllum nodosum (L.) Le Jol. and Fucus vesiculosus (L.) was measured at ≈28-day intervals for one year. Colorimetric methods based on the Folin-Denis, Brentamine, and vanillin-H2SO4 reactions were used to estimate relative contents of polyphenols, and these values were converted to absolute contents using the gravimetric method introduced earlier. Relatively little error was introduced by variations in the qualitative composition of the extracted polyphloroglucinols.There appeared to be a significant temporal correlation between polyphenol content and the reproductive state of the algae. The content of polyphenols in A. nodosum was at a minimum (≈9–10% of dry matter) during the period of maximum fruit body shedding (late May), and reached a maximum (≈12–14% of dry matter) during the ‘winter season’. In F. vesiculosus, the minimum (≈8–10% of dry matter) was one to two months later, just before the period of maximum fertility, and thereafter rose to a maximum (≈11–13% of dry matter) during the period of sterility. These results furthermore suggest that the bulk of the polyphenols are not readily accessible as reserve components, and indicate that modifications may be needed in the ‘chemical defense’ and ‘waste product’ hypotheses concerning the significance of brown algal polyphenols.  相似文献   

4.
Diel variations of cellular optical properties were examined for cultures of the haptophyte Imantonia rotunda N. Reynolds and the diatom Thalassiosira pseudonana (Hust.) Hasle et Heimdal grown under a 14:10 light:dark (L:D) cycle and transferred from 100 μmol photons · m?2 · s?1 to higher irradiances of 250 and 500 μmol photons · m?2 · s?1. Cell volume and abundance, phytoplankton absorption coefficients, flow‐cytometric light scattering and chl fluorescence, and pigment composition were measured every 2 h over a 24 h period. Results showed that cell division was more synchronous for I. rotunda than for T. pseudonana. Several variables exhibited diel variability with an amplitude >100%, notably mean cell volume for the haptophyte and photoprotective carotenoids for both species, while optical properties such as flow‐cytometric scattering and chl a–specific phytoplankton absorption generally showed <50% diel variability. Increased irradiance induced changes in pigments (both species) and mean cell volume (for the diatom) and amplified diel variability for most variables. This increase in amplitude is larger for pigments (factor of 2 or more, notably for cellular photoprotective carotenoid content in I. rotunda and for photosynthetic pigments in T. pseudonana) than for optical properties (a factor of 1.5 for chl a–specific absorption, at 440 nm, in I. rotunda and a factor of 2 for the absorption cross‐section and the chl a–specific scattering in T. pseudonana). Consequently, diel changes in optical properties and pigmentation associated with the L:D cycle and amplified by concurrent changes in irradiance likely contribute significantly to the variability in optical properties observed in biooptical field studies.  相似文献   

5.
Gametophytes of three Laminaria species occurring near Helgoland, North Sea, were cultivated 4 wk in a 12:12 LD regime at different temperatures in artificial light fields, and in the sea at different water depths. In the artificial light fields underwater spectral distribution was simulated according to Jerlov water Types 5, 7, 9. Blue light in the simulated light fields amounted to 17, 12 or 4% of total quanta. The rate of vegetative growth did not depend on spectral distribution, was light-saturated at 4–6 W · m?2, and increased with temperature up to 15 C. L. saccharina (L.) Lamour. exhibited the highest tolerance towards temperature, light and UV. Gametophytes survived 1 wk at 21 C ± 0.1, but not 22 C ± 0.1. Gametophytes of L. hyperborea (Gunn.) Fosl. and L. digitata (Huds.) Lamour. survived 1 wk at 20 C ± 0.1, but not at 21 C ± 0.1. In sunlight, and in the light field of a xenon lamp, 50% of L. saccharina gametophytes were killed by a quantum dose of 50 μEin · cm?2, and 100% of the plants by 90 μEin · cm?2. Approximately half of these quantum doses killed the corresponding percent of the other species gametophytes. Appreciably higher quantum doses were survived in visible light, with red being the most detrimental. Fertility depended on a critical quantum dose of blue light which decreased almost exponentially with decreasing temperature. The quantum dose (400–512 nm) required for induction of fertilization of 50% of the female gametophytes (males react similarly) was 90 μEin · cm?2 at 5 C, 110 μEin · cm?2 at 10 C, 230 (560 in L. digitata)μEin · cm?2 at 15 C, and 560 (L. hyperborea) or about 850 (other 2 species) μEin · cm?2 at 18 C. In the sea the gametophytes survived the dark winter months in the unicellular stage, with almost no vegetative growth of the primary cell, due to lack of light. In early spring the female gametophytes matured in the unicellular, and the males in a few-celled stage at the depth of 2 m, as did the laboratory cultures under conditions inducing maximal fertility.  相似文献   

6.
The effects of irradiance on the biochemical composition of the prymnesiophyte microalga, Isochrysis sp. (Parke; clone T-ISO), a popular species for mariculture, were examined. Cultures were grown under a 12:12 h light: dark (L:D) regime at five irradiances ranging from 50 to 1000 μE·m 2·s?1 and harvested at late-logarithmic phase for analysis of biochemical composition. Gross composition varied aver the range of irradiances. The highest levels of protein were present in cells from cultures grown at 100 and 250 μE·m 3·s1, and minimum levels of carbohydrate and lipid occurred at 50 μE·m?2·s?1. Because the cell dry weight was reduced at lower irradiances, different trends were evident when results were expressed as percentage of dry weights. Protein percentages were highest at Wand 100 μE·m?2·s?1 and carbohydrate at 100 μE·m?2·s?1. The composition of amino acids did not differ over the range of irradiances. Glutamate and aspartate were always present in high proportions (9.0–13.5%); histidine. methionine, tryptophan, cystine, and hydroxy-proline were minor constituents (0.0–2.6%). Glucose was the predominant sugar in all cultures, ranging from 23.0% (50 μE·m?2·s?1) to 45.0% (100 μE·m?2·s?1) of total polysaccharide. No correlation was found between the proportion of any of the sugars and irradiance. The proportions of the lipid class components and fatty acids showed little change with irradiance. The main fatty acids were 14:0, 16:0, 16:1(n-7), 18:1(n-9), 18:3(n-3). 18:4(n-3), 18:5(n-3), and 22:6(n-3). Proportions of 22: 6(n-3) increased, whereas l8:3(n-3). 18:3(n-6). and 18:4(n-3) decreased, with increasing irradiance. Pigment concentrations were highest in cultures grown at 50 μE·m?2·s?1, except for fucoxanthin and diadinoxanthin (100 μE·m?2·s?1). The concentrations of accessory pigments correlated with chlorophyll a, which decreased in concentration with increasing irradiance. On the basts of biochemical composition, an irradiance of 100 μE·m?1·s?1 (12:12 h L:D cycle)for the culture of Isochrysis sp. (clone T-ISO) may provide optimal nutritional value for maricultured animals, although feeding trials are now necessary to substantiate this.  相似文献   

7.
Photosynthesis of marine benthic diatom mats was examined before and after sea ice breakout at a coastal site in eastern Antarctica (Casey). Before ice breakout the maximum under‐ice irradiance was between 2.5 and 8.2 μmol photons·m?2·s?1 and the benthic microalgal community was characterized by low Ek (12.1–32.3 μmol photons·m?2·s?1), low relETRmax (9.2–32.9), and high alpha (0.69–1.1). After breakout, 20 days later, the maximum irradiance had increased to between 293 and 840 μmol photons·m?2·s?1, Ek had increased by more than an order of magnitude (to 301–395 μmol photons·m?2·s?1), relETRmax had increased by more than five times (to 104–251), and alpha decreased by approximately 50% (to 0.42–0.68). During the same time interval the species composition of the mats changed, with a decline in the abundance of Trachyneis aspera (Karsten) Hustedt, Gyrosigma subsalsum Van Heurck, and Thalassiosira gracilis (Karsten) Hustedt and an increase in the abundance of Navicula glaciei Van Heurck. The benthic microalgal mats at Casey showed that species composition and photophysiology changed in response to the sudden natural increase in irradiance. This occurred through both succession shifts in the species composition of the mats and also an ability of individual cells to photoacclimate to the higher irradiances.  相似文献   

8.
9.
Germination and growth patterns were studied of germlings and sporelings of eight species of marine algae when grown on diatom mucilage. Whilst growths of green and brown algae were enhanced, growth of the red algae was inhibited. Morphologically abnormal sporelings of Ulva lactuca L. and Gigartina stellata (Stackh.) Batt. were obtained in the presence of the mucilage.  相似文献   

10.
The distribution of the enzyme nitrate reductase (NR) within the thallus of the brown alga Laminaria digitata (Huds.) Lamour is described for plants sampled from the east coast of Scotland in May and June when growth rates are at a maximum. Highest NR activities (≈ 0.2 μmol NO3? reduced·g?1 wet wt·h?1) occurred in the mature blade. NR activities declined towards the basal meristematic region of the blade. Activities in the stipe and holdfast were also low, being between 0.05 and 0.07 μmol NO3? reduced·g?1 wet wt·h?1. The activities of the enzyme glutamine synthetase (GS), which is important in the assimilation of NH4+, showed a similar distribution within the blade to those of NR.The transverse profile of NR activity in the stipe exhibited a decline from the outer to the inner tissues. Maximum activities (0.13 μmol NO3? reduced·g?1 wet wt·h?1) occurred in the meristoderm, while those of the cortex and medulla were 0.04 and 0.01 μmol NO3? reduced·g?1 wet wt·h?1 respectively.These data indicate that most of the NO3? assimilation occurs in the mature blade rather than in the meristematic tissue where there is a high nitrogen demand for growth. The data are consistent with the maintenance of meristematic growth by the internal transport of organic nitrogen from the mature blade.  相似文献   

11.
Analysis of reflectance spectra was used to monitor the conversion of diadinoxanthin (DD) into diatoxanthin (DT) in two benthic diatom species, Amphora coffeaeformis (C. Agardh) Kütz. and Cylindrotheca closterium (Ehrenb.) J. C. Lewin et Reiman, cultured at high light (HL, 400 μmol · m?2 · s?1 PAR) and low light (LL, 25 μmol · m?2 · s?1 PAR). Cultures were exposed to saturating light for 32 min. HL cultures of both species showed higher (DT + DD) content, whereas LL cultures exhibited higher chl a and fucoxanthin content. DD to DT conversion, measured by HPLC, occurred mainly in the first 2 min (LL) or 5 min (HL) after exposure to saturating light. Nonphotochemical quenching (NPQ), measured by PAM fluorescence, showed the same pattern as DT/(DD + DT), resulting in a linear relationship between these parameters. Addition of dithiothreitol (DTT) blocked the conversion of DD into DT and significantly reduced NPQ induction. Reflectance spectra showed no obvious change after light exposure. However, second derivative spectra (δδ) showed a shift in reflectance from 487 to 508 nm, which was not present for DTT‐treated samples. Changes in δδ487 were strongly correlated with changes in DD (r = 0.76), while changes in δδ508 were strongly correlated with changes in DT (r = 0.94). The best index to estimate DD to DT conversion was δδ508/δδ630 (r = 0.87). This index was very sensitive to minute changes that occurred immediately after exposure to light and was species insensitive. Good relationships were observed between indices for xanthophyll cycle activation (DD to DT conversion and NPQ induction) and the second derivative spectra. With further in situ validation, this index may prove to be highly useful for investigation into aquatic global photoregulation mechanisms in diatom‐dominated samples.  相似文献   

12.
Four marine dinoflagellates, Amphidinium carterae Hulburt, Ceratium tripos (O.F. Müll.) Nitzsch, Prorocentrum minimum (Pav.) J. Schiller, and Scrippsiella trochoidea (Stein) Loeblich III were grown as dilution cultures at 18°C, S = 29%. and 30 μE·m?2·s?1 at L:D = 14:10 h. In nutrient-saturated cultures, the growth rates (doubl·day?1) ranged from 0.38 for Scrippsiella to 0.80 for Prorocentrum, and carbon content (pg·cell?1) from 83 for Amphidinium to 6900 for Ceratium. The atomic NC ratio was 0.13–0.15, but for Ceratium it was 0.088, because of its thick, cellulose theca. The atomic NP ratio ranged from 12–13 for Ceratium and Scrippsiella to 15–17 for Prorocentrum and Amphidinium. Under P-deficient conditions (growth rate 39–70% of the maximum), cellular P decreased considerably, but so did N, so that the NP ratio was only slightly affected. There was a concomitant increase in carbon content per cell of 1.2- to 1.7-fold. Alkaline phosphatase activity was virtually nil in nutrient-saturated cells, but was readily demonstrable in all species when P-deficient.  相似文献   

13.
Optimum light, temperature, and pH conditions for growth, photosynthetic, and respiratory activities of Peridinium cinctum fa. westii (Lemm.) Lef were investigated by using axenic clones in batch cultures. The results are discussed and compared with data from Lake Kinneret (Israel) where it produces heavy blooms in spring. Highest biomass development and growth rates occurred at ca. 23° C and ≥50 μE· m?2·s1 of fluorescent light with energy peaks at 440–575 and 665 nm. Photosynthetic oxygen release was more efficient in filtered light of blue (BG 12) and red (RG 2) than in green (VG 9) qualities. Photosynthetic oxygen production occurred at temperatures ranging from 5° to 32° C in white fluorescent light from 10 to 105 μE·m?2·s?1 with a gross maximum value of 1500 × 10?12 g·cell?1·h?1 at the highest irradiance. The average respiration amounted to ca. 12% of the gross production and reached a maximum value of ca. 270·10?12 g·cell?1·h?1 at 31° C. A comparison of photosynthetic and respiratory Q10-values showed that in the upper temperature range the increase in gross production was only a third of the corresponding increase in respiration, although the gross production was at maximum. Short intermittent periods of dark (>7 min) before high light exposures from a halogen lamp greatly increased oxygen production. Depending on the physiological status of the alga, light saturation values were reached at 500–1000 μE·m?2·s?1 of halogen light with compensation points at 20–40 μE·m?2·s?1 and Ik-values at 100–200 μE·m?2·s?1. The corresponding values in fluorescent light in which it was cultured and adapted, were 25 to 75% lower indicating the ability of the alga to efficiently utilize varying light conditions, if the adaptation time is sufficient. Carbon fixation was most efficient at ca. pH 7, but the growth rates and biomass development were highest at pH 8.3.  相似文献   

14.
The marine diatom Thalassiosira pseudonana (Hustedt, clone 3H) Hasle and Heimdal was cultured under three different light regimes: 100 μmol photon · m?2· s?1 on 12:12 h light : dark (L:D) cycles; 50 μmol photon · m?2· s?2 on 24:0 h L:D; and 100 μmol photon · m?2· s?1 on 24:0 h L:D. It was harvested during logarithmic and stationary phases for analysis of biochemical composition. Across the different light regimes, protein (as % of organic weight) was highest in cells during logarithmic phase, whereas carbohydrate and lipid were highest during stationary phase. Carbohydrate concentrations were most affected by the different light regimes; cells grown under 12:12 h L:D contained 37–44% of the carbohydrate of cells grown under 24:0 h L:D. Cells in logarithmic phase had high proportions of polar lipids (79 to 89% of total lipid) and low triacylglycerol (≤10% of total lipid). Cells in stationary phase contained less polar lipid (48 to 57% of total lipid) and more triacylglycerol (22 to 45% of total lipid). The fatty acid composition of logarithmic phase cells grown under 24:0 h L:D were similar, but the 100 μmol photon · m?2· s?1 (12:12 h L:D) cells at the same stage contained a higher proportion of polyunsaturated fatty acids (PUFAs) and a lower proportion of saturated and monounsaturated fatty acids due to different levels of 16:0, 16:1(n-7), 16:4(n-1), 18:4(n-3), and 20:5(n-3). With the onset of stationary phase, cells grown at 100 μmol photon · m?2· s?1 (both 12:12 and 24:0 h L:D) increased in proportions of saturated and monounsaturated fatty adds and decreased in PUFAs. Concentrations (% organic or dry weight) of 14:0, 16:0, 16:1(n-7), 20:5(n-3), and 22:6(n-3) increased in cells of all cultures during stationary phase. The amino acid compositions of cells were similar irrespective of harvest stage and light regime. For mariculture, the recommended light regime for culturing T. pseudonana will depend on the nutritional requirements of the animal to which the alga is fed. For rapidly growing bivalve mollusc larvae, stationary-phase cultures grown under a 24:0 h L:D regime may provide more energy by virtue of their higher percentage of carbohydrate and high proportions and concentrations of energy-rich saturated fatty acids.  相似文献   

15.
The maximal growth rate (μmax) of 19 marine and estuarine diatoms decreased with increasing cell volume (V). The relationship between log μmax (Y) and log V (X) was calculated. Statistical analyses showed that the slope of the equation was not significantly different from those obtained by other researchers and that the 95% confidence intervals of mean μmax at cell volumes of 103–105μm3 were not significantly different from those cited in most studies. A new regression line for diatoms was calculated as follows: log μmax= 0.47–0.14 log V; r =–0.69. The rate of size reduction per generation of the 19 diatom species ranged from 0.03 to 0.87 μm per generation. The rate increased with increasing cell length and cell volume and with decreasing maximum division rate. Statistical analyses showed that the rate was closely related to the cell volume and to the reciprocal of the growth rate. The relationships between maximal growth rate and cell volume and between rate of size reduction and cell volume showed that a diatom with a large volume had a smaller maximal growth rate and a larger rate of size reduction than a diatom with a small volume. The estimates using the equation for the regression line between the rate of size reduction and the reciprocal of maximum division rate indicated that a diatom with a high maximum division rate would need more generation equivalents for a certain size reduction than a diatom with a low maximum division rate, but the periods required for reduction would be approximately equal irrespective of maximum division rate.  相似文献   

16.
This paper documents ambient concentrations of nutrients in the Belgian coastal waters of the North Sea during the spring of 1996 and 1997. The paper elaborates the differences of uptake rates of oxidised nitrogen (NO3) and reduced nitrogen (NH4 and urea) by Phaeocystis and diatoms. The nitrogen concentrations were dominated by NO3 with a maximum concentration of 30 μM (January 1997) and 40 μM (March 1996). In 1996, Phaeocystis dominated the spring biomass with a maximum of 521 μg C l−1, while maximum diatom biomass was 174 μg C l−1. In 1997, the maximum Phaeocystis spring biomass was 1600 μg C l−1 and diatom maximum biomass was below 100 μg C l−1. A maximum bacteria biomass of about 55 μg C l−1 was observed in mid-May 1996. The maximum nitrogen uptake rates were recorded during spring and were dominated by NO3 (0.005 h−1 in 1996 and 0.032 h−1 in 1997). Maximum specific NH4 uptake rates were between 0.005 h−1 in May 1996 and 0.006 h−1 in April 1997. The NO3 uptake rates displayed exponential decrease versus increasing ambient reduced nitrogen concentrations (ammonium and urea), whereas the reduced nitrogen uptake increased but never compensated the decreased nitrate uptake. The NH4 uptake kinetics of diatoms displayed lower vmax compared to Phaeocystis. Consequently, Phaeocystis showed ability to increase their NH4 uptake capacity when more NH4 became available while diatoms failed to do so, after ammonium had exceeded their saturation concentration (>1 μM). Although reduced nitrogen has a negative effect on the uptake of NO3, Phaeocystis have more advantage than diatoms on the uptake of ammonium. This might be contributing to the biomass domination shown by Phaeocystis over extended periods in spring.  相似文献   

17.
Tychoplanktonic and epilithic diatom samples were taken monthly during one year at 18 sites in small lowland rivers in the northern central region of Portugal. Canonical correspondence analysis was used to explore the relationships between measured environmental variables and patterns in the diatom assemblages. Conductivity, HCO3, and chemical oxygen demand (COD) were the most significant environmental variables influencing the structure of the tychoplankton and of the epilithon. Other less important variables, such as K+, Fe, N(NO3), and Na+ also explained significant (P < 0.05) amounts of variance. The ordination diagrams showed very similar distribution of the tychoplanktonic and epilithic diatom samples. At sites with similar geomorphology as in this study, it is possible to use only one of these samples for water quality evaluation. The optima and tolerances of some diatom taxa were calculated for the most influential variables. Although the diatoms showed high tolerances to some environmental parameters, it was possible to establish groups of taxa with defined and distinctive ecological preferences. Two species groups stood out depending on the alkalinity and mineralization of the water. With a moderate conductivity (> 600 μS·cm−1), alkaline pH, HCO3 concentrations equal or higher than 150 mg·l−1, the first group includes Achnanthes hungarica Grunow, Amphora pediculus (Kützing) Grunow, Bacillaria paxillifera (O. F. Müller) Hendey, Cymatopleura solea (Brébisson) W. Smith, Navicula accomoda Hustedt, Navicula lanceolata (Agardh) Ehrenberg, Navicula trivialis Lange-Bertalot, Nitzschia hungarica Grunow. In waters of lower conductivity (varying between 72 and 262 μS·cm−1) slightly acid pH (6 to 6.5) and HCO3−1 lower than 46 mg·l−1 the following species were common: Achnanthes oblongella Östrup, Achnanthes subatomoides (Hustedt) Lange-Bertalot, et Archibald, Cymbella gracilis (Ehrenberg) Kützing, Cymbella naviculiformis Auerswald, Diatoma mesodon (Ehrenberg) Kützing, and Eunotia exigua (Brébisson) Rabenhorst. Considering COD, two further groups were distinguished. At high values (> 40 mg·l−1) the following taxa were observed: Achnanthes delicatula (Kützing) Grunow, Navicula capitata Ehrenberg var. hungarica (Grunow) Ross, Nitzschia nana Grunow, Pinnularia interrupta W. Smith, Thalassiosira pseudonana Hasle & Heimdal, Thalassiosira weisflogii (Grunow) Fryxell et Hasle. For lower values than 19 mg·l−1, we found Cymbella naviculiformis Auerswald, Diatoma mesodon (Ehrenberg) Kützing, Eunotia exigua (Brébisson) Rabenhorst, Fragilaria arcus (Ehrenberg) Cleve, and Nitzschia epithemioides Grumow var. disputata (Carter) Lange-Bertalot.  相似文献   

18.
To identify processes that might account for differences in growth rates of rhodophytes under constant and dynamic light supply, we examined nonequilibrium gas exchange by measuring time courses of photoinduction, loss of photoinduction, and respiration rates immediately after the light–dark transition. Using the rhodophyte species Palmaria palmata (Huds.) Lamour and Lomentaria articulata (Huds.) Lyngb., we compared the effects of growth-saturating constant photon flux density (PFD) (95 μmol photons · m?2· s?1) to those of a dynamic light supply modeled on canopy movements in the intertidal zone (25 μmol photons · m?2· s?1 background PFD plus light flecks of 350 μmol photons · m?2· s?1, 0.1 Hz). The time required for P. palmata and L. articulata to be fully photoinduced was not affected by the dynamics of light supply. L. articulata required only 6 min of illumination with either fluctuating or constant light to be completely induced compared to 20 min for P. palmata. The latter species also lost photoinduction more rapidly than did L. articulata in the dark. There was no significant decline in photoinduction state for either species at the background PFD. The time courses of respiration after illumination with constant and fluctuating light were significantly different for P. palmata but not for L. articulata when the total photon dose was equal. In general, gas exchange of P. palmata appeared to be particularly sensitive to the temporal distribution of light supply whereas that of L. articulata was sensitive to the amplitude of variations, being photoinhibited at high PFD. These results are discussed in terms of the different mechanisms of inorganic carbon acquisition in the two species.  相似文献   

19.
Submerged macrophytes are a central component of lake ecosystems; however, little is known regarding their long‐term response to environmental change. We have examined the potential of diatoms as indicators of past macrophyte biomass. We first sampled periphyton to determine whether habitat was a predictor of diatom assemblage. We then sampled 41 lakes in Quebec, Canada, to evaluate whether whole‐lake submerged macrophyte biomass (BiomEpiV) influenced surface sediment diatom assemblages. A multivariate regression tree (MRT) was used to construct a semiquantitative model to reconstruct past macrophyte biomass. We determined that periphytic diatom assemblages on macrophytes were significantly different from those on wood and rocks (ANOSIM R = 0.63, P < 0.01). A redundancy analysis (RDA) of the 41‐lake data set identified BiomEpiV as a significant (P < 0.05) variable in structuring sedimentary diatom assemblages. The MRT analysis classified the lakes into three groups. These groups were (A) high‐macrophyte, nutrient‐limited lakes (BiomEpiV ≥525 μg · L?1; total phosphorus [TP] <35 μg · L?1; 23 lakes); (B) low‐macrophyte, nutrient‐limited lakes (BiomEpiV <525 μg · L?1; TP <35 μg · L?1; 12 lakes); and (C) eutrophic lakes (TP ≥35 μg · L?1; six lakes). A semiquantitative model correctly predicted the MRT group of the lake 71% of the time (P < 0.001). These results suggest that submerged macrophytes have a significant influence on diatom community structure and that sedimentary diatom assemblages can be used to infer past macrophyte abundance.  相似文献   

20.
This study examines the seasonal physiological response of the codominant, perennial brown algae Lobophora variegata (Lamour.) Womers. and Zonaria tournefortii (Lamour.) Mont. to experimental temperatures approximating the seasonal range of their North Carolina continental shelf habitat. Respiration rates of Lobophora over experimental temperatures (10, 21, 27, and 34°C) seasonally varied, suggesting an acclimation response. The respiration rates of both species at experimental temperatures were generally lower for plants collected in the winter than for those tested in summer, which might enhance winter survival, when seasonally low irradiance might limit photosynthesis. Photosynthetic performance for both species showed significant physiological acclimation throughout the study period. Notably, both species had distinctive seasons of optimal photosynthetic performance. For example, photosynthetic performance at temperatures closest to ambient ranged from 30 (in September) to about 65 (in January and May) nmol O2·nmol Chla?1·h?1 for Lobophora. In contrast, lowest photosynthetic rate (40 nmolO2·nmolChla?1 · h?1) for Zonaria occurred in January; highest photosynthetic performance occurred in May (78 nmolO2 · nmolChla?1·h?1). This difference in their photosynthetic performance may contribute to their continued coexistence in a habitat characterized by large seasonal temperature fluctuations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号