首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Factors that regulate development of Mattesia trogodermae in Trogoderma glabrum were defined, and their quantitative effects were determined. The rate of and the extent to which spore formation proceeds is strictly governed by temperature. More spores are produced at 30° than at 25°C and very low numbers of spores are formed when the incubation temperature is 35°C. When insects are incubated at 35°C for 1–10 days and transferred to 30°C for the remainder of the 30-day experiment, spore production capacity gradually declines with increasing time at 35°C. Two hypotheses are proposed for this phenomenon. Larval size also regulates the extent of spore production, larger larvae having greater potential for spore development. This is not influenced by dosage. Spore production in pupae and adults was always retarded.Dosage and environmental conditions which influence the virulence of M. trogodermae were investigated. These studies show that rates of mortality are higher at higher temperatures. Low doses of spores result in longer LT50's than do high doses at 25° and 30°C. No differences in rates of mortality were found between different doses at 35°C.  相似文献   

2.
In this study, we investigated the pathogenicity and patulin production by ten strains of Penicillium expansum on various fruits (apples, apricots, kiwis, plums and peaches) at two (4°C and 25°C) different temperature regimes. All strains caused the infectious rots on all fruits at 4 and 25°C except one strain (PEX 09) at 4°C. Two strains (PEX 20 and PEX 12) out of ten produced the highest amounts of patulin on all fruits tested. The patulin production by P. expansum is high at 25°C compared to 4°C. All strains of P. expansum accumulated patulin ranging from 100–13,200 μg/kg and nine strains ranging from 100–12,100 μg/kg in all fruits at 25°C and 4°C, respectively. Among ten strains of P. expansum, strain PEX 20 produced the greatest amount of patulin on apricots (13,200 μg/kg of rotten fruit) and on apples (12,500 μg/kg) at 25°C after 9 days of incubation. At 4°C, this strain produced 12,100, 12,000, 2,100 and 1,200 μg/kg of patulin on apricots, apples, plums and peaches, respectively, after 45 days of incubation. Strain PEX 12 produced the highest amount of patulin on kiwis (10,700 μg/kg) at 25°C and 10,300 μg/kg at 4°C. Patulin production by P. expansum on peaches and plums at both temperatures were lower than other fruits. The results of this study showed that careful removal of rotten fruits is essential to produce patulin-free fruit juice, since high patulin levels in apricots, apples and kiwis could result in a level greater than 50 μg/kg of this mycotoxin in finished fruit juices, when one contaminated fruit occurs in 264, 250 and 214 fruits, respectively. So, the fruit processors should take care in not using rotten fruits for juice production to avoid the patulin problem worldwide, since this study proved that most important fruits being used for juice production and direct human consumption are susceptible to P. expansum and subsequent patulin production even at low temperatures. This is the first comprehensive report regarding patulin production by different strains of P. expansum on various fruits from Italy at different temperature regimes.  相似文献   

3.
The ability of different Lactobacillus strains to produce conjugated linoleic acid (CLA) was determined. Three species—Lactobacillus plantarum (Lp), Lactobacillus acidophilus (La) and Streptococcus thermophilus (St)—were co-cultured in a medium containing skim-milk supplemented with hydrolyzed safflower oil. This study was aimed at future applications in dairy products. The optimal operation parameters were established by response surface methodology. More CLA was produced by co-culture than by single strain culture. The CLA produced by co-culture of La and Lp (La–Lp) was more than that produced by La and St (La–St). Maximum CLA production of 316.52 μg/mL was obtained with La–Lp co-culture using a substrate concentration of 5.0 %, inoculum size of 5.0 %, an initial medium pH of 6.4 and a temperature of 36.4 °C for 48 h. To our knowledge, this is the first report in the literature of the use of co-cultures of La–St and La–Lp to produce CLA.  相似文献   

4.
An experiment was conducted to follow the fate of the cyanobacterial toxin, nodularin, produced by Nodularia spumigena through ingestion by Mytilus edulis and re-ingestion of faecal material (coprophagy). Mussels were fed with cultures of N. spumigena, and the faeces that were produced were fed to other mussels not previously exposed to N. spumigena. Concentrations of nodularin were measured in the food (N. spumigena), the mussels and in the faeces in order to make a toxin budget. High concentrations of nodularin were found in the mussels and their faeces after 48 h incubation with N. spumigena. When the toxic faeces were fed to new mussels, the toxin content of faeces was reduced from 95 μg nod g−1 dry weight (DW) to 1 μg nod g−1 DW through the process of coprophagy. Hence, when toxic faeces were fed to mussels, the nodularin concentration of the resulting faecal material was reduced by 99%. Pseudofaeces were produced when the mussels were grazing on N. spumigena, but not when grazing on faeces. The pseudofaeces contained high concentrations of nodularin and apparently intact N. spumigena cells. However, these cells were growth-inhibited and their potential contribution to seeding a bloom is probably limited. Our data indicate that a large fraction of ingested nodularin in M. edulis is egested with the faeces, and that the concentration of nodularin in the faeces is reduced when faeces are re-ingested.  相似文献   

5.
《Process Biochemistry》1999,34(2):115-119
A novel solid substrate fermentation system was used to produce fuel ethanol from sweet sorghum and sweet potato using a thermotolerant Saccharomyces cerevisiae strain (VS3) and a local isolate of amylolytic Bacilllus sps. (VB9). The process was carried out on a laboratory scale using broth cultures. Alcohol produced was estimated by gas chromatography after an incubation time of 72 h at 37 and 42°C. More ethanol was produced in co-culture with a mixed substrate than with the thermotolerant yeast (VS3) alone. The maximum amount of ethanol produced in co-culture with a mixed substrate was 5 g/100 g of substrate at 37°C and 3·5 g/100 g of substrate at 42°C.  相似文献   

6.
Aspergillus oryzae produced a small amount of lipase (0.05–0.8 U/wet-g of solid medium) in solid cultures, in contrast to the larger amount (0.46 U/ml) in a shake-flask culture in a modified GYP medium containing 2% glucose, 1% yeast extract and 2% Polypepton. Optimum conditions of lipase production in the submerged culture of A. oryzae were determined in terms of pH, composition of medium, and temperature. In a shake-flask culture at 28°C, the maximum amount of lipase increased to 0.78 U/ml upon the addition of 3% soybean oil to the modified GYP medium. In a jar fermentor culture, 30 U/ml lipase activity was obtained after 72 h at 28°C under appropriate conditions. Lipase production was greatly influenced by the culture temperature, and the optimum temperature for lipase production was about 24°C with a narrow temperature range, which was 10 degrees lower than that for the growth. In the submerged cultures, two kinds of lipase at least exhibiting different substrate specificities were also suggested.  相似文献   

7.
Mangrove fungi are vastly unexplored for enzymes with industrial application. This study aimed to assess the biocatalytic activity of mangrove fungal xylanases on recycled paper pulp. Forty-four mangrove fungal (MF) isolates were initially screened for xylanolytic activity in minimal medium with corn cob xylan as the sole carbon source. Eight MF were further cultivated under submerged fermentation for the production of crude xylanases. These crude enzymes were then characterized and tested for the pretreatment of recycled paper pulps. Results showed that 93 % of the tested MF isolates exhibited xylanolytic activity in solid medium. In submerged fermentation, salinity improved the growth of the fungal isolates but did not influence xylanase production. The crude xylanases were mostly optimally active at 50 °C and pH 7. Changes in pH had a greater effect on xylanase stability than temperature. More than half of the activity was lost at pH 9 for majority of the crude enzymes. However, two thermophilic xylanases from Fusarium sp. KAWIT-A and Aureobasidium sp. 2LIPA-M and one alkaliphilic xylanase from Phomopsis sp. MACA-J were also produced. All crude enzymes exhibited cellulase activities ranging from 4 to 21 U/ml. Enzymatic pretreatment of recycled paper pulps with 5 % consistency produced 70–650 mg of reducing sugars per gram of pulp at 50 °C after 60 min. The release of high amounts of reducing sugars showed the potential of mangrove fungal crude xylanases in the local paper and pulp industry. The diverse properties shown by the tested crude enzymes also indicate its potential applications to other enzyme-requiring industries.  相似文献   

8.
K. Bauer  R. Conrad  W. Seiler 《BBA》1980,589(1):46-55
Net photosynthesis and CO production were measured in cell suspensions of Chlorella fusca. The rate of net photosynthesis showed saturation curves with increasing radiation intensities and CO2-mixing ratios. Maximum rates were found at 35° C with a sharp decrease at higher temperatures. By contrast, the rate of CO production was proportional to the radiation intensity and did not show any saturation up to 1.5 kW · m?2 white light. The CO-production rate was higher in blue than in red light and was independent of the CO2-mixing ratio of the carrier gas within a range of 0–1000 ppmv. We found that the CO-production rate was constant within the physiological temperature range of 10–35° C, but increased considerably at higher temperatures and that CO production by the chlorophyll-deficient mutant of C. fusca was 5 times that of the wild type. In addition, we measured CO production in cell suspensions of Chromatium vinosum, Rhodopseudomonas sphaeroides and Rhodopseudomonas acidophila, which were grown either anaerobically in the light or aerobically in the dark. CO production could only be observed when the cells were incubated in the presence of oxygen and light. Under these conditions more CO was produced by aerobically grown cells than by phototrophically grown cells of R. sphaeroides and R. acidophila. The results obtained indicate that CO was produced by photosensitized oxidations and not by metabolic processes.  相似文献   

9.
Natural β-carotene has received much attention as consumers have become more health conscious. Its production by various microorganisms including metabolically engineered Escherichia coli or Saccharomyces cerevisiae has been attempted. We successfully created a recombinant E. coli with an engineered whole mevalonate pathway in addition to β-carotene biosynthetic genes and evaluated the engineered cells from the aspects of metabolic balance between central metabolism and β-carotene production by comparison with conventional β-carotene producing recombinant E. coli (control) utilizing a native methylerythritol phosphate (MEP) pathway using bioreactor cultures generated at different temperatures or pHs. Better production of β-carotene was obtained in E. coli cultured at 37°C than at 25°C. A two-fold higher titer and 2.9-fold higher volumetric productivity were obtained in engineered cells compared with control cells. Notably, a marginal amount of acetate was produced in actively growing engineered cells, whereas more than 8 g/L of acetate was produced in control cells with reduced cell growth at 37°C. The data indicated that the artificial operon of the whole mevalonate pathway operated efficiently in redirecting acetyl-CoA into isopentenyl pyrophosphate (IPP), thereby improving production of β-carotene, whereas the native MEP pathway did not convert a sufficient amount of pyruvate into IPP due to endogenous feedback regulation. Engineered cells also produced lycopene with a reduced amount of β-carotene in weak alkaline cultures, consistent with the inhibition of lycopene cyclase.  相似文献   

10.
Eighth instar female house crickets at 35°C developed faster, gained slightly more wet weight, and consumed less food, water, and oxygen than at 25°C. The duration of the 8th stadium at 25°C was 13 days (undisturbed), but was 14 days when disturbed by daily weighing. The duration of the 8th stadium at 30°C was 8 days and at 35°C was 6 days. During the first half of the 8th stadium at 25, 30, and 35°C, there was a high rate of food and water consumption resulting in statistically equal maximum dry weight achievement (124 mg). Respiratory quotients greater than one during this time indicated the conversion of ingested carbohydrate to fat. During the latter half of the 8th stadium, food and water consumption declined and the crickets lost weight. The period of weight loss was proportionally much longer at 25°C than at 30 or 35°C. Respiratory quotients lower than 1.0 during the latter half of the 8th stadium at 30 and 35°C indicated the metabolism of stored lipids. The respiratory quotient at 25°C never fell below 1.0, possibly because some food remained in the gut. The absorption efficiency was not influenced by temperature (25–35°C). Though the caloric content of the faeces was lower at 25°C than at 30 or 35°C, which correlated to the much longer time for food passage at 25°C than at 35°C, the difference in total calories egested was insufficient to alter the absorption efficiency. A longer period of reduced feeding and greater dry weight loss during the latter half of the 8th stadium at 25°C resulted in a lower metabolic efficiency at 25°C than at 30 or 35°C. Eighth instar crickets in response to a step-function transfer from 30°C–25 or 35°C showed an immediate (<1 hr) and complete metabolic adjustment which was not affected by the temperature history during the 7th stadium. House crickets did not exhibit temperature acclimation in the range 20–40°C, the metabolic rate being determined by ambient temperature. The Q10 for oxygen consumption in the range 20–40°C was about 2.  相似文献   

11.
Xanthomonas axonopodis pv. punicae strain—a potent plant pathogen that causes blight disease in pomegranate—was screened for cellulolytic and xylanolytic enzyme production. This strain produced endo-β-1,4-glucanase, filter paper lyase activity (FPA), β-glucosidase and xylanase activities. Enzyme production was optimized with respect to major nutrient sources like carbon and nitrogen. Carboxy methyl cellulose (CMC) was a better inducer for FPA, CMCase and xylanase production, while starch was found to be best for cellobiase. Soybean meal/yeast extract at 0.5 % were better nitrogen sources for both cellulolytic and xylanolytic enzyme production while cellobiase and xylanase production was higher with peptone. Surfactants had no significant effect on levels of extracellular cellulases and xylanases. A temperature of 28 °C and pH 6–8 were optimum for production of enzyme activities. Growth under optimized conditions resulted in increases in different enzyme activities of around 1.72- to 5-fold. Physico-chemical characterization of enzymes showed that they were active over broad range of pH 4–8 with an optimum at 8. Cellulolytic enzymes showed a temperature optimum at around 55 °C while xylanase had highest activity at 45 °C. Heat treatment of enzyme extract at 75 °C for 1 h showed that xylanase activity was more stable than cellulolytic activities. Xanthomonas enzyme extracts were able to act on biologically pretreated paddy straw to release reducing sugars, and the amount of reducing sugars increased with incubation time. Thus, the enzymes produced by X. axonopodis pv. punicae are more versatile and resilient with respect to their activity at different pH and temperature. These enzymes can be overproduced and find application in different industries including food, pulp and paper and biorefineries for conversion of lignocellulosic biomass.  相似文献   

12.
The storage potential of the African pear (Dacryodes edulis (G. Don.) H. J. Lam.) (Burseraceae) was investigated using four fruit types. At ambient temperatures (28·5–30°C), those enclosed in either paper or polythene bags could be stored satisfactorily for 3–8 days, after which they deteriorated rapidly. Storage life was increased at lower temperatures, but injury due to chilling was observed at −5°C. At 15°C, fruits dipped in palm oil before being packaged were of better quality and retained their firmness longer than fruits dipped in a 500 ppm benlate solution. Storage in moist sawdust, wood-shavings or water were the least effective in extending shelf-life. Variation among fruit types in their response to storage treatment was observed.  相似文献   

13.
Measurements of pseudofaeces production of Dreissena polymorpha were carried out with the aim of developing a biological filter at the freshwater inlet of Lake Volkerak-Zoommeer, the Netherlands. Bioprocessing of polluted suspended matter by suspended cultures of D. polymorpha occurs by filtration and sedimentation of the suspended matter as pseudofaeces. The measurements were conducted under semi-natural conditions.Pseudofaeces production was mainly determined by the dry matter content of the water; the relation is linear. Temperature was of much less importance. This agrees with earlier investigations of the filtration rate of D. polymorpha. Even at the lowest temperature measured during the experiments (6.4 °C) no large decrease in activity was observed. The relation of pseudofaeces production with shell length was sigmoid in shape, in accordance with measurements of the filtration rate.The pseudofaeces produced was slightly more polluted than suspended matter, partly due to a finer grainsize. D. polymorpha from Lake IJsselmeer exposed for 217 days at the intended location of the filter showed bioaccumulation of toxicants, especially organic pollutants and Polycyclic Aromatic Hydrocarbons (up to 10-fold accumulation). The required number of D. polymorpha in the biological filter to treat the waterflow of 14 m3 s–1 entering Lake Volkerak-Zoommeer is 1.24 * 109. The purification efficiency of the filter, the reduction of the amount of toxicants, partly depends on the binding properties of the toxicants and is highest for those strongly bound to suspended matter.  相似文献   

14.
The transformation of chlorophyll a by two benthic bivalves – Dreissena polymorpha and Mytilus edulis and, for comparison, by the chironomid Chironomus plumosus – was examined. D. polymorpha is a suspension-feeding, freshwater but very salinity-tolerant species, M. edulis a suspension-feeding marine species, and C.␣plumosus a typical detritivorous freshwater species. All three are common in the Odra Estuary. Specimens of the three species were collected from this area in the period 1999–2003. The bivalves were transferred to a compartment on land and kept in tanks filled with water (filtered and unfiltered) collected simultaneously with the organisms, under light and temperature conditions similar to those obtaining in their natural environment. Pigments in the water samples, faeces and pseudofaeces from the tanks, and in the gut content from C. plumosus, were determined with HPLC. The digestion products of the three species were mainly phaeophorbides a, generally thought to originate mainly from zooplankton grazing, and pyrophaeophytin a in minor quantities. The results indicate that the main chlorophyll a derivatives in faeces and pseudofaeces and gut content of the three species were the same as those in the sediments of the Baltic Sea, including the Odra Estuary. Our previous studies have shown that the sediments in this area are richer in phaeophorbides a than sediments from other parts of the southern Baltic Sea. All this suggests that the benthos may play an important role in the transformation of chlorophyll a in the Odra Estuary area.  相似文献   

15.
The effects of pH, temperature, aeration, and residence time on the continuous production of 4-ethyl-guaiacol (4-EG), which is one of the characteristic aroma components in soy sauce, by immobilized cells of the salt-tolerant yeast Candida versatilis were investigated using an airlift reactor. The optimum pH and temperature were about 4.0 and 30–33°C, respectively. The amount of 4-EG in the liquid was constant even during alterations of nitrogen/air ratio in the supplied gas. A large amount of 4-EG (over 20 ppm) was produced at a residence time from 5 to 28 h and 1–3 ppm of 4-EG, which was the optimum concentration in conventional soy souce, was produced at a shorter residence time of 0.5 h. The 4-EG production by immobilized C. versatilis cells using the airlift reactor was stable for 40 d. It was found that the immobilized cell method was effective for the production of 4-EG by C. versatilis cells.  相似文献   

16.
Isolates ofFusarium poae, F. sporotrichioides, F. sporotrichioides var.chlamydosporum andF. sporotrichioides var.tricinctum made their best growth on PDA substrates at 24 °C, but good growth was also made at 18 °C and 30 °C. At 35 °C growth made by theF. sporotrichioides var.chlamydosporum was quite good, and superior to that of the other fungi. Moderate growth was made by all fungi at 12 °C and byF. sporotrichioides var.tricinctum also at 6 °C, while growth of the other fungi at that temperature was slight. At low temperatures toxic isolates of all butF. sporotrichioides grew better than non-toxic isolates, and growth of all isolates usually was better in light than in darkness up to temperatures of 18 °C. F. poae andF. sporotrichioides produced highest toxicity on rabbit skins when grown at 5–8 °C,F. sporotrichioides var.tricinctum at 15–20 °C. Darkness always favoured toxin development at all temperatures. In a comparison of 3 liquid substrates, overall toxin production was stronger on a starch substrate than on Czapek's or carbohydrate-peptone substrates. Among grain substrates, barley gave highest overall toxicity, which was again favoured by darkness.F. poae isolates were most toxic when derived from soil,F. sporotrichioides isolates when derived from barley. Further tests with 8 liquid substrates confirmed thatF. poae andF. sporotrichioides produce stronger toxicity at 8 °C than at 25 °C, and substrates favoured toxin production at pH 5.6 more than at pH 3.8 or 7.2. At pH 5.6 the isolates induced marked changes in the pH level of the substrate on which they grew. No relation was found to exist between the vigour of growth made by any of these fungi under various environmental conditions and the severity of the toxiç reaction their extracts produced on rabbit skins.  相似文献   

17.
The ingestion and absorption rate of standard length Thais lapillus (L.) stepwise-acclimated to constant temperature-salinity conditions and preying on Mytilus edulis (L.) varied directly with environmental salinity at 10, 15 and 20°C. Dogwhelk ingestion and absorption rates indicate that cold torpor existed at 5°C and heat stress was evident at 20°C. The feeding cycle duration was significantly longer for dogwhelks acclimated to 20%. S than in those acclimated to 30%. S at 10°C even though no significant difference existed between the two groups of snails in the drilling and ingestion or postfeeding phases of the cycle. Ingestive conditioning of dogwhelks to mussels occurred; the duration of the drilling and ingestion and total feeding cycle declined as a function of the number of mussels consumed by a snail. Dogwhelks of all sizes prey on a wide length range of mussels and there is also a high degree of variability in the ingestion rate of snails as a function of their size. A prominent feature of the lack of a relationship between dogwhelk ingestion rate and snail size was that the percentage of nonfeeding snails increased at low salinity and temperature extremes. Digestive-tubule cell lysosomal stability was tested as an index of digestive capability and animal condition; in stepwise-acclimated dogwhelks, it correlated well with their ingestion and absorption rates. The ingestion rate of dogwhelks acclimated to 30%. S and subjected to a 30?17.5?30%. S semidiurnal pattern of fluctuating salinity for 21 days was significantly lower than for snails maintained at 30%. S; however, snails acclimated to 17.5%. S and exposed to the same pattern of fluctuating salinity fed at a higher rate than snails maintained at 17.5%. S. Aerial exposure of snails maintained at 30%. S and 10°C water temperature resulted in an ingestion rate 2.1 times faster than for snails constantly submerged suggesting that tidal emersion is not always stressful to intertidal carnivores. The postfeeding phase of the feeding cycle was shortened in dogwhelks subjected to aerial exposure. Although significant variation occurred in digestive-tubule cell lysosomal stability during the first cycle of fluctuating salinity, the variability had declined significantly by Day 21. This observation suggests that digestive tubule lysosomal stability becomes adapted to a fluctuating osmotic environment, although the initial changes in lysosomal stability are probably related to intralysosomal protein catabolism and production of amino acids for intracellular osmoregulation. Variations in the osmotic environment of T. lapillus have resulted in unexpected outcomes with respect to their ingestion rate under conditions of fluctuating salinity and aerial exposure.  相似文献   

18.
Cold-active lipase production by the psychrophilic strain Rhodococcus cercidiphylli BZ22 isolated from hydrocarbon-contaminated alpine soil was investigated. Depending on the medium composition, high cell densities were observed at a temperature range of 1–10 °C in Luria–Bertani (LB) broth or 1–30 °C in Reasoner’s 2A (R2A). Maximum enzyme production was achieved at a cultivation temperature of 1–10 °C in LB medium. About 70–80 % of the secreted enzyme was bound to the cell and was highly active as a cell-immobilized lipase which exhibited good reusability; more than 60 % of the initial lipase activity was retained after five-fold reuse. The properties of the lipase produced by the investigated strain were compared with those of a mesophilic porcine pancreatic lipase (PPL). The thermal stability of the cell-immobilized bacterial lipase was higher than that of the extracellular enzyme. Highest activity was detected at 30 °C for the cell-immobilized enzyme and for PPL, while the extracellular enzyme displayed highest activity at 10–20 °C. The bacterial lipase hydrolyzed p-nitrophenyl (p-NP) esters with different acyl chain lengths (C2–C18). The highest hydrolytic activity was obtained with p-NP-butyrate (C4) as substrate, while the highest substrate affinity was obtained with p-NP-dodecanoate (C12) as substrate, indicating a clear preference of the enzyme for medium acyl chain lengths.  相似文献   

19.
Exposure of rat liver, perfused with 7% BSA in Krebs-Ringer bicarbonate buffer, to 1.4 m Me2SO at 35 °C had no effect on the release of potassium from the livers, but the rate of urea synthesis fell from 0.6 to 0.1 μmol/min. Bile production also decreased and the total amount collected during perfusion was only half that produced by controls. After perfusion for 4 hr at 35 °C control livers and those exposed to Me2SO started to release GOT into the perfusate but livers exposed to the cryoprotective compound released the enzyme at a faster rate.Exposure of livers to Me2SO at 5 °C resulted in potassium being released at a slower rate (0.98 μmol/min) than from cooled controls (1.19 μmol/min) and urea synthesis was decreased from 0.8 to 0.2 μmol/min. Bile production also declined but, because bile flow normally ceases during hypothermia, the effect on this aspect of liver function was probably less than was found at 35 °C. Release of GOT from livers exposed to Me2SO at 5 °C was quite different from that observed at 35 °C; the enzyme appeared in the perfusate after about 8 hr and it was present in much lower concentration than was found with appropriately cooled controls which started to release the enzyme after 6 hr.Thus, exposure of rat liver to Me2SO at 5 °C appears to be slightly less damaging than exposure at 35 °C and it may even have a beneficial effect on some aspects of liver function in vitro.  相似文献   

20.
Effects of temperature on development of Raja microocellata was tested by maintaining embryos in controlled conditions representative of those predicted under current climate scenarios. There was a positive relationship between size of neonates & developmental rate: temperatures 14.5–16.5°C produced skates 3.5–7%, respectively, smaller than those raised at 12.5°C. Developmental rates were also 12–23% faster, with neonates hatching 3–7 weeks earlier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号