首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
Activation and inhibition of transcription by supercoiling   总被引:18,自引:0,他引:18  
  相似文献   

7.
8.
9.
10.
11.
12.
In prokaryotes, DNA supercoiling regulates the expression of many genes; for example, the expression of Klebsiella pneumoniae nifLA operon depends on DNA negative supercoiling in anaerobically grown ceils, which indicates that DNA supercoiling might play a role in gene regulation of the anaerobic response. Since the expression of the nifH promoter in Sinorhizobium meliloti is not repressed by oxygen, it is proposed that the status of DNA supercoiling may not affect the expression of the nifH promoter. We tested this hypothesis by analyzing nifH promoter activity in wild-type and gyr- Escherichia coli in the presence and absence of DNA gyrase inhibitors. Our results show that gene expression driven by the S.meliloti nifH promoter requires the presence of active DNA gyrase. Because DNA gyrase increases the number of negative superhelical turns in DNA in the presence of ATP, our data indicate that negative supercoiling is also important for nifH promoter activity. Our study also shows that the DNA supercoiling-dependent S. meliloti nifH promoter activity is related to the trans-acting factors NtrC and NifA that activate it. DNA supercoiling appeared to have a stronger effect on NtrC-activated nifH promoter activity than on NifA-activated promoter activity. Collectively, these results from the S. meliloti nifH promoter model system seem to indicate that, in addition to regulating gene expression during anaerobic signaling, DNA supercoiling may also provide a favorable topology for trans-acting factor binding and promoter activation regardless of oxygen status.  相似文献   

13.
A marked reduction in the rate of viral DNA synthesis is accompanied by an alteration to the superhelicity of progeny DNA in polyoma virus-infected cells in which protein synthesis has been inhibited by cycloheximide. Viral DNA molecules formed in the presence of cycloheximide consist predominantly of closed-circular monometric species (referred to as form Ic) characterized by a decreased superhelix density, corresponding to deltasigmao = 0.0195, as compared to form I DNA by propidium diiodide-cesium chloride isopycnic analysis. Form Ic is synthesized on pre-existing form I templates without the intervention of progeny form I as an intermediate. It is concluded that inhibition of protein synthesis results in the alteration of some process in the closure of daughter DNA that leads to a marked reduction of superhelical turns of progeny molecules. About two-thirds of form Ic molecules return to the form I conformation upon reversal of cycloheximide inhibition by a mechanism independent of DNA replication.  相似文献   

14.
Previous work has shown that deletion of the partition (par) locus of plasmid pSC101 results in decreased overall superhelical density of plasmid DNA and concommitant inability of the plasmid to be stably inherited in populations of dividing cells. We report here that the biological effects of par correlate specifically with its ability to generate supercoils in vivo near the origin of pSC101 DNA replication. Using OsO4 reactivity of nucleotides adjoining 20 bp (G-C) tracts introduced into pSC101 DNA to measure local DNA supercoiling, we found that the wild type par locus generates supercoiling near the plasmid's replication origin adequate to convert a (G-C) tract in the region to Z form DNA. A 4 bp deletion that decreases par function, but produces no change in the overall superhelicity of pSC101 DNA as determined by chloroquine/agarose gel analysis, nevertheless reduced (G-C) tract supercoiling sufficiently to eliminate OsO4 reactivity. Mutation of the bacterial topA gene, which results in stabilized inheritance of par-deleted plasmids, restored supercoiling of (G-C) tracts in these plasmids and increased OsO4 reactivity in par+ replicons. Removal of par to a site more distant from the origin decreased supercoiling in a (G-C) tract adjacent to the origin and diminished par function. Collectively, these findings indicate that par activity is dependent on its ability to produce supercoiling at the replication origin rather than on the overall superhelical density of the plasmid DNA.  相似文献   

15.
16.
17.
18.
19.
We show that several interacting environmental factors influence the topology of intracellular DNA. Negative supercoiling of DNA in vivo is increased by anaerobic growth and is also influenced by growth phase. The tonB promoter of Escherichia coli and Salmonella typhimurium was found to be highly sensitive to changes in DNA supercoiling. Expression was increased by novobiocin, an inhibitor of DNA gyrase, and was decreased by factors which increase DNA superhelicity. Expression of the plasmid-encoded tonB gene was enhanced by gamma delta insertions in cis in a distance- and orientation-independent fashion. Both the res site and the TnpR protein of gamma delta, which is known to function as a type I topoisomerase, were required for this activation. tonB expression increased during the growth cycle and was reduced by anaerobiosis. There was excellent correlation between tonB expression from a plasmid and the level of supercoiling of that plasmid under a wide range of conditions. The chromosomal tonB gene was regulated in a manner identical to that of the plasmid-encoded gene. Thus, the physiological regulation of tonB expression in response to anaerobiosis and growth phase appears to be mediated by environmentally induced changes in DNA superhelicity.  相似文献   

20.
A novel method of determining the number of superhelical turns of a covalently-closed plasmid DNA is described. It relies on the determination of the hyperchromicity, and hence the proportion of unstacked basepairs, of a partially heat-denatured sample which co-migrates during electrophoresis with nicked circular duplex DNA. The values obtained for plasmid pBR beta G DNA at 4 degrees C (-29.8 and -33.5 in the two buffers used) agree closely with the values obtained in parallel by topoisomer band-counting. Our method is less precise than band-counting but is readily applicable to determining the superhelicity of very large DNA molecules. Our results confirm earlier findings that magnesium-containing buffers cause an increase in the duplex winding angle, and hence an increase in the number of negative superhelical turns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号