首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pathogenic Yersinia species export Yop proteins via a type III machinery to escape their phagocytic killing during animal infections. Here, we reveal the type III export mechanism of YopQ. In the presence of calcium, when type III secretion was blocked, yopQ mRNA was not translated. The signal of YopQ sufficient for the secretion of translationally fused reporter proteins was contained within the first 10 codons of its open reading frame. Some frameshift mutations that completely altered the peptide sequence specified by this signal did not impair secretion of the reporter protein. Exchanging the upstream untranslated mRNA leader of yopQ for that of E. coli lacZ also did not affect secretion. However, removal of the first 15 codons abolished YopQ export. Pulse-labelled YopE, but not YopQ, could be secreted after the polypeptide had been synthesized within the cytoplasm of Yersinia (post-translational secretion). Thus, YopQ appears to be exported by a mechanism that couples yopQ mRNA translation with the type III secretion of the encoded polypeptide.  相似文献   

2.
The Ysc type III secretion system allows Yersinia enterocolitica to translocate virulence proteins, called Yop effectors, into the cytosol of eukaryotic cells. Some of the Yop effectors possess an individual chaperone called a Syc protein. The first 15 amino acids of the YopE effector constitute a secretion signal that is sufficient to promote secretion of several reporter proteins. Residues 15-50 of YopE comprise the minimal binding domain for the SycE chaperone. In this study, we investigated the secretion by the Ysc system of several YopE-DHFR hybrid proteins with different folding properties, and evaluated the role of SycE, the cognate chaperone of YopE, in this context. We have analysed the secretion of hybrids containing 16 (YopE16), 52 (YopE52) and 80 (the complete region covered by the chaperone, YopE80) amino acids of YopE or full-length YopE (YopEFL) with wild-type DHFR and two mutants with altered folding properties. The hybrids containing DHFR delta77, the mutant whose folding properties are the most drastically affected, could be secreted in all the conditions tested, even in the absence of the chaperone SycE. In contrast, DHFRwt could only be secreted fused to the first 52 amino acids of YopE, and its secretion was strictly dependent on SycE. The hybrids YopE80-DHFRwt and YopEFL-DHFRwt were not secreted. YopEFL-DHFRwt completely jammed the channel in an SycE-dependent fashion. Our experiments indicate that, in order to be secreted, proteins must be unfolded or only partially folded, and that TSS chaperones could keep their substrates in a secretion-competent conformation, probably by preventing their folding. In addition, they show that the secretion apparatus can reject folded proteins if they are not deeply engaged into the injectisome.  相似文献   

3.
Yersinia enterocolitica uses type III secretion to transport Yop proteins into the cytoplasm of host cells. Previous work generated hypotheses for both co- and post-translational transport mechanisms in the Yersinia type III pathway. Here, we used ubiquitin (Ub) and UBP1, the Ub-specific protease, to examine whether Yops can be secreted when synthesized prior to recognition by the type III machinery. Fusion of Ub to the N-terminus of Yops blocked substrate recognition and secretion of hybrids generated with YopE, YopQ or YopR. UBP1 removed Ub from the N-terminus of these hybrids and allowed YopE, YopQ or YopR cleavage products to enter the secretion pathway. Following the release of Ub, Yersinia type III machines also transported the YopE cleavage product into the cytosol of tissue culture cells. Minimal secretion signals were also examined with the Ub/UBP1 system and some, but not all, of these signals promoted type III secretion even after polypeptides had been freed from Ub. These results suggest that recognition and secretion of Yop substrates by the type III machinery can occur by a post-translational mechanism.  相似文献   

4.
Yersinia enterocolitica inject toxic proteins (effector Yops) into the cytosol of eukaryotic cells by a mechanism requiring the type III machinery. Previous work mapped a signal sufficient for the targeting of fused reporter proteins to amino acids 1-100 of YopE. Targeting requires the binding of SycE to YopE residues 15-100 in the bacterial cytoplasm. We asked whether SycE functions only to stabilize YopE in the bacterial cytoplasm, or whether the secretion chaperone itself contributes to substrate recognition by the type III machinery. Fusions of glutathione S-transferase to either the N or C terminus of SycE resulted in hybrid proteins that bound YopE but prevented targeting of the export substrate into HeLa cells. As compared with wild-type SycE, glutathione S-transferase-SycE bound and stabilized YopE in the bacterial cytoplasm but failed to release the polypeptide for export by the type III machinery. Thus, it appears that SycE functions to deliver YopE to the type III secretion machinery. A model is presented that accounts for substrate recognition of effector Yops, a group of proteins that do not share amino acid sequence or physical similarities.  相似文献   

5.
A type III secretion-translocation system allows Yersinia adhering at the surface of animal cells to deliver a cocktail of effector Yops (YopH, -O, -P, -E, -M, and -T) into the cytosol of these cells. Residues or codons 1 to 77 contain all the information required for the complete delivery of YopE into the target cell (release from the bacterium and translocation across the eukaryotic cell membrane). Residues or codons 1 to 15 are sufficient for release from the wild-type bacterium under Ca(2+)-chelating conditions but not for delivery into target cells. Residues 15 to 50 comprise the binding domain for SycE, a chaperone specific for YopE that is necessary for release and translocation of full-length YopE. To understand the role of this chaperone, we studied the delivery of YopE-Cya reporter proteins and YopE deletants by polymutant Yersinia devoid of most of the Yop effectors (delta HOPEM and delta THE strains). We first tested YopE-Cya hybrid proteins and YopE proteins deleted of the SycE-binding site. In contrast to wild-type strains, these mutants delivered YopE(15)-Cya as efficiently as YopE(130)-Cya. They were also able to deliver YopE(delta 17-77). SycE was dispensable for these deliveries. These results show that residues or codons 1 to 15 are sufficient for delivery into eukaryotic cells and that there is no specific translocation signal in Yops. However, the fact that the SycE-binding site and SycE were necessary for delivery of YopE by wild-type Yersinia suggests that they could introduce hierarchy among the effectors to be delivered. We then tested a YopE-Cya hybrid and YopE proteins deleted of amino acids 2 to 15 but containing the SycE-binding domain. These constructs were neither released in vitro upon Ca(2+) chelation nor delivered into cells by wild-type or polymutant bacteria, casting doubts on the hypothesis that SycE could be a secretion pilot. Finally, it appeared that residues 50 to 77 are inhibitory to YopE release and that binding of SycE overcomes this inhibitory effect. Removal of this domain allowed in vitro release and delivery in cells in the absence as well as in the presence of SycE.  相似文献   

6.
Yersinia spp. inject virulence proteins called Yops into the cytosol of target eukaryotic cells in an effort to evade phagocytic killing via a dedicated protein-sorting pathway termed type III secretion. Previous studies have proposed that, unlike other protein translocation mechanisms, Yops are not recognized as substrates for secretion via a solely proteinaceous signal. Rather, at least some of this information may be encoded within yop mRNA. Herein, we report that the first seven codons of yopE, when fused to the reporter protein neomycin phosphotransferase (Npt), are sufficient for the secretion of YopE1-7-Npt when type III secretion is induced in vitro. Systematic mutagenesis of yopE codons 1 to 7 reveals that, like yopQ, codons 2, 3, 5, and 7 are sensitive to mutagenesis, thereby defining the first empirical similarity between the secretion signals of two type III secreted substrates. Like that of yopQ, the secretion signal of yopE exhibits a bipartite nature. This is manifested by the ability of codons 8 to 15 to suppress point mutations in the minimal secretion signal that change the amino acid specificities of particular codons or that induce alterations in the reading frame. Further, we have identified a single nucleotide position in codon 3 that, when mutated, conserves the predicted amino acid sequence of the YopE1-7-Npt but abrogates secretion of the reporter protein. When introduced into the context of the full-length yopE gene, the single-nucleotide mutation reduces the type III injection of YopE into HeLa cells, even though the predicted amino acid sequence remains the same. Thus, yopE mRNA appears to encode a property that mediates the type III injection of YopE.  相似文献   

7.
Pathogenic Yersinia species inject virulence proteins, known as Yops, into the cytosol of eukaryotic cells. The injection of Yops is mediated via a type III secretion system. Previous studies have suggested that YopE is targeted for secretion by two signals. One is mediated by its cognate chaperone YerA, whereas the other consists of either the 5' end of yopE mRNA or the N-terminus of YopE. In order to characterize the YopE N-terminal/5' mRNA secretion signal, the first 11 codons of yopE were systematically mutagenized. Frameshift mutations, which completely alter the amino acid sequence of residues 2-11 but leave the mRNA sequence essentially intact, drastically reduce the secretion of YopE in a yerA mutant. In contrast, a mutation that alters the yopE mRNA sequence, while leaving the amino acid sequence of YopE unchanged, does not impair the secretion of YopE. Therefore, the N-terminus of YopE, and not the 5' end of yopE mRNA, serves as a targeting signal for type III secretion. In addition, the chaperone YerA can target YopE for type III secretion in the absence of a functional N-terminal signal. Mutational analysis of the YopE N-terminus revealed that a synthetic amphipathic sequence of eight residues is sufficient to serve as a targeting signal. YopE is also secreted rapidly upon a shift to secretion-permissive conditions. This 'rapid secretion' of YopE does not require de novo protein synthesis and is dependent upon YerA. Furthermore, this burst of YopE secretion can induce a cytotoxic response in infected HeLa cells.  相似文献   

8.
Type III secretion-dependent translocation of Yop (Yersinia outer proteins) effector proteins into host cells is an essential virulence mechanism common to the pathogenic Yersinia species. One unique feature of this mechanism is the polarized secretion of Yops, i.e. Yops are only secreted at the site of contact with the host cell and not to the surrounding medium. In vitro, secretion occurs in Ca2+-depleted media, a condition believed to somehow mimic cell contact. Three proteins, YopN, LcrG and TyeA have been suggested to control secretion and mutating any of these genes results in constitutive secretion. In addition, in Y. enterocolitica TyeA has been implied to be specifically required for delivery of a subset of Yop effectors into infected cells. In this work we have investigated the role of TyeA in secretion and translocation of Yop effectors by Y. pseudotuberculosis. An in frame deletion mutant of tyeA was found to be temperature-sensitive for growth and this phenotype correlated to a lowered expression of the negative regulatory element LcrQ. In medium containing Ca2+, Yop expression was somewhat elevated compared to the wild-type strain and low levels of Yop secretion was also seen. Somewhat surprisingly, expression and secretion of Yops was lower than for the wild-type strain when the tyeA mutant was grown in Ca2+-depleted medium. Translocation of YopE, YopH, YopJ and YopM into infected HeLa cells was significantly lower in comparison with the isogenic wild-type strain and Yop proteins could also be recovered in the tissue culture medium. This indicated that the tyeA mutant had lost the ability to translocate Yop proteins by a polarized mechanism. In order to exclude that the defect in translocation seen in the tyeA mutant was a result of lowered expression/secretion of Yops, a double lcrQ/tyeA mutant was constructed. This strain was de-repressed for Yop expression and secretion but was still impaired for translocation of both YopE and YopM. In addition, the low level of YopE translocation in the tyeA mutant was independent of the YopE chaperone YerA/SycE. TyeA was found to localize to the cytoplasm of the bacterium and we were unable to find any evidence that TyeA was secreted or surface located. From our studies in Y. pseudotuberculosis we conclude that TyeA is involved in regulation of Yop expression and required for polarized delivery of Yop effectors in general and is not as suggested in Y. enterocolitica directly required for translocation of a subset of Yop effectors.  相似文献   

9.
Secretion by the type III pathway of Gram-negative microbes transports polypeptides into the extracellular medium or into the cytoplasm of host cells during infection. In pathogenic Yersinia spp., type III machines recognize 14 different Yop protein substrates via discrete signals genetically encoded in 7-15 codons at the 5' portion of yop genes. Although the signals necessary and sufficient for substrate recognition of Yop proteins have been mapped, a clear mechanism on how proteins are recognized by the machinery and then initiated into the transport pathway has not yet emerged. As synonymous substitutions, mutations that alter mRNA sequence but not codon specificity, affect the function of some secretion signals, recent work with several different microbes tested the hypothesis of an RNA-encoded secretion signal for polypeptides that travel the type III pathway. This review summarizes experimental observations and mechanistic models for substrate recognition in this field.  相似文献   

10.
Pathogenic Yersiniae adhere to and kill macrophages by targeting some of their Yop proteins into the eukaryotic cytosol. There is debate about whether YopE targeting proceeds as a direct translocation of polypeptide between cells or in two distinct steps, each requiring specific signals for YopE secretion across the bacterial envelope and for translocation into the eukaryotic cytosol. Here, we used the selective solubilization of the eukaryotic plasma membrane with digitonin to measure Yop targeting during Yersinia infections of HeLa cells. YopE, YopH, YopM and YopN were found in the eukaryotic cytosol but not in the extracellular medium. When bound to SycE chaperone in the Yersinia cytoplasm, YopE residues 1–100 are necessary and sufficient for the targeting of hybrid neomycin phosphotransferase. Electron microscopic analysis failed to detect an extracellular intermediate of YopE targeting, suggesting a one-step translocation mechanism.  相似文献   

11.
Pathogenic Yersinia spp. secrete Yop proteins via the type III pathway. yopQ codons 1 to 15 were identified as a signal necessary and sufficient for the secretion of a fused reporter protein. Frameshift mutations that alter codons 2 to 15 with little alteration of yopQ mRNA sequence do not abolish type III transport, suggesting a model in which yopQ mRNA may provide a signal for secretion (D. M. Anderson and O. Schneewind, Mol. Microbiol. 31:1139-1148, 2001). In a recent study, the yopE signal was truncated to codons 1 to 12. All frameshift mutations introduced within the first 12 codons of yopE abolished secretion. Also, multiple synonymous mutations that changed the mRNA sequence of yopE codons 1 to 12 without altering the amino acid sequence did not affect secretion. These results favor a model whereby an N-terminal signal peptide initiates YopE into the type III pathway (S. A. Lloyd et al., Mol. Microbiol. 39:520-531, 2001). It is reported here that codons 1 to 10 of yopQ act as a minimal secretion signal. Further truncation of yopQ, either at codon 10 or at codon 2, abolished secretion. Replacement of yopQ AUG with either of two other start codons, UUG or GUG, did not affect secretion. However, replacement of AUG with CUG or AAA and initiating translation at the fusion site with npt did not permit Npt secretion, suggesting that the translation of yopQ codons 1 to 15 is a prerequisite for secretion. Frameshift mutations of yopQ codons 1 to 10, 1 to 11, and 1 to 12 abolished secretion signaling, whereas frameshift mutations of yopQ codons 1 to 13, 1 to 14, and 1 to 15 did not. Codon changes at yopQ positions 2 and 10 affected secretion signaling when placed within the first 10 codons but had no effect when positioned in the larger fusion of yopQ codons 1 to 15. An mRNA mutant of yopQ codons 1 to 10, generated by a combination of nine synonymous mutations, was defective in secretion signaling, suggesting that the YopQ secretion signal is not proteinaceous. A model is discussed whereby the initiation of YopQ polypeptide into the type III pathway is controlled by properties of yopQ mRNA.  相似文献   

12.
Y. enterocolitica translocates virulence proteins, called Yop effectors, into the cytosol of eukaryotic cells. Here we investigated whether Y. enterocolitica could translocate Yops into a range of eukaryotic cells including neurons and insect cells. Y. enterocolitica translocated the hybrid reporter protein YopE-Cya into each of the eukaryotic cell types tested. In addition, Y. enterocolitica was cytotoxic for each of the adherent cell types. Thus we detected no limit to the range of eukaryotic cells into which Y. enterocolitica can translocate Yops. The Yop effectors YopE, YopH and YopT were each cytotoxic for the adherent cell types tested, showing that not only is Y. enterocolitica not selective in its translocation of particular Yop effectors into each cell type, but also that the action of these Yop effectors is not cell type specific. Invasin and/or YadA, two powerful adhesins were required for translocation of Yop into non-phagocytic cells but not for translocation into macrophages. To use the Yersinia translocation system for broad applications, a Y. enterocolitica translocation strain and vector for the delivery of heterologous proteins into eukaryotic cells was constructed. This strain + vector combination lacks the translocated Yop effectors and allows delivery into eukaryotic cells of heterologous proteins fused to the minimal N-terminal secretion/translocation signal of YopE. Using this strategy translocation of a YopE-Diphtheria toxin subunit A hybrid protein into several cell types has been shown.  相似文献   

13.
Customized secretion chaperones in pathogenic bacteria   总被引:34,自引:13,他引:21  
Pathogenic yersiniae secrete about a dozen anti-host proteins, the Yops, by a pathway which does not involve cleavage of a classical signal peptide. The Yop secretory apparatus, called Ysc, for Yop secretion, is the archetype of type III secretion systems (which serve for the secretion of virulence proteins by several animal and plant pathogens) and is related to the flagellar assembly apparatus. The Yop secretion signal is N-terminal but has not been defined to date. Apart from the Ysc machinery, secretion of at least four Yops requires cytoplasmic proteins called Syc (for specific Yop chaperone). Each Syc protein binds to its cognate Yop. Unlike most cytoplasmic chaperones, these proteins do not have an ATP-binding domain, and are presumably devoid of ATPase activity. They share a few common properties: an acidic pl, a size in the range of 15–20 kDa, and a putative amphipathic α-helix in the C-terminal portion. They were recently shown to have counterparts in other pathogenic bacteria, where they appear to have a similar function.  相似文献   

14.
15.
All type III secretion systems (T3SS) harbor a member of the YscU/FlhB family of proteins that is characterized by an auto-proteolytic process that occurs at a conserved cytoplasmic NPTH motif. We have previously demonstrated that YscUCC, the C-terminal peptide generated by auto-proteolysis of Yersinia pseudotuberculosis YscU, is secreted by the T3SS when bacteria are grown in Ca2+-depleted medium at 37 °C. Here, we investigated the secretion of this early T3S-substrate and showed that YscUCC encompasses a specific C-terminal T3S signal within the 15 last residues (U15). U15 promoted C-terminal secretion of reporter proteins like GST and YopE lacking its native secretion signal. Similar to the “classical” N-terminal secretion signal, U15 interacted with the ATPase YscN. Although U15 is critical for YscUCC secretion, deletion of the C-terminal secretion signal of YscUCC did neither affect Yop secretion nor Yop translocation. However, these deletions resulted in increased secretion of YscF, the needle subunit. Thus, these results suggest that YscU via its C-terminal secretion signal is involved in regulation of the YscF secretion.  相似文献   

16.
The type III machinery of Yersinia transports Yop proteins across the bacterial envelope. The minimal secretion signal of yopQ is located in codons 1-10 that, when fused in frame to the neomycin phosphotransferase gene, is sufficient to promote type III secretion of YopQ(1-10)-Npt. Frame-shift mutations, generated by nucleotide insertions or deletions following the AUG start and suppressed at the fusion site with npt, abrogate signalling of yopQ(1-10) but not of yopQ(1-15). By generating transversions of every single nucleotide in yopQ(1-10), we identified 10 nucleotide positions in codons 2, 3, 5, 7, 9 and 10 that were each required for substrate recognition. One transversion that abolishes secretion, uridyl 9 to adenyl (U9A), is a synonymous codon 3 mutation that retains the original amino acid as confirmed by Edman degradation analysis, suggesting that the mRNA but not the amino acid sequence of yopQ(1-10) is involved in secretion signalling. Although transversion of U8A abrogates signalling of yopQ(1-10), fusion of yopQ codons 11-15 restores secretion. The nucleotides that are required for this suppression by yopQ(11-15) were identified and revealed both synonymous and non-synonymous mutations. Frame-shift mutations introduced into just this suppressor region (codons 11-15) did not abrogate its ability to suppress mutations in the minimal secretion signal (codons 1-10). Thus, elements downstream of the minimal secretion signal of YopQ increase the efficiency of YopQ secretion and suppress mutations elsewhere in the secretion signal.  相似文献   

17.
Viboud GI  Bliska JB 《The EMBO journal》2001,20(19):5373-5382
The bacterial pathogen Yersinia pseudotuberculosis uses type III secretion machinery to translocate Yop effector proteins through host cell plasma membranes. A current model suggests that a type III translocation channel is inserted into the plasma membrane, and if Yops are not present to fill the channel, the channel will form a pore. We examined the possibility that Yops act within the host cell to prevent pore formation. Yop- mutants of Y.pseudotuberculosis were assayed for pore-forming activity in HeLa cells. A YopE- mutant exhibited high levels of pore-forming activity. The GTPase-downregulating function of YopE was required to prevent pore formation. YopE+ bacteria had increased pore-forming activity when HeLa cells expressed activated Rho GTPases. Pore formation by YopE- bacteria required actin polymerization. F-actin was concentrated at sites of contact between HeLa cells and YopE- bacteria. The data suggest that localized actin polymerization, triggered by the type III machinery, results in pore formation in cells infected with YopE- bacteria. Thus, translocated YopE inhibits actin polymerization to prevent membane damage to cells infected with wild-type bacteria.  相似文献   

18.
Type III secretion systems are used by several pathogens to translocate effector proteins into host cells. Yersinia pseudotuberculosis delivers several Yop effectors (e.g. YopH, YopE and YopJ) to counteract signalling responses during infection. YopB, YopD and LcrV are components of the translocation machinery. Here, we demonstrate that a type III translocation protein stimulates proinflammatory signalling in host cells, and that multiple effector Yops counteract this response. To examine proinflammatory signalling by the type III translocation machinery, HeLa cells infected with wild-type or Yop-Y. pseudotuberculosis strains were assayed for interleukin (IL)-8 production. HeLa cells infected with a YopEHJ- triple mutant released significantly more IL-8 than HeLa cells infected with isogenic wild-type, YopE-, YopH- or YopJ- bacteria. Complementation analysis demonstrated that YopE, YopH or YopJ are sufficient to counteract IL-8 production. IL-8 production required YopB, but did not require YopD, pore formation or invasin-mediated adhesion. In addition, YopB was required for activation of nuclear factor kappa B, the mitogen-activated protein kinases ERK and JNK and the small GTPase Ras in HeLa cells infected with the YopEHJ- mutant. We conclude that interaction of the Yersinia type III translocator factor YopB with the host cell triggers a proinflammatory signalling response that is counteracted by multiple effectors in host cells.  相似文献   

19.
Yersinia enterocolitica O:8 has two contact-dependent type III secretion systems (TTSSs). The Ysa TTSS is encoded by a set of genes located on the chromosome and exports Ysp proteins. The Ysc TTSS and the Yop effector proteins it exports are encoded by genes located on plasmid pYVe8081. In this study, secretion of YspG, YspH, and YspJ by the Ysa TTSS was shown to require pYVe8081. Furthermore, mutations that blocked the function of the Ysc TTSS did not affect YspG, YspH, and YspJ production. This indicated that YspG, YspH, and YspJ are encoded by genes located on pYVe8081 and that they may correspond to Yops. A comparison of Ysps with Yop effectors secreted by Y. enterocolitica indicated that YspG, YspH, and YspJ have apparent molecular masses similar to those of YopN, YopP, and YopE, respectively. Immunoblot analysis demonstrated that antibodies directed against YopN, YopP, and YopE recognized YspG, YspH, and YspJ. Furthermore, mutations in yopN, yopP, and yopE specifically blocked YopN, YopP, and YopE secretion by the Ysc TTSS and YspG, YspH, and YspJ secretion by the Ysa TTSS. These results indicate YspG, YspH, and YspJ are actually YopN, YopP, and YopE. Additional analysis demonstrated that YopP and YspH secretion was restored to yopP mutants by complementation in trans with a wild-type copy of the yopP gene. Examination of Y. enterocolitica-infected J774A.1 macrophages revealed that both the Ysc and Ysa TTSSs contribute to YopP-dependent suppression of tumor necrosis factor alpha production. This indicates that both the Ysa and Ysc TTSSs are capable of targeting YopP and that they influence Y. enterocolitica interactions with macrophages. Taken together, these results suggest that the Ysa and Ysc TTSSs contribute to Y. enterocolitica virulence by exporting both unique and common subsets of effectors.  相似文献   

20.
Type III secretion functions in flagellar biosynthesis and in export of virulence factors from several animal pathogens, and for plant pathogens, it has been shown to be involved in the export of elicitors of the hypersensitive reaction. Typified by the Yop delivery system of Yersinia spp., type III secretion is sec independent and requires multiple components. Sequence analysis of an 11.5-kb region of the hrp gene cluster of Erwinia amylovora containing hrpI, a previously characterized type III gene, revealed a group of eight or more type III genes corresponding to the virB or lcrB (yscN-to-yscU) locus of Yersinia spp. A homolog of another Yop secretion gene, yscD, was found between hrpI and this group downstream. Immediately upstream of hrpI, a homolog of yopN was discovered. yopN is a putative sensor involved in host-cell-contact-triggered expression and transfer of protein, e.g., YopE, to the host cytoplasm. In-frame deletion mutagenesis of one of the type III genes, designated hrcT, was nonpolar and resulted in a Hrp- strain that produced but did not secrete harpin, an elicitor of the hypersensitive reaction that is also required for pathogenesis. Cladistic analysis of the HrpI (herein renamed HrcV) or LcrD protein family revealed two distinct groups for plant pathogens. The Yersinia protein grouped more closely with the plant pathogen homologs than with homologs from other animal pathogens; flagellar biosynthesis proteins grouped distinctly. A possible evolutionary history of type III secretion is presented, and the potential significance of the similarity between the harpin and Yop export systems is discussed, particularly with respect to a potential role for the YopN homolog in pathogenesis of plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号