首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plants of Phaseolus vulgaris L were grown from seed in open-topgrowth chambers at present day (350 µmol mol–1)and double the present day (700 µmol mol–1) atmosphericCO2 concentration with either low (L, without additional nutrientsolution) or relatively high (H, with additional nutrient solution)nutrient supply Measurements of assimilation rate, stomatalconductance and water use efficiency were started 17 d aftersowing on each fully expanded, primary leaf of three plantsper treatment Measurements were made in external CO2 concentrations(C2) of 200, 350, 450, 550 and 700 µmol mol–1 andrelated to both Ca and to C1, the mean intercellular space CO2concentration Fully adjusted, steady state measurements weremade after approx 2 h equilibration at each CO2 concentration The rate of CO2 assimilation by leaves increased and stomatalconductance decreased similarly over the range of Ca or C1 inall four CO2 and nutrient supply treatments but both assimilationrate and stomatal conductance were higher in the high nutrientsupply treatment than in the low nutrient treatment The relationbetween assimilation rate or stomatal conductance and C1 wasnot significantly different amongst plants grown in present-dayor elevated CO2 concentration in either nutrient supply treatment,i e there was no evidence of down regulation of photosynthesisor stomatal response Increase in CO2 concentration from 350to 700 µmol mol–1 doubled water use efficiency ofindividual leaves in the high nutrient supply treatment andtripled water use efficiency in the low nutrient supply treatment The results support the hypothesis that acclimation phenomenaresult from unbalanced growth that occurs after the seed reservesare exhausted, when the supply of resources becomes growth limiting CO2 enrichment, Phaseolus vulgaris L., net CO2 assimilation rate, stomatal conductance, water use efficiency  相似文献   

2.
Stomatal Responses of Variegated Leaves to CO2 Enrichment   总被引:1,自引:0,他引:1  
The responses of stomatal density and stomatal index of fivespecies of ornamental plants with variegated leaves grown attwo mole fractions of atmospheric CO2 (350 and 700 µmolmol-1) were measured. The use of variegated leaves allowed anypotential effects of mesophyll photosynthetic capacity to beuncoupled from the responses of stomatal density to changesin atmospheric CO2 concentration. There was a decrease in stomataldensity and stomatal index with CO2 enrichment on both white(unpigmented) and green (pigmented) leaf areas. A similar responseof stomatal density and index was also observed on areas ofleaves with pigmentation other than green indicating that anydifferences in metabolic processes associated with colouredleaves are not influencing the responses of stomatal densityto CO2 concentrations. Therefore the carboxylation capacityof mesophyll tissue has no direct influence on stomatal densityand index responses as suggested previously (Friend and Woodward1990 Advances in Ecological Research 20: 59-124), instead theresponses were related to leaf structure. The stomatal characteristics(density and index) of homobaric variegated leaves showed agreater sensitivity to CO2 on green portions, whereas heterobaricleaves showed a greater sensitivity on white areas. These resultsprovide evidence that leaf structure may play an important rolein determining the magnitude of stomatal density and index responsesto CO2 concentrations.Copyright 1995, 1999 Academic Press Leaf structure, photosynthesis, stomatal conductance, CO2, stomatal density, stomatal index  相似文献   

3.
Two common tallgrass prairie species, Andropogon gerardii, thedominant C4 grass in this North American grassland, and Salviapitcheri, a C3 forb, were exposed to ambient and elevated (twiceambient) CO2 within open-top chambers throughout the 1993 growingseason. After full canopy development, stomatal density on abaxialand adaxial surfaces, guard cell length and specific leaf mass(SLM; mg cm-2) were determined for plants in the chambers aswell as in adjacent unchambered plots. Record high rainfallamounts during the 1993 growing season minimized water stressin these plants (leaf xylem pressure potential was usually >-1·5 MPa in A. gerardii) and also minimized differencesin water status among treatments. In A. gerardii, stomatal densitywas significantly higher (190 ± 7 mm-2; mean ±s.e.) in plants grown outside of the chambers compared to plantsthat developed inside the ambient CO2 chambers (161 ±5 mm-2). Thus, there was a significant 'chamber effect' on stomataldensity. At elevated levels of CO2, stomatal density was evenlower (P < 0·05; 121 ± 5 mm-2). Most stomatawere on abaxial leaf surfaces in this grass, but the ratio ofadaxial to abaxial stomatal density was greater at elevatedlevels of CO2. In S. pitcheri, stomatal density was also significantlylower when plants were grown in the open-top chambers (235 ±10 mm-2 outside vs. 140 ± 6 mm-2 in the ambient CO2 chamber).However, stomatal density was greater at elevated CO2 (218 ±12 mm-2) compared to plants from the ambient CO2 chamber. Theratio of stomata on adaxial vs. abaxial surfaces did not varysignificantly in this herb. Guard cell lengths were not significantlyaffected by growth in the chambers or by elevated CO2 for eitherspecies. Growth within the chambers resulted in lower SLM inS. pitcheri, but CO2 concentration had no effect. In A. gerardii,SLM was lower at elevated CO2. These results indicate that stomataland leaf responses to elevated CO2 are species specific, andreinforce the need to assess chamber effects along with treatmenteffects (CO2) when using open-top chambers.Copyright 1994, 1999Academic Press Andropogon gerardii, elevated CO2, Salvia pitcheri, stomatal density, tallgrass prairie  相似文献   

4.
The responses of net CO2 assimilation to sudden changes in irradiancewere studied in Phaseolus vulgaris L. in the laboratory andthe field. For irradiance changes between 50 µmol m–2s–1 to 350 µmol m–2 s–1 in the laboratory,assimilation rate increased with half-times of 2.7 and 4.1 minin well-watered and water-stressed plants, respectively. Ina field experiment with a change in irradiance from 400 to 1200µmol m–2 s–1 the response was faster (half-time=c.1.2 min). In all cases when irradiance was returned to a lowvalue, assimilation declined rapidly with a half-time of approximately1 min, which approached the time resolution of the gas-exchangesystem. The corresponding changes in stomatal conductance in responseto both increasing and decreasing irradiance were much slowerthan the assimilation responses, indicating that biochemicalprocesses, rather than CO2 supply, primarily determined theactual rate of assimilation in these experiments. The conceptof stomatal limitation to photosynthesis is discussed in relationto these results. A simple model for assimilation in a fluctuating light environmentis proposed that depends on a steadystate light response curve,an ‘induction lag’ on increasing irradiance, andan induction-state memory. The likely importance of taking accountof such induction lags in natural canopy microclimates is considered. Key words: Models, Phaseolus vulgaris, photosynthetic induction, CO2 assimilation, stomatal limitation, sunflecks, water stress  相似文献   

5.
Agrostis capillaris L.4 Festuca vivipara L. and Poa alpinaL.were grown in outdoor open-top chambers at either ambient (340µmol mol–1) or elevated (680 µmol–1)CO2 for periods from 79 to 189 d. Under these conditions thereis increased growth of A. caplllarls and P. alpina, but reducedgrowth of F. vivipara. Nutrient use efficiency, nutrient productivity(total plant dry weight gain per unit of nutrient) and nutrientallocation of all three grass species were measured in an attemptto understand their individual growth responses further andto determine whether altered nutrient-use efficiencies and productivitiesenable plants exposed to an elevated atmospheric CO2 environmentto overcome potential limitations to growth imposed by soilfertility. Total uptake of nutrients was, in general, greater in plantsof A. capillaris and P. alpina (with the exception of N andK in the latter) when grown at 680 µmol mol–1 CO2.In F. vivipara, however, uptake was considerably reduced inplants grown at the higher CO2 concentration. Overall, a doubling of atmospheric CO2 concentration had littleeffect on the nutrient use efficiency or productivity of A.capillaris. Reductions in tissue nutrient content resulted fromincreased plant growth and not altered nutrient use efficiency.In P. alpina, potassium, magnesium and calcium productivitieswere significantly reduced and photosynthetic nitrogen and phosphorususe efficiencies were doubled at elevated CO2 with respect toplants grown at ambient CO2 F. vivipara grown for 189 d showedthe most marked changes in nutrient use efficiency and nutrientproductivity (on an extracted dry weight basis) when grown atelevated CO2, F. vivipara grown at elevated CO2 however, showedlarge increases in the ratio of non-structural carbohydrateto nitrogen content of leaves and reproductive tissues, indicatinga substantial imbalance between the production and utilizationof assimilate. Key words: Nutrient, allocation, nutrient use efficiency, grasses, nutrient productivity, elevated CO2, cliniate change  相似文献   

6.
Acclimation of Lolium temulentum to enhanced carbon dioxide concentration   总被引:2,自引:0,他引:2  
Acclimation of single plants of Lolium temulentum to changing[CO2] was studied on plants grown in controlled environmentsat 20°C with an 8 h photoperiod. In the first experimentplants were grown at 135 µ;mol m–2 s–1 photosyntheticphoton flux density (PPFD) at 415µl l–1 or 550µll–1 [CO2] with some plants transferred from the lowerto the higher [CO2] at emergence of leaf 4. In the second experimentplants were grown at 135 and 500 µmol m–2 s–1PPFD at 345 and 575 µl l–1 [CO2]. High [CO2] during growth had little effect on stomatal density,total soluble proteins, chlorophyll a content, amount of Rubiscoor cytochrome f. However, increasing [CO2] during measurementincreased photosynthetic rates, particularly in high light.Plants grown in the higher [CO2] had greater leaf extension,leaf and plant growth rates in low but not in high light. Theresults are discussed in relation to the limitation of growthby sink capacity and the modifications in the plant which allowthe storage of extra assimilates at high [CO2]. Key words: Lolium, carbon dioxide, photosynthesis, growth, stomatal density  相似文献   

7.
Two Phaseolus vulgaris L. cultivars were grown at 20/15, 25/20,and 30/25 °C day/night temperatures in growth chambers witha 16 h thermoperiod corresponding to the photoperiod. When thefirst trifoliolate leaf was fully expanded rates of CO2 exchange(CER) were measured at 27 °C and saturating light usinginfrared gas analysis. Stomatal (rs) and mesophyll resistances,CO2 compensation points, activities of the enzymes ribulosebisphosphate carboxylase (RuBPCase), glycolate oxidase (GAO),malate dehydrogenase (MDH), and fructose-1, 6 diphosphate (FDP),chlorophyll content, Hill activities, and leaf anatomy at boththe light and electron microscope level were also investigatedin these leaves. Rates of CO2 exchange in the light, transpiration rate, andchlorophyll content increased with increasing growth temperaturewhile leaf thickness, specific leaf weight, RuBPCase activity,compensation point, and stomatal resistance decreased. Mesophyllresistance also decreased when calculated assuming zero chloroplastCO2 concentration (rm, o), but not when calculated assuminga chloroplast CO2 concentration equal to the CO2 compensationconcentration (rm, g). Average leaf size was maximal in 25/20°C plants while dark respiration, MDH activity, stomataldensity, and starch were minimal. The activities of GAO andFDP and Hill activity were not affected by temperature pretreatment.  相似文献   

8.
Poa alpina var. vivipara L. was grown in an atmosphere containingeither 340 or 680 µmol CO2 mol–1 within controlledenvironment chambers. The available nutrient regime was variedby altering the supply of nitrogen and phosphorus within a completenutrient solution. At a high, but not low, N and P supply regime,elevated CO2 markedly increased growth. Differences betweennutrient supply, but not atmospheric CO2 concentration, alteredthe allometric relations between root and shoot. Net photosynthesisof mature leaf blades and leaf N and P concentration were reducedin plants grown at the elevated CO2 concentration. The question was asked: is it possible to ascribe all of theseeffects to elevated CO2 or are some due to nutrient deficiencycaused by dilution with excess carbon? Several criteria, includingthe nutrient content of sink tissue, root:shoot allometry andthe use of divalent cations to estimate integrated water flowsare suggested in order to make this distinction. It is concludedthat only at a low supply of N and P1 and elevated CO2 concentration,was low leaf N concentration due to induced nutrient deficiency.The data are consistent with a model where the capacity of sinksto use photosynthetically assimilated carbon sets both the rateof import into those sinks (and thus rate of export from sourceleaves) and the rate of photosynthesis of source leaves themselves. Key words: Poa alpina L., growth, photosynthesis, carbohydrate, export, nitrogen, phosphorus  相似文献   

9.
Rates of net photosynthesis of the flag leaves of 15 genotypesof wheat and related species were measured throughout theirlife, using intact leaves on plants grown in the field. At thestage when rates were maximal, they were in general highestfor the diploid species, intermediate for the tetraploidspeciesand lowest for Triticum aestivum (means of 38, 32 and 28 mgCO2 dm–2 h–1 respectively). Rates were stronglynegatively correlated with leaf area, leaf width and the meanplan area per mesophyll cell and positvely correlated with stomatalfrequency and number of veins per mm of leaf width. The differencesamong species in these attributes were mainly related to ploidylevel. It was not possible to determine the relative importanceof each anatomical feature, though the changes in stomatal frequencyhad only slight effects on stomatal conductance and the observeddifferences in rates of photosynthesis were much greater thanwould be expected from those in stomatal conductance alone. There was genetic variation in rates of light dependent oxygenevolution of isolated protoplasts and intact chloroplasts butno difference attributable to ploidy. The mean rate, 91 µmolO2 mg–1 chlorophyll h–1, equivalent to 3.9 mg CO2mg-1chlorophyll h-1 was considerably less than the rate of photosynthesisin comparable intact leaves, which was 7.2 mg CO2 mg–1chlorophyll h–1. The total above-ground dry matter yields were least for thewild diploids T. urartu and T. thauodar and the wild tetraploidT. dicoccoides, but the other wild diploids produced as muchdry matter as the hexaploids. The prospects of exploiting differences in photosynthetic ratein the breeding of higher yielding varieties are discussed. Triticum aestivum L., wheat, Aegilops spp, photosynthesis, stomatal conductance, stomatal frequency, polyploidy  相似文献   

10.
Agrostis capillaris L.5, Festuca vivipara L. and Poaalpina L.were grown in outdoor open-top chambers at either ambient (340 3µmol mol–1) or elevated (6804µmol mol–1)concentrations of atmospheric carbon dioxide (CO2) for periodsfrom 79–189 d. Photosynthetic capacity of source leaves of plants grown atboth ambient and elevated CO2 concentrations was measured atsaturating light and 5% CO2. Dark respiration of leaves wasmeasured using a liquid phase oxygen electrode with the buffersolution in equilibrium with air (21% O2, 0.034% CO2). Photo-syntheticcapacity of P. alpina was reduced by growth at 680 µmolmol–1 CO2 by 105 d, and that of F. vivipara was reducedat 65 d and 189 d after CO2 enrichment began, suggesting down-regulationor acclimation. Dark respiration of successive leaf blades ofall three species was unaltered by growth at 680 relative to340 µmol mol–1 CO2. In F. vivipara, leaf respirationrate was markedly lower at 189 d than at either 0 d or 65 d,irrespective of growth CO2 concentration. There was a significantlylower total non-structural carbohydrate (TNC) concentrationin the leaf blades and leaf sheaths of A. capillaris grown at680µmol mol–1 CO2. TNC of roots of A. capillariswas unaltered by CO2 treatment. TNC concentration was increasedin both leaves and sheaths of P. alpina and F. vivipara after105 d and 65 d growth, respectively. A 4-fold increase in thewater-soluble fraction (fructan) in P. alpina and in all carbohydratefractions in F. vivipara accounted for the increased TNC content. In F. vivipara the relationship between leaf photosyn-theticcapacity and leaf carbohydrate concentration was such that therewas a strong positive correlation between photosynthetic capacityand total leaf N concentration (expressed on a per unit structuraldry weight basis), and total nitrogen concentration of successivemature leaves reduced with time. Multiple regression of leafphotosynthetic capacity upon leaf nitrogen and carbohydrateconcentrations further confirmed that leaf photosynthetic capacitywas mainly determined by leaf N concentration. In P. alpina,leaf photosynthetic capacity was mainly determined by leaf CHOconcentration. Thus there is evidence for down-regulation ofphotosynthetic capacity in P. alpina resulting from increasedcarbohydrate accumulation in source leaves. Leaf dark respiration and total N concentration were positivelycorrelated in P. alpina and F. vivipara. Leaf dark respirationand soluble carbohydrate concentration of source leaves werepositively correlated in A. capillaris. Changes in source leafphotosynthetic capacity and carbohydrate concentration of plantsgrown at ambient or elevated CO2 are discussed in relation toplant growth, nutrient relations and availability of sinks forcarbon. Key words: Elevated CO2, Climate change, grasses, carbohydrate partitioning, photosynthesis, respiration  相似文献   

11.
Mature second leaves of Lolium perenne L. cv. Vigor, were sampledin a spring and summer regrowth period. Effects of CO2enrichmentand increased air temperature on stomatal density, stomatalindex, guard cell length, epidermal cell density, epidermalcell length and mesophyll cell area were examined for differentpositions on the leaf and seasons of growth. Leaf stomatal density was smaller in spring but greater in summerin elevated CO2and higher in both seasons in elevated temperatureand in elevated CO2xtemperature relative to the respective controls.In spring, leaf stomatal index was reduced in elevated CO2butin summer it varied with position on the leaf. In elevated temperature,stomatal index in both seasons was lower at the tip/middle ofthe leaf but slightly higher at the base. In elevated CO2xtemperature,stomatal index varied with position on the leaf and betweenseasons. Leaf epidermal cell density was higher in all treatmentsrelative to controls except in elevated CO2(spring) and elevatedCO2xtemperature (summer), it was reduced at the leaf base. Inall treatments, stomatal density and epidermal cell densitydeclined from leaf tip to base, whilst guard cell length showedan inverse relationship, increasing towards the base. Leaf epidermalcell length and mesophyll cell area increased in elevated CO2inspring and decreased in summer. In elevated CO2xtemperatureleaf epidermal cell length remained unaltered in spring comparedto the control but decreased in summer. Stomatal conductancewas lower in all treatments except in summer in elevated CO2itwas higher than in the ambient CO2. These contrasting responses in anatomy to elevated CO2and temperatureprovide information that might account for differences in seasonalleaf area development observed in L. perenne under the sameconditions. Lolium perenne ; perennial ryegrass; elevated CO2and temperature; stomatal density; stomatal index; cell size  相似文献   

12.
In the chilling sensitive (C.S.) species Phaseolus vulgarisit was found that at 22 ?C ABA induced stomatal closure butthis effect was dependent on the presence of CO2. In the absenceof CO2 the effect of ABA was completely lost. In contrast toABA, the effect of IAA at 22 ?C was to increase stomatal openingas the IAA concentration increased from 10–2 to 10 molm–3, and this effect was dependent upon the presence ofCO2. However, at 5 ?C the action of ABA was reversed and itwas found to induce stomatal opening when fed via the transpirationstream in excised leaves. Similarly, the CO2 response characteristicswere reversed at low temperatures as removal of CO2 from theatmosphere caused stomatal closure. However, the effect of IAAat 5 ?C in the presence of CO2 and with or without ABA was toincrease stomatal aperture with increasing IAA concentration.Significantly, ABA was found to have no effect upon aperturein the presence of CO2 when IAA was added. The interactive effectsof ABA, IAA, CO2 and low temperature are discussed in relationto a model proposed by the authors. Key words: IAA, ABA, CO2, Stomata  相似文献   

13.
Sugar beet (Beta vulgaris L., cultivar Celt) plants were grownunder simulated field conditions in pots and supplied with adequateor deficient nitrogen (HN and LN, respectively) combined withtwo CO2 concentrations, ambient (c. 350µmol mol–1C02—AC), or elevated CO2 (c. 600 µmol mol–1CO2—HC). Chloroplast structure in mesophyll palisade cellsof mature leaves (leaf number 19 in HN and 9 in LN), sampledat midday on 16 August 1993 was studied by transmission electronmicroscopy and quantified stereologically. The ultrastructureof palisade parenchyma chloroplasts was affected by the elevatedCO2 concentration and strikingly affected by nitrogen supply.Chloroplast diameter (cross-sectional length) was slightly,but not significantly, greater in HC than AC treatments withinan N treatment, but was smaller in LN than HN; chloroplast cross-sectionalarea also increased with HC in both N treatments, but only significantlyso in LN. Elevated CO2 reduced the proportion of total thylakoids(significant at 5% and 0.1% in HN and LN, respectively) dueto decreased granal thylakoids, but the proportion of inter-granal(stromal) thylakoid membranes was not affected compared to chloroplastsfrom plants grown with ambient CO2. Chloroplast stroma increasedas a proportion of chloroplast volume with elevated comparedto ambient CO2 with HN but not LN. Starch inclusions were notsignificantly different with elevated compared to ambient CO2at HN, but the proportion of starch increased considerably atelevated compared to ambient C02 at LN, indicating an over-productionof assimilates. Plastoglobuli in chloroplasts increased withdeficient N, but decreased with elevated CO2. Larger chloroplastswith a greater proportion of stroma, but a smaller proportionof granal thylakoids, suggest increased CO2 assimilating capacityand decreased light harvesting/PSII capacity with elevated CO2. Key words: Chloroplast, ultrastructure, elevated CO2 concentration, nitrogen deficiency, sugar beet, Beta vulgaris  相似文献   

14.
Parallel to the increase in atmospheric CO2 from 278 µmolmol–1 in AD 1750 to the current ambient level of 348 µmolmol–1, there have been overall decreases in leaf nitrogencontent and stomatal density from 144% and 121%, respectively,in AD 1750 to 100% today of herbarium specimens of 14 trees,shrubs, and herbs collected over the last 240 years in Catalonia,a Mediterranean climate area. These decreases were steeper duringthe initial slower increases in CO2 atmospheric levels as comparedwith the relatively faster CO2 increases in recent years. Thedeclines in leaf N content and stomatal density have also beenreported in experimental studies on leaves of plants grown underenriched CO2 environments. Meanwhile, the stomatal index andoverall carbon and sulphur leaf contents have not changed significantly.Leaf S content was higher in the 1940s samples coinciding withthe burning of increased quantities of sulphur-rich coal. Consequently,the epidermal cell density has decreased parallel to the stomataldensity and the C/N ratio of leaves has increased, implyingpossible important consequences on herbivores, decomposers,and ecosystems. An overall decrease in the specific leaf area(SLA) from 184% in the 18th century to 100% today has also beenfound, as would be expected under CO2 enrichment, but whichmight also be an artifact of prolonged storage. Key words: Carbon dioxide increase, leaf nitrogen content, leaf sulphur content, stomatal density, last centuries  相似文献   

15.
REUVENI  J.; GALE  J.; ZERONI  M. 《Annals of botany》1997,79(2):191-196
Sodium chloride, at a concentration of 88 mol m-3in half strengthHoagland nutrient solution, increased dry weight per unit areaofXanthium strumarium L. leaves by 19%, and chlorophyll by 45%compared to plants grown without added NaCl at ambient (350µmol mol-1) CO2concentration. Photosynthesis, per unitleaf area, was almost unaffected. Even so, over a 4-week period,growth (dry weight increment) was reduced in the salt treatmentby 50%. This could be ascribed to a large reduction in leafarea (>60%) and to an approx. 20% increase in the rate ofdark respiration (Rd). Raising ambient [CO2] from zero to 2000 µmol mol-1decreasedRd in both control and salinized plants (by 20% at 1000, andby 50% at 2000 µmol mol-1CO2concentration) compared toRd in the absence of ambient CO2. High night-time [CO2] hadno significant effect on growth of non-salinized plants, irrespectiveof day-time ambient [CO2]. Growth reduction caused by salt wasreduced from 51% in plants grown in 350 µmol mol-1throughoutthe day, to 31% in those grown continuously in 900 µmolmol-1[CO2]. The effect of [CO2] at night on salinized plants depended onthe daytime CO2concentration. Under 350 µmol mol-1day-time[CO2], 900 µmol mol-1at night reduced growth over a 4-weekperiod by 9% (P <0.05) and 1700 µmol mol-1reduced itby 14% (P <0.01). However, under 900 µmol mol-1day-time[CO2], 900vs . 350 µmol mol-1[CO2] at night increasedgrowth by 17% (P <0.01). It is concluded that there is both a functional and an otiose(functionless) component to Rd, which is increased by salt.Under conditions of low photosynthesis (such as here, in thelow day-time [CO2] regime) the otiose component is small andhigh night-time [CO2] partly suppresses functional Rd, therebyreducing salt tolerance. In plants growing under conditionswhich stimulate photosynthesis (e.g. with increased daytime[CO2]), elevated [CO2] at night suppresses mainly the otiosecomponent of respiration, thus increasing growth. Consequently,in regions of adequate water and sunlight, the predicted furtherelevation of the world atmospheric [CO2] may increase plantsalinity tolerance. Xanthium strumarium ; respiration; photosynthesis; salt stress; sodium chloride; carbon dioxide; atmosphere  相似文献   

16.
The effects of growth at elevated CO2 on the response to hightemperatures in terms of carbon assimilation (net photosynthesis,stomatal conductance, amount and activity of Rubisco, and concentrationsof total soluble sugars and starch) and of photochemistry (forexample, the efficiency of excitation energy captured by openphotosystem II reaction centres) were studied in cork oak (Quercussuber L.). Plants grown in elevated CO2 (700 ppm) showed a down-regulationof photosynthesis and had lower amounts and activity of Rubiscothan plants grown at ambient CO2 (350 ppm), after 14 monthsin the greenhouse. At that time plants were subjected to a heat-shocktreatment (4 h at 45C in a chamber with 80% relative humidityand 800–1000 mol m–2 s–1 photon flux density).Growth in a CO2-enriched atmosphere seems to protect cork oakleaves from the short-term effects of high temperature. ElevatedCO2 plants had positive net carbon uptake rates during the heatshock treatment whereas plants grown at ambient CO2 showed negativerates. Moreover, recovery was faster in high CO2-grown plantswhich, after 30 min at 25C, exhibited higher net carbon uptakerates and lower decreases in photosynthetic capacity (Amax aswell as in the efficiency of excitation energy captured by openphotosystem II reaction centres (FvJFm than plants grown atambient CO2. The stomata of elevated CO2 plants were also lessresponsive when exposed to high temperature. Key words: Elevated CO2, temperature, acclimation, photosynthesis, Quercus suber L.  相似文献   

17.
Stands of spring wheat grown in open-top chambers (OTCs) wereused to assess the individual and interactive effects of season-longexposure to elevated atmospheric carbon dioxide (CO2 and ozone(O3) on the photosynthetic and gas exchange properties of leavesof differing age and position within the canopy. The observedeffects were related to estimated ozone fluxes to individualleaves. Foliar chlorophyll content was unaffected by elevatedCO2 but photosynthesis under saturating irradiances was increasedby up to 100% at 680 µmol mol–1 CO2 relative tothe ambient CO2 control; instantaneous water use efficiencywas improved by a combination of increased photosynthesis andreduced transpiration. Exposure to a seasonal mean O3 concentration(7 h d–1) of 84 nmol mol–1 under ambient CO2 acceleratedleaf senescence following full expansion, at which time chlorophyllcontent was unaffected. Stomatal regulation of pollutant uptakewas limited since estimated O3 fluxes to individual leaves werenot reduced by elevated atmospheric CO2, A common feature ofO3-treated leaves under ambient CO2 was an initial stimulationof photosynthesis and stomatal conductance for up to 4 d and10 d, respectively, after full leaf expansion, but thereafterboth variables declined rapidly. The O3-induced decline in chlorophyllcontent was less rapid under elevated CO2 and photosynthesiswas increased relative to the ambient CO2 treatment. A/Ci analysessuggested that an increase in the amount of in vivo active RuBisCOmay be involved in mitigating O3-induced damage to leaves. Theresults obtained suggest that elevated atmospheric CO2 has animportant role in restricting the damaging effects of O3 onphotosynthetic activity during the vegetative growth of springwheat, and that additional direct effects on reproductive developmentwere responsible for the substantial reductions in grain yieldobtained at final harvest, against which elevated CO2 providedlittle or no protection. Key words: Elevated CO2 and O3, gas exchange, O3 flux, stomata, chlorophyll, Triticum aestivum  相似文献   

18.
Inhibition of Light-Stimulated Leaf Expansion by Abscisic Acid   总被引:9,自引:2,他引:7  
Abscisic acid (ABA) applied to intact bean (Phaseolus vulgaris)leaves or to isolated leaf discs inhibits light-stimulated cellenlargement This effect may be obtained with 10–4 molm–3 ABA, but is more significant at higher concentrations.The inhibition of disc expansion by ABA is greater for discsprovided with an external supply of sucrose than for discs providedwith KC1, and may be completely overcome by increasing the KC1concentration externally to 50 mol m–3. Decreased growthrate of ABA-treated tissue is not correlated with loss of solutesfrom growing cells, but is correlated with a decrease in cellwall extensibility. ABA does not prevent light-stimulated acidificationof the leaf surface, and stimulates the acidification of theexternal solution by leaf pieces. However, the capacity of thecell walls to undergo acid-induced wall loosening is diminishedby ABA-treatment. The possibility that ABA acts directly byinhibiting growth processes at the cellular level, or indirectlyby causing stomatal closure, is discussed. Key words: Phaseolus vulgaris, ABA, Inhibition, Leaf expansion  相似文献   

19.
Growth Response to Salinity at High Levels of Carbon Dioxide   总被引:6,自引:0,他引:6  
Plants of the C3 species Phaseolus vulgaris and Xanthium strumariumand of the C4 salt-sensitive Zea mays and the C4 halophyte Atriplexhalimus were grown with and without NaCl salt-stress at normal(340 µl I–1) and at high (2500 µl I–1)ambient CO2. In all four species growth (dry weight increment)was enhanced by CO2 supplementation. The relative response wasgreater in the salinized than in the control plants. Plant topsresponded more to CO, than the roots. CO2 supplementation appearsto increase plant tolerance of low levels of salinity. Key words: Salinity, CO2, Growth  相似文献   

20.
Net photosynthesis rate (Pn), stomatal conductance to CO2 andresidual conductance to CO2 were measured in the last six leaves(the sixth or flag leaf and the preceding five leaves) of Triticumaestivum L. cv. Kolibri plants grown in Mediterranean conditions.Recently fully expanded leaves of well-watered plants were alwaysused. Measurements were made at saturating photosynthetic photonflux density, and at ambient CO2 and O2 levels. The specificleaf area, total organic nitrogen content, some anatomical characteristics,and other parameters, were measured on the same leaves usedfor gas exchange experiments. A progressive xeromorphic adaptation in the leaf structure wasobserved with increasing leaf insertion levels. Furthermore,mesophyll cell volume per unit leaf area (Vmes/A) decreasedby 52·6% from the first leaf to the flag leaf. Mesophyllcell area per unit leaf area also decreased, but only by 24·5%.However, nitrogen content per unit mesophyll cell volume increasedby 50·6% from the first leaf to the flag leaf. This increasecould be associated to an observed higher number of chloroplastcross-sections per mm2 of mesophyll cell cross-sectional areain the flag leaf: values of 23000 in the first leaf and 48000in the flag leaf were obtained. Pn per unit leaf area remainedfairly constant at the different insertion levels: values of33·83±0·93 mg dm–2 h–1 and32·32±1·61 mg dm–2 h–1 wereobtained for the first leaf and the flag leaf, respectively.Residual conductance, however, decreased by 18·2% fromthe first leaf to the flag leaf. Stomatal conductance increasedby 41·7%. The steadiness in Pn per unit leaf area across the leaf insertionlevels could be mainly accounted for by an opposing effect betweena decrease in Vmes/A and a more closely packed arrangement ofphotosynthetic apparatus. Adaptative significance of structuralchanges with increasing leaf insertion levels and the steadinessin Pn per unit leaf area was studied. Key words: Photosynthesis, structure, wheat  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号