首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The focus of this study was to produce isopropanol and butanol (IB) from dilute sulfuric acid treated cassava bagasse hydrolysate (SACBH), and improve IB production by co-culturing Clostridium beijerinckii (C. beijerinckii) with Clostridium tyrobutyricum (C. tyrobutyricum) in an immobilized-cell fermentation system. Concentrated SACBH could be converted to solvents efficiently by immobilized pure culture of C. beijerinckii. Considerable solvent concentrations of 6.19 g/L isopropanol and 12.32 g/L butanol were obtained from batch fermentation, and the total solvent yield and volumetric productivity were 0.42 g/g and 0.30 g/L/h, respectively. Furthermore, the concentrations of isopropanol and butanol increased to 7.63 and 13.26 g/L, respectively, under the immobilized co-culture conditions when concentrated SACBH was used as the carbon source. The concentrations of isopropanol and butanol from the immobilized co-culture fermentation were, respectively, 42.62 and 25.45 % higher than the production resulting from pure culture fermentation. The total solvent yield and volumetric productivity increased to 0.51 g/g and 0.44 g/L/h when co-culture conditions were utilized. Our results indicated that SACBH could be used as an economically favorable carbon source or substrate for IB production using immobilized fermentation. Additionally, IB production could be significantly improved by co-culture immobilization, which provides extracellular acetic acid to C. beijerinckii from C. tyrobutyricum. This study provided a technically feasible and cost-efficient way for IB production using cassava bagasse, which may be suitable for industrial solvent production.  相似文献   

2.
3.
To improve butanol selectivity, Clostridium acetobutylicum M5(pIMP1E1AB) was constructed by adhE1-ctfAB complementation of C. acetobutylicum M5, a derivative strain of C. acetobutylicum ATCC 824, which does not produce solvents due to the lack of megaplasmid pSOL1. The gene products of adhE1-ctfAB catalyze the formation of acetoacetate and ethanol/butanol with acid re-assimilation in solventogenesis. Effects of the adhE1-ctfAB complementation of M5 were studied by batch fermentations under various pH and glucose concentrations, and by flux balance analysis using a genome-scale metabolic model for this organism. The metabolically engineered M5(pIMP1E1AB) strain was able to produce 154 mM butanol with 9.9 mM acetone at pH 5.5, resulting in a butanol selectivity (a molar ratio of butanol to total solvents) of 0.84, which is much higher than that (0.57 at pH 5.0 or 0.61 at pH 5.5) of the wild-type strain ATCC 824. Unlike for C. acetobutylicum ATCC 824, a higher level of acetate accumulation was observed during fermentation of the M5 strain complemented with adhE1 and/or ctfAB. A plausible reason for this phenomenon is that the cellular metabolism was shifted towards acetate production to compensate reduced ATP production during the largely growth-associated butanol formation by the M5(pIMP1E1AB) strain.  相似文献   

4.
Clostridium pasteurianum can utilize glycerol as the sole carbon source for the production of butanol and 1,3-propanediol. Crude glycerol derived from biodiesel production has been shown to be toxic to the organism even in low concentrations. By examination of different pretreatments we found that storage combined with activated stone carbon addition facilitated the utilization of crude glycerol. A pH-controlled reactor with in situ removal of butanol by gas stripping was used to evaluate the performance. The fermentation pattern on pretreated crude glycerol was quite similar to that on technical grade glycerol. C. pasteurianum was able to utilize 111 g/l crude glycerol. The average consumption rate was 2.49 g/l/h and maximum consumption rate was 4.08 g/l/h. At the maximal glycerol consumption rate butanol was produced at 1.3 g/l/h. These rates are higher than those previously reported for fermentations on technical grade glycerol by the same strain. A process including pretreatment and subsequent fermentation of the crude glycerol could be usable for industrial production of butanol by C. pasteurianum.  相似文献   

5.
Solvent-producing clostridia are well known for their capacity to use a wide variety of renewable biomass and agricultural waste materials for biobutanol production. To investigate the possibility of co-production of a high value chemical during biobutanol production, the Clostridium acetobutylicum riboflavin operon ribGBAH was over-expressed in C. acetobutylicum on Escherichia coliClostridium shuttle vector pJIR750. Constructs that either maintained the original C. acetobutylicum translational start codon or modified the start codons of ribG and ribB from TTG to ATG were designed. Riboflavin was successfully produced in both E. coli and C. acetobutylicum using these plasmids, and riboflavin could accumulate up to 27 mg/l in Clostridium culture. Furthermore, the C. acetobutylicum purine pathway was modified by over-expression of the Clostridium purF gene, which encodes the enzyme PRPP amidotransferase. The function of the plasmid pJaF bearing C. acetobutylicum purF was verified by its ability to complement an E. coli purF mutation. However, co-production of riboflavin with biobutanol by use of the purF over-expression plasmid was not improved under the experimental conditions examined. Further rational mutation of the purF gene was conducted by replacement of amino acid codons D302 V and K325Q to make it similar to the feedback-resistant enzymes of other species. However, the co-expression of ribGBAH and purFC in C. acetobutylicum also did not improve riboflavin production. By buffering the culture pH, C. acetobutylicum ATCC 824(pJpGN) could accumulate more than 70 mg/l riboflavin while producing 190 mM butanol in static cultures. Riboflavin production was shown to exert no effect on solvent production at these levels.  相似文献   

6.
Clostridium tyrobutyricum ATCC 25755, a butyric acid producing bacterium, has been engineered to overexpress aldehyde/alcohol dehydrogenase 2 (adhE2, Genebank no. AF321779) from Clostridium acetobutylicum ATCC 824, which converts butyryl-CoA to butanol, under the control of native thiolase (thl) promoter. Butanol titer of 1.1g/L was obtained in C. tyrobutyricum overexpressing adhE2. The effects of inactivating acetate kinase (ack) and phosphotransbutyrylase (ptb) genes in the host on butanol production were then studied. A high C4/C2 product ratio of 10.6 (mol/mol) was obtained in ack knockout mutant, whereas a low C4/C2 product ratio of 1.4 (mol/mol) was obtained in ptb knockout mutant, confirming that ack and ptb genes play important roles in controlling metabolic flux distribution in C. tyrobutyricum. The highest butanol titer of 10.0g/L and butanol yield of 27.0% (w/w, 66% of theoretical yield) were achieved from glucose in the ack knockout mutant overexpressing adhE2. When a more reduced substrate mannitol was used, the butanol titer reached 16.0 g/L with 30.6% (w/w) yield (75% theoretical yield). Moreover, C. tyrobutyricum showed good butanol tolerance, with >80% and ~60% relative growth rate at 1.0% and 1.5% (v/v) butanol. These results suggest that C. tyrobutyricum is a promising heterologous host for n-butanol production from renewable biomass.  相似文献   

7.

Optimal conditions of hyper thermal (HT) acid hydrolysis of the Saccharina japonica was determined to a seaweed slurry content of 12% (w/v) and 144 mM H2SO4 at 160 °C for 10 min. Enzymatic saccharification was carried out at 50 °C and 150 rpm for 48 h using the three enzymes at concentrations of 16 U/mL. Celluclast 1.5 L showed the lowest half-velocity constant (Km) of 0.168 g/L, indicating a higher affinity for S. japonica hydrolysate. Pretreatment yielded a maximum monosaccharide concentration of 36.2 g/L and 45.7% conversion from total fermentable monosaccharides of 79.2 g/L with 120 g dry weight/L S. japonica slurry. High cell densities of Clostridium acetobutylicum and Clostridium tyrobutyricum were obtained using the retarding agents KH2PO4 (50 mM) and NaHCO3 (200 mM). Adaptive evolution facilitated the efficient use of mixed monosaccharides. Therefore, adaptive evolution and retarding agents can enhance the overall butanol and butyric acid yields from S. japonica.

  相似文献   

8.
A Lactobacillus brevis strain with the ability to synthesize butanol from glucose was constructed by metabolic engineering. The genes crt, bcd, etfB, etfA, and hbd, composing the bcs-operon, and the thl gene encode the enzymes of the lower part of the clostridial butanol pathway (crotonase, butyryl-CoA-dehydrogenase, two subunits of the electron transfer flavoprotein, 3-hydroxybutyryl-CoA dehydrogenase, and thiolase) of Clostridium acetobutylicum. They were cloned into the Gram-positive/Gram-negative shuttle plasmid vector pHYc. The two resulting plasmids pHYc-thl-bcs and pHYc-bcs (respectively, with and without the clostridial thl gene) were transferred to Escherichia coli and L. brevis. The recombinant L. brevis strains were able to synthesize up to 300 mg l−1 or 4.1 mM of butanol on a glucose-containing medium. A L. brevis strain carrying the clostridial bcs-operon has the ability to synthesize butanol with participation of its own thiolase, aldehyde dehydrogenase, and alcohol dehydrogenase. The particular role of the enzymes involved in butanol production and the suitability of L. brevis as an n-butanol producer are discussed.  相似文献   

9.
Bacterial plasmids can vary from small selfish genetic elements to large autonomous replicons that constitute a significant proportion of total cellular DNA. By conferring novel function to the cell, plasmids may facilitate evolution but their mobility may be opposed by co‐evolutionary relationships with chromosomes or encouraged via the infectious sharing of genes encoding public goods. Here, we explore these hypotheses through large‐scale examination of the association between plasmids and chromosomal DNA in the phenotypically diverse Bacillus cereus group. This complex group is rich in plasmids, many of which encode essential virulence factors (Cry toxins) that are known public goods. We characterized population genomic structure, gene content and plasmid distribution to investigate the role of mobile elements in diversification. We analysed coding sequence within the core and accessory genome of 190 B. cereus group isolates, including 23 novel sequences and genes from 410 reference plasmid genomes. While cry genes were widely distributed, those with invertebrate toxicity were predominantly associated with one sequence cluster (clade 2) and phenotypically defined Bacillus thuringiensis. Cry toxin plasmids in clade 2 showed evidence of recent horizontal transfer and variable gene content, a pattern of plasmid segregation consistent with transfer during infectious cooperation. Nevertheless, comparison between clades suggests that co‐evolutionary interactions may drive association between plasmids and chromosomes and limit wider transfer of key virulence traits. Proliferation of successful plasmid and chromosome combinations is a feature of specialized pathogens with characteristic niches (Bacillus anthracis, B. thuringiensis) and has occurred multiple times in the B. cereus group.  相似文献   

10.
Summary A Clostridium pasteurianum gene bank was constructed in Escherichia coli, using plasmid pAT153, and several chromosomal fragments found which complemented both leuB and leuC mutations in auxotrophic E. coli K12 strains. No fragments capable of complementing leuA or leuD mutations were identified. Conjugal transfer of the LeuB/leuC genes from Bacillus subtilis into two different Leu- C. acetobutylicum auxotrophic strains was elicited by their incorporation into a large plasmid cointegrate composed of the conjugal plasmid pAM1 and a specially constructed gram-positive, replication-deficient plasmid, pMTL21 EC. Inheritance of the cointegrate plasmid restored one of the auxotrophic C. acetobutylicum strains to prototrophy. The second strain remained Leu-.  相似文献   

11.
Cover Image     
Synthetic microbial communities have become a focus of biotechnological research since they can overcome several of the limitations of single-specie cultures. A paradigmatic example is Clostridium cellulovorans DSM 743B, which can decompose lignocellulose but cannot produce butanol. Clostridium beijerinckii NCIMB 8052 however, is unable to use lignocellulose but can produce high amounts of butanol from simple sugars. In our previous studies, both organisms were cocultured to produce butanol by consolidated bioprocessing. However, such consolidated bioprocessing implementation strongly depends on pH regulation. Since low pH (pH 4.5–5.5) is required for butanol fermentation, C. cellulovorans cannot grow well and saccharify sufficient lignocellulose to feed both strains at a pH below 6.4. To overcome this bottleneck, this study engineered C. cellulovorans by adaptive laboratory evolution, inactivating cell wall lyases genes (Clocel_0798 and Clocel_2169), and overexpressing agmatine deiminase genes (augA, encoded by Cbei_1922) from C. beijerinckii NCIMB 8052. The generated strain WZQ36: 743B*6.0*3△lyt0798lyt2169-(pXY1-Pthl-augA) can tolerate a pH of 5.5. Finally, the alcohol aldehyde dehydrogenase gene adhE1 from Clostridium acetobutylicum ATCC 824 was introduced into the strain to enable butanol production at low pH, in coordination with solvent fermentation of C. beijerinckii in consortium. The engineered consortium produced 3.94 g/L butanol without pH control within 83 hr, which is more than 5-fold of the level achieved by wild consortia under the same conditions. This exploration represents a proof of concept on how to combine metabolic and evolutionary engineering to coordinate coculture of a synthetic microbial community.  相似文献   

12.
Clostridium acetobutylicum has been considered as an attractive platform host for biorefinery due to its metabolic diversity. Considering its capability to overproduce butanol through butyrate, it was thought that butyric acid can also be efficiently produced by this bacterium through metabolic engineering. The pta-ctfB-deficient C. acetobutylicum CEKW, in which genes encoding phosphotransacetylase and CoA-transferase were knocked out, was assessed for its potential as a butyric acid producer in fermentations with four controlled pH values at 5.0, 5.5, 6.0, and 6.4. Butyric acid could be best produced by fermentation of the CEKW at pH 6.0, resulting in the highest titer of 26.6 g/l, which is 6.4 times higher than that obtained with the wild type. However, due to the remaining solventogenic ability of the CEKW, 3.6 g/l solvents were also produced. Thus, the CEKW was further engineered by knocking out the adhE1-encoding aldehyde/alcohol dehydrogenase to prevent solvent production. Batch fermentation of the resulting C. acetobutylicum HCEKW at pH 6.0 showed increased butyric acid production to 30.8 g/l with a ratio of butyric-to-acetic acid (BA/AA) of 6.6 g/g and a productivity of 0.72 g/l/h from 86.9 g/l glucose, while negligible solvent (0.8 g/l ethanol only) was produced. The butyric acid titer, BA/AA ratio, and productivity obtained in this study were the highest values reported for C. acetobutylicum, and the BA/AA ratio and productivity were also comparable to those of native butyric acid producer Clostridium tyrobutyricum. These results suggested that the simultaneous deletion of the pta-ctfB-adhE1 in C. acetobutylicum resulted in metabolic switch from biphasic to acidogenic fermentation, which enhanced butyric acid production.  相似文献   

13.
Abstract A method is presented for the introduction of plasmids into Clostridium acetobutylicum ATCC 8052 by electroporation. A plasmid shuttle vector, pMTL500E, which contains the erythromycin resistance gene and replication machinery of plasmid pAMβ1, was constructed and introduced into C. acetobutylicum by electroporation. The vector was then used to introduce a 2.2 kb Cla I/ Sph I chromosomal fragment from C. pasteurianum into a leucine requiring mutant of C. acetobutylicum , SBA9, where complementation of auxotrophy was observed. Plasmid DNA indistinguishable from that introduced, on the basis of agarose gel electrophoresis, was observed in transformants containing either plasmid.  相似文献   

14.
Methods for genetic manipulation of Clostridium ljungdahlii are of interest because of the potential for production of fuels and other biocommodities from carbon dioxide via microbial electrosynthesis or more traditional modes of autotrophy with hydrogen or carbon monoxide as the electron donor. Furthermore, acetogenesis plays an important role in the global carbon cycle. Gene deletion strategies required for physiological studies of C. ljungdahlii have not previously been demonstrated. An electroporation procedure for introducing plasmids was optimized, and four different replicative origins for plasmid propagation in C. ljungdahlii were identified. Chromosomal gene deletion via double-crossover homologous recombination with a suicide vector was demonstrated initially with deletion of the gene for FliA, a putative sigma factor involved in flagellar biogenesis and motility in C. ljungdahlii. Deletion of fliA yielded a strain that lacked flagella and was not motile. To evaluate the potential utility of gene deletions for functional genomic studies and to redirect carbon and electron flow, the genes for the putative bifunctional aldehyde/alcohol dehydrogenases, adhE1 and adhE2, were deleted individually or together. Deletion of adhE1, but not adhE2, diminished ethanol production with a corresponding carbon recovery in acetate. The double deletion mutant had a phenotype similar to that of the adhE1-deficient strain. Expression of adhE1 in trans partially restored the capacity for ethanol production. These results demonstrate the feasibility of genetic investigations of acetogen physiology and the potential for genetic manipulation of C. ljungdahlii to optimize autotrophic biocommodity production.  相似文献   

15.
16.
Analysis of the structural properties of pYC2, a cryptic plasmid from Lactobacillus sakei BM5 isolated from kimchi, determined its length as 1,970 bp with a G + C content of 34%. The double-strand origin (dso) and single-strand origin (sso) of rolling-circle replicating plasmids were found in the nucleotide sequence of the pYC2 plasmid. Sequence analysis of pYC2 revealed that ORF 1 and ORF 2 showed high homology with the Cop and Rep proteins encoded by the pMV158 family of plasmids replicating via the rolling-circle mechanism. pYC2 also replicates by this mechanism, as confirmed by Southern hybridization analysis.  相似文献   

17.
Butanol is considered as a superior biofuel, which is conventionally produced by clostridial acetone‐butanol‐ethanol (ABE) fermentation. Among ABE, only butanol and ethanol can be used as fuel alternatives. Coproduction of acetone thus causes lower yield of fuel alcohols. Thus, this study aimed at developing an improved Clostridium acetobutylicum strain possessing enhanced fuel alcohol production capability. For this, we previously developed a hyper ABE producing BKM19 strain was further engineered to convert acetone into isopropanol. The BKM19 strain was transformed with the plasmid pIPA100 containing the sadh (primary/secondary alcohol dehydrogenase) and hydG (putative electron transfer protein) genes from the Clostridium beijerinckii NRRL B593 cloned under the control of the thiolase promoter. The resulting BKM19 (pIPA100) strain produced 27.9 g/l isopropanol‐butanol‐ethanol (IBE) as a fuel alcohols with negligible amount of acetone (0.4 g/l) from 97.8 g/l glucose in lab‐scale (2 l) batch fermentation. Thus, this metabolically engineered strain was able to produce 99% of total solvent produced as fuel alcohols. The scalability and stability of BKM19 (pIPA100) were evaluated at 200 l pilot‐scale fermentation, which showed that the fuel alcohol yield could be improved to 0.37 g/g as compared to 0.29 g/g obtained at lab‐scale fermentation, while attaining a similar titer. To the best of our knowledge, this is the highest titer of IBE achieved and the first report on the large scale fermentation of C. acetobutylicum for IBE production. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1083–1088, 2013  相似文献   

18.
The cellulolytic Clostridium cellulovorans has been engineered to produce n-butanol from low-value lignocellulosic biomass by consolidated bioprocessing (CBP). The objective of this study was to establish a robust cellulosic biobutanol production process using a metabolically engineered C. cellulovorans. First, various methods for the pretreatment of four different corn-based residues, including corn cob, corn husk, corn fiber, and corn bran, were investigated. The results showed that better cell growth and a higher concentration of n-butanol were produced from corn cob that was pretreated with sodium hydroxide. Second, the effects of different carbon sources (glucose, cellulose and corn cob), basal media and culture pH values on butanol production were evaluated in the fermentations performed in 2-L bioreactors to identify the optimal CBP conditions. Finally, the engineered C. cellulovorans produced butanol with final concentration >3 g/L, yield >0.14 g/g, and selectivity >3 g/g from pretreated corn cob at pH 6.5 in CBP. This study showed that the fermentation process engineering of C. cellulovorans enabled a high butanol production directly from agricultural residues.  相似文献   

19.
Clostridium tyrobutyricum ATCC 25755 is known as a natural hyper-butyrate producer with great potentials as an excellent platform to be engineered for valuable biochemical production from renewable resources. However, limited transformation efficiency and the lack of genetic manipulation tools have hampered the broader applications of this micro-organism. In this study, the effects of Type I restriction-modification system and native plasmid on conjugation efficiency of C. tyrobutyricum were investigated through gene deletion. The deletion of Type I restriction endonuclease resulted in a 3.7-fold increase in conjugation efficiency, while the additional elimination of the native plasmid further enhanced conjugation efficiency to 6.05 ± 0.75 × 103 CFU/ml-donor, which was 15.3-fold higher than the wild-type strain. Fermentation results indicated that the deletion of those two genetic elements did not significantly influence the end-products production in the resultant mutant ΔRMIΔNP. Thanks to the increased conjugation efficiency, the CRISPR-Cas9/Cpf1 systems, which previously could not be implemented in C. tyrobutyricum, were successfully employed for genome editing in ΔRMIΔNP with an efficiency of 12.5–25%. Altogether, approaches we developed herein offer valuable guidance for establishing efficient DNA transformation methods in nonmodel micro-organisms. The ΔRMIΔNP mutant can serve as a great chassis to be engineered for diverse valuable biofuel and biochemical production.  相似文献   

20.
Fermentative production of solvents (acetone, butanol, and ethanol) by Clostridium acetobutylicum is generally a biphasic process consisting of acidogenesis and solventogenesis. We report that the biphasic metabolism of C. acetobutylicum could be changed by oxidoreduction potential (ORP) regulation. When using air to control the ORP of the fermentation broth at −290 mV, an earlier initiation of solventogenesis was achieved. Solvent production reached 25.6 g l−1 (2.8 g acetone l−1, 16.8 g butanol l−1, 6.0 g ethanol l−1), a 35% increase compared with the ORP uncontrolled process. Metabolic flux analysis revealed that there was a general increase of the central carbon flux in the first 24 h of fermentation when ORP was controlled at −290 mV, compared with the control. Specifically, the solvent ratio (acetone:butanol:ethanol) was changed from 25:64:11 to 11:66:23 at ORP level of −290 mV, which might have resulted from the rigidity at acetyl-CoA node and the flexibility at acetoacetyl-CoA and butyryl-CoA nodes in response to ORP regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号