首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Measurements of the activities of lysosomal enzymes in cerebrospinal fluid have recently been proposed as putative biomarkers for Parkinson''s disease and other synucleinopathies. To define the operating procedures useful for ensuring the reliability of these measurements, we analyzed several pre-analytical factors that may influence the activity of β-glucocerebrosidase, α-mannosidase, β-mannosidase, β-galactosidase, α-fucosidase, β-hexosaminidase, cathepsin D and cathepsin E in cerebrospinal fluid. Lysosomal enzyme activities were measured by well-established fluorimetric assays in a consecutive series of patients (n = 28) with different neurological conditions, including Parkinson''s disease. The precision, pre-storage and storage conditions, and freeze/thaw cycles were evaluated. All of the assays showed within- and between-run variabilities below 10%. At −20°C, only cathepsin D was stable up to 40 weeks. At −80°C, the cathepsin D, cathepsin E, and β-mannosidase activities did not change significantly up to 40 weeks, while β-glucocerebrosidase activity was stable up to 32 weeks. The β-galactosidase and α-fucosidase activities significantly increased (+54.9±38.08% after 4 weeks and +88.94±36.19% after 16 weeks, respectively). Up to four freeze/thaw cycles did not significantly affect the activities of cathepsins D and E. The β-glucocerebrosidase activity showed a slight decrease (−14.6%) after two freeze/thaw cycles. The measurement of lysosomal enzyme activities in cerebrospinal fluid is reliable and reproducible if pre-analytical factors are accurately taken into consideration. Therefore, the analytical recommendations that ensue from this study may contribute to the establishment of actual values for the activities of cerebrospinal fluid lysosomal enzymes as putative biomarkers for Parkinson''s disease and other neurodegenerative disorders.  相似文献   

2.
1. Both the post-partum involution of the rat uterus and the rapid breakdown of collagen that accompanies it are extensively inhibited by oestrogenic hormones. In the normal rat, 85% of the uterine collagen is degraded within 4 days after parturition; in rats treated with 100μg. of 17β-oestradiol/day, only 35% of uterine collagen is broken down in the same period. 2. Similar effects are produced by diethylstilboestrol if the dose is increased tenfold. 3. Collagen breakdown is inhibited to a greater extent than is the loss of wet weight by oestradiol but not by diethylstilboestrol. 4. The oestrogens appear to act by blocking the breakdown of collagen. There is a greatly decreased concentration of free hydroxyproline in the uterus of treated animals. 5. Acid hydrolase concentrations (β-glucuronidase, β-galactosidase, cathepsin D and acid phosphatase) in the uterus are decreased by oestrogen treatment compared with controls, but the total amounts of these enzymes in the uterus are somewhat elevated. Oestrogens do not appear to inhibit collagen breakdown by altering the concentration and total amount of acid hydrolases.  相似文献   

3.
Lysosomal hydrolases in calf thyroid   总被引:2,自引:2,他引:0       下载免费PDF全文
1. Two acid phosphatases (β-glycerophosphatase and phenylphosphatase), acid β-glucuronidase and cathepsin were demonstrated in the 0·25m-sucrose homogenates from whole calf thyroid tissue and from isolated calf thyroid cells. 2. The main kinetic characters of these enzymes were studied. 3. All these acid hydrolases are partially sedimentable and display a latency that is unmasked by treatment with Triton X-100 and on dilution in hypo-osmotic media. It is concluded that these acid hydrolases belong to the lysosomes.  相似文献   

4.
1. Three fractions of "droplets" having diameters of 1 to 5 µ (fraction I), 0.5 to 1.5 µ (fraction II), and 0.1 to 1.0 µ (fraction III) were isolated from the kidney cells of normal rats. 2. All three "droplet" fractions showed 10 to 15 times higher activities of acid phosphatase, β-glucuronidase, ribonuclease, desoxyribonuclease, and cathepsin than the total homogenate and the mitochondrial fraction. 3. After a rough fractionation of the total homogenate, approximately 50 per cent of the 5 enzymes was found in the fractions which contained the "droplets" and approximately 30 per cent in the supernatant fluid. 4. The similarities between the enzymatic properties of the "droplets" from kidney cells and of the fractions isolated from liver cells by other investigators have been discussed.  相似文献   

5.
1. The activities of β-galactosidase, β-glucosidase, β-glucuronidase and N-acetyl-β-glucosaminidase from rat kidney have been compared when 4-methylumbelliferyl glycosides are used as substrates. 2. Separation by gel electrophoresis at pH7·0 indicated slow- and fast-moving components of rat-kidney β-galactosidase. 3. The fast-moving component is also associated with the total β-glucosidase activity and inhibition experiments indicate that a single enzyme species is responsible for both activities. 4. DEAE-cellulose chromatography and filtration on Sephadex gels suggests that the β-glucosidase component is a small acidic molecule, of molecular weight approx. 40000–50000, with optimum pH5·5–6·0 for β-galactosidase and β-glucosidase activities. 5. The major β-galactosidase component has low electrophoretic mobility, a calculated molecular weight of 80000 and optimum pH3·7.  相似文献   

6.
1. Kidney homogenates from rats injected with egg white and from control rats were fractionated simultaneously into six fractions and the content of acid phosphatase, ribonuclease, desoxyribonuclease, cathepsin, and β-glucuronidase in corresponding fractions from treated and untreated animals was compared. These observations were correlated with the amount of dark brown bottom sediments in fractions NDrI, DrII, and DrIII, and with the number of droplets in fraction NDrI. 2. It was found that after injection of egg white the amount of small droplets decreased as indicated by the decrease of the dark brown bottom layer in the sediment of fraction DrIII and by the concomitant decrease of hydrolytic enzymes in the same fraction, and that the number of large droplets increased as indicated by the increase of brown sediment in fraction NDrI and the increase in the number of droplets counted in a bacterial counting chamber in the same fraction. It was concluded that the treatment with egg white induced the transformation of small droplets into large droplets. 3. The decrease of hydrolytic enzymes in the fractions containing the small droplets was accompanied by a marked increase of these enzymes in the supernatant fluid. The enzyme content of fraction NDrI was not increased after treatment, although it contained greatly increased numbers of large droplets. Counting of the droplets in this fraction showed decreased enzymatic activity of the average large droplet after treatment with egg white. It was suggested that during the transformation of small into large droplets, a portion of the hydrolytic enzymes was released into the surrounding cytoplasm, and that this was partly responsible for the increased enzyme content of the supernatant fluid after fractionation of the kidney homogenate. In contrast to the four other hydrolytic enzymes, β-glucuronidase was not increased in the supernatant fluid. 4. Eighteen hours after intraperitoneal injection of egg white, the specific enzymatic activities of kidney homogenates showed a 25 to 35 per cent increase for cathepsin, ribonuclease, and desoxyribonuclease, no change for acid phosphatase and β-glucuronidase, and approximately a 7 per cent decrease for cytochrome oxidase. The increase of cathepsin, ribonuclease, and desoxyribonuclease in the total homogenate was interpreted as an indication of the formation of new enzymes, and it was suggested that this partly accounted for the increase of these enzymes in the supernatant fluid. 5. The activation of the enzymes by osmotic effects was investigated in vitro by incubation of droplet fractions in the presence of different concentrations of sucrose.  相似文献   

7.
1. Lysosome-rich fractions from rat liver were subjected to several disruptive procedures: osmotic lysis or freezing and thawing in different media, shearing forces in a high-speed blender, treatment with Triton X-100. 2. The soluble and particulate phases were then separated by high-speed centrifugation and assayed for their content of acid phosphatase, β-galactosidase, β-N-acetylglucosaminidase, acid proteinase, acid ribonuclease, acid deoxyribonuclease and protein. 3. The degree of elution of these hydrolases appeared to depend on both the enzyme species and the treatment. The resulting patterns of solubilization were rather complex, so that a clear-cut discrimination between soluble and structure-bound enzymes could not always be traced. 4. Although only β-galactosidase was readily solubilizable after all treatments, acid proteinase could also be extensively eluted from the sedimentable material in the presence of EDTA and acid phosphatase was fully extracted by Triton X-100. On the other hand, considerable proportions of the other activities could not be solubilized by any of the procedures used. 5. In other experiments, the adsorbability of hydrolases on subcellular structures was investigated by measuring the partition between sedimentable particles and soluble fraction of solubilized enzymes added to `intact' liver homogenates. 6. Large proportions of acid proteinase, ribonuclease and deoxyribonuclease, and almost all of β-N-acetylglucosaminidase, were found to be adsorbed on the particulate material.  相似文献   

8.
A single intravenous injection of 0.1 mg of heat-killed Bacillus Calmette Guérin (BCG) in 0.1 ml of Bayol F produced an accumulation of activated alveolar macrophages (BCG induced). Cells were collected 3.5–4.0 wk after injection. Phospholipases A and three lysosomal marker enzymes (acid phosphatase, β-glucuronidase, and lysozyme) were measured in homogenates, and the distribution of the phospholipases A and lysosomal, mitochondrial, and microsomal marker enzymes were examined after sucrose gradient centrifugation of a postnuclear (1,000 g) supernatant. Homogenates of normal and BCG-induced macrophages contained phospholipases A1 and A2 which had optimal activity at pH 4.0 in the presence of 2.0 mM ethylenediaminetetraacetate (EDTA). These activities were inhibited 50–70% by 2.0 mM CaCl2. Homogenates of BCG-induced macrophages had specific activities of β-glucuronidase, acid phosphatase, and lysozyme, which were increased 1.5- to 3.0-fold over the controls, whether expressed as activity per mg protein or activity per 107 cells. The specific activities of the phospholipases A, on the other hand, were consistently lower than those of the control. Distribution of the phospholipases A and the lysosomal marker enzymes after sucrose gradient centrifugation suggested that the phospholipases A active at pH 4.0 in the presence of EDTA are of lysosomal origin since: (a) BCG treatment caused a selective increase in the density of particles which contained both the phospholipases A and three lysosomal marker enzymes; and (b) since the density of mitochondria and microsomes were not affected by BCG treatment. The increase in the density of lysosomes seen here may be related to previously described morphologic changes of BCG-induced alveolar macrophages.  相似文献   

9.
Histochemical procedures for PMN granule enzymes were carried out on smears prepared from normal rabbit bone marrow, and the smears were examined by light microscopy. For each of the enzymes tested, azo dye and heavy metal techniques were utilized when possible. The distribution and intensity of each reaction were compared to the distribution of azurophil and specific granules in developing PMN. The distribution of peroxidase and six lysosomal enzymes (acid phosphatase, arylsulfatase, β-galactosidase, β-glucuronidase, esterase, and 5'-nucleotidase) corresponded to that of azurophil granules. Progranulocytes contained numerous reactive granules, and later stages contained only a few. The distribution of one enzyme, alkaline phosphatase, corresponded to that of specific granules. Reaction product first appeared in myelocytes, and later stages contained numerous reactive granules. The results of tests for lipase and thiolacetic acid esterase were negative at all developmental stages. Both types of granules stained for basic protein and arginine. It is concluded that azurophil and specific granules differ in their enzyme content. Moreover, a given enzyme appears to be restricted to one of the granules. The findings further indicate that azurophil granules are primary lysosomes, since they contain numerous lysosomal, hydrolytic enzymes, but the nature of specific granules is uncertain since, except for alkaline phosphatase, their contents remain unknown.  相似文献   

10.
Ceramide lactoside [1-O-(galactosido-4-β-glucosido)-2-N-acyl-sphingosine] was hydrolysed to ceramide glucoside and galactose by β-galactosidase of rat brain. The reaction was not reversible, required cholate or taurocholate, had optimum pH5·0 and Km 2·2×10−5m. It was inhibited by γ-galactonolactone and galactose as well as by ceramide, sphingosine and fatty acid. Ceramide lactoside could be degraded to ceramide, galactose and glucose by mixtures of rat-brain β-galactosidase and ox-brain β-glucosidase.  相似文献   

11.
When human skin fibroblasts are cultured in the presence of chloroquine or NH4Cl there is a decrease in the intracellular level of lysosomal hydrolases and a concomitant increase in the extracellular activity as compared with cells grown in the absence of a base (cf [18]). In a medium with 25 μM chloroquine or 5 mM NH4Cl, the decrease in the intracellular activity of β-hexosaminidase, arylsulphatase and β-glucuronidase is 10–40% after 1 day. A similar decrease in α-galactosidase activity is observed in cells grown in the presence of 5 mM NH4Cl. However, in the presence of 25 μM chloroquine, the intracellular activity of α-galactosidase decreases by 80–90% within 6 h. The inactivation is irreversible. After removal of the chloroquine and further culture of the cells in chloroquine-free medium, α-galactosidase activity gradually increases due to de novo synthesis. The turnover time of α-galactosidase was calculated to be 1.9 days. Inactivation of α-galactosidase also occurs when homogenates are incubated with chloroquine, but the concentration of the base required for maximum inactivation is at least three orders of magnitude higher than that which must be present in the medium of intact cells to obtain the same effect.  相似文献   

12.
Rat-kidney lysosomes: isolation and properties   总被引:2,自引:2,他引:0  
1. The activities of lysosomal enzymes in the cortexes and medullas and the principal subcellular fractions of rat kidney were measured. 2. A method is described for the isolation of rat-kidney lysosomes and a detailed analysis of the enzymic composition of the lysosomes is reported. Enzyme analysis of the other principal subcellular fractions is included for comparison. 3. Studies of the distribution of α-glucosidase showed that the lysosomal fraction contained only 10% of the total enzyme activity. The microsomal fraction contained most of the particulate α-glucosidase. Lysozyme was concentrated mainly in the lysosomal fraction with only small amounts present in the microsomal fraction. Lysosomal α-glucosidase had optimum pH5 whereas the microsomal form had optimum pH6. Both lysosomal and microsomal lysozyme had optimum pH6·2. 4. The stability of lysosomal suspensions was studied. Incubation at 37° and pH7 resulted in first an increased availability of enzymes without parallel release of enzyme. This was followed by a second stage during which the availability of enzymes was closely related to the release of enzymes. These changes were closely paralleled by changes in light-scattering properties of lysosomes. 5. The latent nature of the α-glucosidase and lysozyme of intact kidney lysosomes was demonstrated by their graded and parallel release with other typical lysosomal enzymes. 6. Isolated lysosomes were unstable at pH values lower than 5, most stable at pH6–7 and less stable at pH 8–9. Lysosomes were not disrupted when the osmolarity of the suspending medium was decreased from 0·6m to 0·25m. 7. The discussion compares the properties and composition of kidney lysosomes, liver lysosomes and the granules of macrophages. 8. The possible origin of the lysozyme in kidney lysosomes by reabsorption of the lysozyme in blood is discussed.  相似文献   

13.
The activities of several lysosomal enzymes were assayed in control and in exercise-hypertrophied cardiac muscle of mice (Mus musculus). The repeated running program increased the activity of beta-glucuronidase (16.1%) in mouse cardiac muscle. Decreased activities of beta-N-acetylglucosaminidase (10.8%), acid ribonuclease (10.7%), and arylsulphatase (14.2%) were observed in the hypertrophied myocardium. The activities of acid deoxyribonuclease, cathepsin C, cathepsin D, and p-nitrophenylphosphatase as well as the activities of citrate synthase and cytochrome c oxidase, mitochondrial enzymes, were unaffected in cardiac muscle. We suggest that lysosomal enzyme responses are selective and highly different in physiologically and pathologically induced cardiac hypertrophies.  相似文献   

14.
A method was developed for the isolation of unmodified lysosomes of human origin using cultured EB-virus transformed lymphoblasts. The cells were lysed carefully by repeated resuspension in buffered isotonic sucrose. A crude granular fraction derived from this lysate was further purified by isopyknic centrifugation in an isotonic colloidal silica gel gradient and by free-flow electrophoresis. The following relative specific activities (mean ± S.D.) of lysosomal marker enzymes were measured in a pooled lysosomal fraction obtained from the final electrophoresis step (representing less than 0.1% of the initial protein): β-N-acetylglucosaminidase 85.6 ± 15.5; β-galactosidase 87.6 ± 13.4; acid β-glycerophosphatase 41.7 ± 3.5; β-glucuronidase 36.6 ± 6.1. With respect to the final two enzymes the recovery within this pooled fraction was 5–6% of the initial lysate. The great differences in relative specific activities achievable may be due mainly to different extralysosomal portions of the lysosomal marker enzymes, as was found for acid β-glycerophosphatase which was largely distributed within non-lysosomal structures in lymphoblasts when studied by histochemical staining. The final fraction consisted almost exclusively of lysosomes when examined by electron microscopy. Most lysosomes appeared club-shaped immediately after cell lysis and throughout the preparation procedure. Examination by electron microscopy and measurement of the latency of lysosomal enzyme activity revealed an exceptional integrity of the lysosomal membrane. This method provides the opportunity to study highly purified lysosomes from patients with lysosomal disorders.  相似文献   

15.
Concanavalin A bound to Sepharose has been used for the purification of brain β-galactosidase, α-L-fucosidase, α-D-mannosidase, arylsulphatase and β-glucuronidase.0 Several factorsviz pH, temperature and concentration of α-methyl glucoside influenced the binding and elution of these enzymes. A lysosomal acid α-mannosidase and a cytosolic neutral mannosidase were separable by concanavalin A-Sepharose chromatography. Similarly lysosomal and microsomal β-glucuronidases were separable using gradient elution with α-methyl glucoside. The results indicate the usefulness of this lectin for the isolation of wide variety of enzymes under specified experimental conditions.  相似文献   

16.
The human lysosomal enzymes α-galactosidase (α-GAL, EC 3.2.1.22) and α-N-acetylgalactosaminidase (α-NAGAL, EC 3.2.1.49) share 46% amino acid sequence identity and have similar folds. The active sites of the two enzymes share 11 of 13 amino acids, differing only where they interact with the 2-position of the substrates. Using a rational protein engineering approach, we interconverted the enzymatic specificity of α- GAL and α-NAGAL. The engineered α-GAL (which we call α-GALSA) retains the antigenicity of α-GAL but has acquired the enzymatic specificity of α-NAGAL. Conversely, the engineered α-NAGAL (which we call α-NAGALEL) retains the antigenicity of α-NAGAL but has acquired the enzymatic specificity of the α-GAL enzyme. Comparison of the crystal structures of the designed enzyme α-GALSA to the wild-type enzymes shows that active sites of α-GALSA and α-NAGAL superimpose well, indicating success of the rational design. The designed enzymes might be useful as non-immunogenic alternatives in enzyme replacement therapy for treatment of lysosomal storage disorders such as Fabry disease.  相似文献   

17.
The ability of three strains of Lactobacillus acidophilus to survive and retain β-galactosidase activity during storage in liquid nitrogen at −196°C and during subsequent storage in milk at 5°C was tested. The level of β-galactosidase activity varied among the three strains (0.048 to 0.177 U/107 organisms). Freezing and storage at −196°C had much less adverse influence on viability and activity of the enzyme than did storage in milk at 5°C. The strains varied in the extent of the losses of viability and β-galactosidase activity during both types of storage. There was not a significant interaction between storage at −196°C and subsequent storage at 5°C. The strains that exhibited the greatest losses of β-galactosidase activity during storage in milk at 5°C also exhibited the greatest losses in viability at 5°C. However, the losses in viability were of much greater magnitude than were the losses of enzymatic activity. This indicates that some cells of L. acidophilus which failed to form colonies on the enumeration medium still possessed β-galactosidase activity. Cultures of L. acidophilus to be used as dietary adjuncts to improve lactose utilization in humans should be carefully selected to ensure that adequate β-galactosidase activity is provided.  相似文献   

18.
Our previous studies had reported that morin, a bioflavanoid exhibited potent anti-inflammatory effect against adjuvant-induced arthritic rats. In this current study, we investigated the anti-inflammatory mechanism of morin against monosodium urate crystal (MSU)-induced inflammation in RAW 264.7 macrophage cells, an in vitro model for acute gouty arthritis. For comparison purpose, colchicine was used as a reference drug. We have observed that morin (100–300 μM) treatment significantly suppressed the levels of inflammatory cytokines (TNF-α, IL-1β, IL-6, MCP-1 and VEGF), inflammatory mediators (NO and PEG2), and lysosomal enzymes (acid phosphatase, β-galactosidase, N-acetyl glucosamindase and cathepsin D) in MSU-crystals stimulated macrophage cells. The mRNA expression of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, and MCP-1), inflammatory enzymes (iNOS and COX-2), and NF-κBp65 was found downregulated in MSU crystal stimulated macrophage cells by morin treatment, however, the mRNA expression of hypoxanthine phospho ribosyl transferse (HPRT) was found to be increased. The flow cytometry analysis revealed that morin treatment decreased intracellular reactive oxygen species levels in MSU crystal stimulated macrophage cells. The western blot analysis clearly showed that morin mainly exerts its anti-inflammatory effects by inhibiting the MSU crystal-induced COX-2 and TNF-α protein expression through the inactivation of NF-κB signaling pathway in RAW 264.7 macrophage cells similar to that of BAY 11–7082 (IκB kinase inhibitor). Our results collectively suggest that morin can be a potential therapeutic agent for inflammatory disorders like acute gouty arthritis.  相似文献   

19.
Adsorptive endocytosis of five different lysosomal enzymes from various human and non-human sources was susceptible to inhibition by mannose and l-fucose, methyl α-d-mannoside, α-anomeric p-nitrophenyl glycosides of mannose and l-fucose, mannose 6-phosphate and fructose 1-phosphate. A few exceptions from this general scheme were observed for particular enzymes, particularly for β-glucuronidase from human urine. The inhibition of α-N-acetylglucosaminidase endocytosis by mannose, p-nitrophenyl α-d-mannoside and mannose 6-phosphate was shown to be competitive. The loss of endocytosis after alkaline phosphatase treatment of lysosomal enzymes supports the hypothesis that the phosphorylated sugars compete with a phosphorylated carbohydrate on the enzymes for binding to the cell-surface receptors [Kaplan, Achord & Sly (1977) Proc. Natl. Acad. Sci. U.S.A. 74, 2026–2030]. Endocytosis of `low-uptake' forms of α-N-acetylglucosaminidase and α-mannosidase was likewise susceptible to inhibition by sugar phosphates and by alkaline phosphatase treatment, suggesting that `low-uptake' forms are either contaminated with `high-uptake' forms or are internalized via the same route as `high-uptake' forms. The existence of an alternative route for adsorptive endocytosis of lysosomal enzymes is indicated by the unaffected adsorptive endocytosis of rat liver β-glucuronidase in the presence of phosphorylated sugars and after treatment with alkaline phosphatase.  相似文献   

20.
Male BALB/C mice were injected intraperitoneally with 2.5 i.u. of gonadotrophin. After the injection, increase of β-glucuronidase activity was first observed in the microsomal fraction. By 36h 45–50% of the total homogenate activity was found in the microsomal fraction compared with 20–25% in the control microsomal fraction. From 36 to 80h not only microsomal β-glucuronidase but also lysosomal β-glucuronidase increased progressively. After 69h stimulation with 2.5 i.u. of gonadotrophin, d-[1-14C]glucosamine or l-[U-14C]leucine was injected intraperitoneally. After a further 3h the kidneys were homogenized and five particulate fractions were prepared by differential centrifugation. The β-glucuronidase in the microsomal and lysosomal fractions was released respectively by ultrasonication and by freezing and thawing treatment. The enzyme was purified by organic-solvent precipitation and by sucrose-density-gradient centrifugation. The results demonstrated the incorporation of these two labels into the mouse renal β-glucuronidase. The microsomal β-glucuronidase was much more radioactive than the lysosomal enzyme and approx. 80% of the newly synthesized enzyme appeared in microsomes and approx. 20% of that was found in lysosomes at this period. These results suggest that the mouse renal β-glucuronidase is a glycoprotein and that the newly synthesized enzyme is transported from endoplasmic reticulum to lysosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号