首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A cDNA was isolated from the mouse brain that encodes a novel Na(+)-independent neutral amino acid transporter. The encoded protein, designated as Asc-1 (asc-type amino acid transporter 1), was found to be structurally related to recently identified mammalian amino acid transporters for the transport systems L, y(+)L, x(C)(-), and b(0,+), which are linked, via a disulfide bond, to the type II membrane glycoproteins, 4F2 heavy chain (4F2hc), or rBAT (related to b(0,+) amino acid transporter). Asc-1 required 4F2hc for its functional expression. In Western blot analysis in the nonreducing condition, a 118-kDa band, which seems to correspond to the heterodimeric complex of Asc-1 and 4F2hc, was detected in the mouse brain. The band shifted to 33 kDa in the reducing condition, confirming that Asc-1 and 4F2hc are linked via a disulfide bond. Asc-1-mediated transport was not dependent on the presence of Na(+) or Cl(-). Although Asc-1 showed a high sequence homology (66% identity at the amino acid level) to the Na(+)-independent broad scope neutral amino acid transporter LAT2 (Segawa, H., Fukasawa, Y., Miyamoto, K., Takeda, E., Endou, H., and Kanai, Y. (1999) J. Biol. Chem. 274, 19745-19751), Asc-1 also exhibited distinctive substrate selectivity and transport properties. Asc-1 preferred small neutral amino acids such as Gly, L-Ala, L-Ser, L-Thr, and L-Cys, and alpha-aminoisobutyric acid as substrates. Asc-1 also transported D-isomers of the small neutral amino acids, in particular D-Ser, a putative endogenous modulator of N-methyl-D-aspartate-type glutamate receptors, with high affinity. Asc-1 operated preferentially, although not exclusively, in an exchange mode. Asc-1 mRNA was detected in the brain, lung, small intestine, and placenta. The functional properties of Asc-1 seem to be consistent with those of a transporter subserving the Na(+)-independent small neutral amino acid transport system asc.  相似文献   

2.
3.
We identified a novel amino acid transporter designated Asc-2 (for asc-type amino acid transporter 2). Asc-2 exhibited relatively low but significant sequence similarity to the members of the heterodimeric amino acid transporters. The cysteine residue responsible for the disulfide bond formation between transporters (light chains) and heavy chain subunits in the heterodimeric amino acid transporters is conserved for Asc-2. Asc-2 is, however, not colocalized with the already known heavy chains such as 4F2 heavy chain (4F2hc) or related to b(0,+) amino acid transporter (rBAT) in mouse kidney. Because Asc-2 solely expressed or coexpressed with 4F2hc or rBAT did not induce functional activity, we generated fusion proteins in which Asc-2 is connected with 4F2hc or rBAT. The fusion proteins were sorted to the plasma membrane and expressed the function corresponding to the Na(+)-independent small neutral amino acid transport system asc. Distinct from the already identified system asc transporter Asc-1 which is associated with 4F2hc, Asc-2-mediated transport is less stereoselective and did not accept some of the high affinity substrates of Asc-1 such as alpha-aminoisobutyric acid and beta-alanine. Asc-2 message was detected in kidney, placenta, spleen, lung, and skeletal muscle. In kidney, Asc-2 protein was present in the epithelial cells lining collecting ducts. In the Western blot analysis on mouse erythrocytes and kidney, Asc-2 was detected as multiple bands in the nonreducing condition, whereas the bands shifted to a single band at lower molecular weight, suggesting the association of Asc-2 with other protein(s) via a disulfide bond. The finding of Asc-2 would lead to the establishment of a new subgroup of heterodimeric amino acid transporter family which includes transporters associated not with 4F2hc or rBAT but with other unknown heavy chains.  相似文献   

4.
5.
In E. coli, glyA encodes for serine hydroxymethyltransferase (SHMT), which converts L-serine to glycine. When engineering L-serine-producing strains, it is therefore favorable to inactivate glyA to prevent L-serine degradation. However, most glyA knockout strains exhibit slow cell growth because of the resulting lack of glycine and C1 units. To overcome this problem, we overexpressed the gcvTHP genes of the glycine cleavage system (GCV), to increase the C1 supply before glyA was knocked out. Subsequently, the kbl and tdh genes were overexpressed to provide additional glycine via the L-threonine degradation pathway, thus restoring normal cell growth independent of glycine addition. Finally, the plasmid pPK10 was introduced to overexpress pgk, serA Δ197 , serC and serB, and the resulting strain E4G2 (pPK10) accumulated 266.3 mg/L of L-serine in a semi-defined medium without adding glycine, which was 3.18-fold higher than the production achieved by the control strain E3 (pPK10). This strategy can accordingly be applied to disrupt the L-serine degradation pathway in industrial production strains without causing negative side-effects, ultimately making L-serine production more efficient.  相似文献   

6.
In an in vivo dialysis experiment, the intra-medial frontal cortex infusion of a system A and Asc-1 transporter inhibitor, S-methyl-l-cysteine, caused a concentration-dependent increase in the dialysate contents of an endogenous coagonist for the N-methyl-d-aspartate (NMDA) type glutamate receptor, d-serine, in the cortical portion. These results suggest that these neutral amino acid transporters could control the extracellular d-serine signaling in the brain and be a target for the development of a novel threapy for neuropsychiatric disorders with an NMDA receptor dysfunction.  相似文献   

7.
Glycine is a critical factor in ischemia as reduced astrocytic and increased extracellular glycine levels aggravate the neurotoxic effect of glutamate and consequently, increase the extent of brain damage. Extracellular levels of glycine are primarily regulated by the plasma membrane glycine transporter 1. In the present study, we examined the effects of transient ischemia (1 h occlusion of the middle cerebral artery; followed by 0 h, 0.5 h, 1 h, 2 h, 4 h, 24 h or 48 h reperfusion) on immunoreactivity and mRNA expression of glycine transporter 1 in the rat forebrain. In control animals, glycine transporter 1-immunoreactivity was strong in diencephalic and certain telencephalic structures, moderate in the globus pallidus, and rather low in the cortex and striatum. In situ hybridization studies revealed a similar distribution pattern of glycine transporter 1 mRNA expression. One hour occlusion of the middle cerebral artery resulted in a significant decrease in ipsilateral glycine transporter 1-immunoreactivity and mRNA expression in a circumscribed region of the preoptic/hypothalamic area; both the immunoreactivity and mRNA exhibited further reductions with increasing reperfusion time. In contrast, the cerebral cortex and the globus pallidus showed an increase of glycine transporter 1-immunoreactivity after 0.5 h reperfusion; the elevation proved to be transient in the somatosensory cortex and remained sustained in the globus pallidus after longer reperfusion times. Western blot analysis of globus pallidus samples from the ipsilateral side confirmed higher glycine transporter 1 protein levels. These results suggest an elevated expression of the transporter protein facilitating the glial uptake of glycine from the extracellular space. However, glycine transporter 1 mRNA expression was not significantly different in the penumbra regions from the corresponding contralateral sites of the injury. Together, these findings indicate that post-translational mechanisms are of primary importance in elevating glycine transporter 1 protein levels following transient ischemia.  相似文献   

8.
Glycine serves as a neurotransmitter in spinal cord and brain stem, where it activates inhibitory glycine receptors. In addition, it serves as an essential co-agonist of excitatory N-methyl-d-aspartate receptors. In the central nervous system, extracellular glycine concentrations are regulated by two specific glycine transporters (GlyTs), GlyT1 and GlyT2. Here, we determined the relative transport activities and protein levels of GlyT1 and GlyT2 in membrane preparations from mouse brain stem and spinal cord at different developmental stages. We report that early postnatally (up to postnatal day P5) GlyT1 is the predominant transporter isoform responsible for a major fraction of the GlyT-mediated [(3)H]glycine uptake. At later stages (≥ P10), however, the transport activity and expression of GlyT2 increases, and in membrane fractions from adult mice both GlyTs contribute about equally to glycine uptake. These alterations in the activities and expression profiles of the GlyTs suggest that the contributions of GlyT1 and GlyT2 to the regulation of extracellular glycine concentrations at glycinergic synapses changes during development.  相似文献   

9.
The extracellular levels of the neurotransmitter glycine in the brain are tightly regulated by the glycine transporter 1 (GlyT1) and the clearance rate for glycine depends on its rate of transport and the levels of cell surface GlyT1. Over the years, it has been shown that PKC tightly regulates the activity of several neurotransmitter transporters. In the present work, by stably expressing three N-terminus GlyT1 isoforms in porcine aortic endothelial cells and assaying for [32P]-orthophosphate metabolic labeling, we demonstrated that the isoforms GlyT1a, GlyT1b, and GlyT1c were constitutively phosphorylated, and that phosphorylation was dramatically enhanced, in a time dependent fashion, after PKC activation by phorbol ester. The phosphorylation was PKC-dependent, since pre-incubation of the cells with bisindolylmaleimide I, a selective PKC inhibitor, abolished the phorbol ester-induced phosphorylation. Blotting with specific anti-phospho-tyrosine antibodies did not yield any signal that could correspond to GlyT1 tyrosine phosphorylation, suggesting that the phosphorylation occurs at serine and/or threonine residues. In addition, a 23–40%-inhibition on Vmax was obtained by incubation with phorbol ester without a significant change on the apparent Km value. Furthermore, pre-incubation of the cells with the selective PKCα/β inhibitor Gö6976 abolished the downregulation effect of phorbol ester on uptake and phosphorylation, whereas the selective PKCβ inhibitors (PKCβ inhibitor or LY333531) prevented the phosphorylation without affecting glycine uptake, defining a specific role of classical PKC on GlyT1 uptake and phosphorylation. Taken together, these data suggest that conventional PKCα/β regulates the uptake of glycine, whereas PKCβ is responsible for GlyT1 phosphorylation.  相似文献   

10.
Glycine is a mandatory positive allosteric modulator of N-methyl-D-aspartate (NMDA)-type ionotropic glutamate receptors in the central nervous system. Elevation of glycine concentrations by inhibition of its reuptake in the vicinity of NMDA receptors may positively influence receptor functions as glycine B binding site on NR1 receptor subunit is not saturated in physiological conditions. Synaptic and extrasynaptic concentrations of glycine are regulated by its type-1 glycine transporter, which is primarily expressed in astroglial and glutamatergic cell membranes. Alteration of synaptic glycine levels may have importance in the treatment of various forms of endogenous psychosis characterized by hypofunctional NMDA receptors. Several lines of evidence indicate that impaired NMDA receptor-mediated glutamatergic neurotransmission is involved in development of the negative (and partly the positive) symptoms and the cognitive deficit in schizophrenia. Inhibitors of glycine transporter type-1 may represent a newly developed therapeutic intervention in treatment of this mental illness. We have synthesized a novel series of N-substituted sarcosines, analogues of the glycine transporter-1 inhibitor NFPS (N-[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)-propyl]sarcosine). Of the pyridazinone-containing compounds, SzV-1997 was found to be a potent glycine transporter-1 inhibitor in rat brain synaptosomes and it markedly increased extracellular glycine concentrations in conscious rat striatum. SzV-1997 did not exhibit toxic symptoms such as hyperlocomotion, restless movements, respiratory depression, and lethality, characteristic for NFPS. Besides pyridazinone-based, sarcosine-containing glycine transporter-1 inhibitors, a series of substrate-type amino acid inhibitors was investigated in order to obtain better insight into the ligand-binding characteristics of the substrate binding cavity of the transporter.  相似文献   

11.
Neurotransmitter transporter ubiquitination is emerging as the main mechanism for endocytosis and sorting of cargo into lysosomes. In this study, we demonstrate PKC-dependent ubiquitination of three different isoforms of the glycine transporter 1 (GlyT1). Incubation of cells expressing transporter with the PKC activator phorbol ester induced a dramatic, time-dependent increase in GlyT1 ubiquitination, followed by accumulation of GlyT1 in EEA1 positive early endosomes. This occurred via a mechanism that was abolished by inhibition of PKC. GlyT1 endocytosis was confirmed in both retinal sections and primary cultures of mouse amacrine neurons. Replacement of only all lysines in the N-and C-termini to arginines prevented ubiquitination and endocytosis, displaying redundancy in the mechanism of ubiquitination. Interestingly, a 40–50% reduction in glycine uptake was detected in phorbol-ester stimulated cells expressing the WT-GlyT1, whereas no significant change was for the mutant protein, demonstrating that endocytosis participates in the reduction of uptake. Consistent with previous findings for the dopamine transporter DAT, ubiquitination of GlyT1 tails functions as sorting signal to deliver transporter into the lysosome and removal of ubiquitination sites dramatically attenuated the rate of GlyT1 degradation. Finally, we showed for the first time that PKC-dependent GlyT1 phosphorylation was not affected by removal of ubiquitination sites, suggesting separate PKC-dependent signaling events for these posttranslational modifications.  相似文献   

12.
The type 1 glycine transporter plays an important in regulating homeostatic glycine levels in the brain that are relevant to the activation of the NMDA receptor by the excitatory neurotransmitter glutamate. We describe herein the structure–activity relationships (SAR) of a structurally novel class of GlyT1 inhibitors following on a lead derived from high throughput screening, which shows good selectivity for GlyT1 and potent activity in elevating CSF levels of glycine.  相似文献   

13.
We describe a novel series of inhibitors of the type 1 glycine transporter (GlyT1) as an approach to relieving the glutamatergic deficit that is thought to underlie schizophrenia. Synthesis and SAR follow-up of a series of octahydro-cyclopenta[c]pyrrole derivatives afforded potent in vitro inhibition of GlyT1 as well as in vivo activity in elevating CSF glycine. We also found that a 3-O(c-pentyl), 4-F substituent may serve as a surrogate for the widely used 3-trifluoromethoxy group, suggesting its application as an isostere for future medicinal chemistry studies.  相似文献   

14.
Rat posterior eyecups containing the retina were prepared, loaded with [3H]glycine and superfused in order to determine its release originated from glycinergic amacrine cells and/or glial cells. Deprivation of oxygen and glucose from the Krebs-bicarbonate buffer used for superfusion evoked a marked increase of [3H]glycine release, an effect that was found to be external Ca2+-independent. Whereas oxygen and glucose deprivation increased [3H]glycine release, its uptake was reduced suggesting that energy deficiency shifts glycine transporter type-1 operation from normal to reverse mode. The increased release of [3H]glycine evoked by oxygen and glucose deprivation was suspended by addition of the non-competitive glycine transporter type-1 inhibitor NFPS and the competitive inhibitor ACPPB further suggesting the involvement of this transporter in the mediation of [3H]glycine release. Oxygen and glucose deprivation also evoked [3H]glutamate release from rat retina and the concomitantly occurring release of the NMDA receptor agonist glutamate and the coagonist glycine makes NMDA receptor pathological overstimulation possible in hypoxic conditions. [3H]Glutamate release was suspended by addition of the excitatory amino acid transporter inhibitor TBOA. Sarcosine, a substrate inhibitor of glycine transporter type-1, also increased [3H]glycine release probably by heteroexchange shifting transporter operation into reverse mode. This effect of sarcosine was also external Ca2+-independent and could be suspended by NFPS. Energy deficiency in retina induced by ouabain, an inhibitor of the Na+–K+-dependent ATPase, and by rotenone, a mitochondrial complex I inhibitor added with the glycolytic inhibitor 2-deoxy-d-glucose, led to increase of retinal [3H]glycine efflux. These effects of ouabain and rotenone/2-deoxy-d-glucose could also be blocked by NFPS pointed to the preferential reverse mode operation of glycine transporter type-1 as a consequence of impaired cellular energy homeostasis. Immunohistochemical studies revealed that glycine transporter type-1, of which reverse mode operation assures [3H]glycine release, is expressed in amacrine cells in the inner nuclear and plexiform layers of the retina and also in Müller macroglia cells. We conclude that disruption of the balanced normal/reverse mode operation of glycine transporter type-1 is likely a significant factor contributing to neurotoxic processes of the retina. The possibility to inhibit glycine transporter type-1 mediated glycine efflux by drugs more potently than glycine uptake might offer some therapeutic potential for the treatment of various neurodegenerative disorders of the retina.  相似文献   

15.
The glycine transporter subtype 1 (GlyT1) is widely expressed in astroglial cells throughout the mammalian central nervous system and has been implicated in the regulation of N-methyl-D-aspartate (NMDA) receptor activity. Newborn mice deficient in GlyT1 are anatomically normal but show severe motor and respiratory deficits and die during the first postnatal day. In brainstem slices from GlyT1-deficient mice, in vitro respiratory activity is strikingly reduced but normalized by the glycine receptor (GlyR) antagonist strychnine. Conversely, glycine or the GlyT1 inhibitor sarcosine suppress respiratory activity in slices from wild-type mice. Thus, during early postnatal life, GlyT1 is essential for regulating glycine concentrations at inhibitory GlyRs, and GlyT1 deletion generates symptoms found in human glycine encephalopathy.  相似文献   

16.
Production of L-serine by the methanol utilizing bacterium,Pseudomonas 3ab   总被引:1,自引:0,他引:1  
Summary A bacterium capable of growth on methanol and some organic acids as sole source of carbon and energy has been isolated and designated Pseudomonas 3ab. This facultative methylotrophic organism apparently utilizes the serine pathway of formaldehyde fixation.When methanol was used as the sole carbon source for growth, L-serine production by Pseudomonas 3ab occurred upon the addition of glycine and methanol at the end of the exponential growth phase. The maximum yield of L-serine (4.7 g/l) was obtained when 20 g/l glycine and 8 g/l methanol were added and the pH of the culture medium was changed to 8.5.Although Pseudomonas 3ab is unable to grow on L-serine or glycine, it is very active in decomposing these amino acids. The degradation of L-serine and glycine has been shown to be pH-dependent with a minimum at pH 8.5–9.0.  相似文献   

17.
A novel series of glycine transporter 1 (GlyT1) inhibitors is described. Scoping of the heterocycle moiety of hit 4-chlorobenzenesulfonamide 1 led to replacement of the piperidine with an azepane for a modest increase in potency. Phenyl sulfonamides proved superior to alkyl and non-phenyl aromatic sulfonamides, while subsequent ortho substitution of the 2-(azepan-1-yl)-2-phenylethanamine aromatic ring yielded 39 (IC50 37 nM, solubility 14 μM), the most potent GlyT1 inhibitor in this series. Favorable brain–plasma ratios were observed for select compounds in pharmacokinetic studies to evaluate CNS penetration.  相似文献   

18.
Listeria monocytogenes is a pathogenic bacterium that can grow at low temperatures and elevated osmolarity. The organism survives these stresses by the intracellular accumulation of osmolytes: low-molecular-weight organic compounds which exert a counterbalancing force. The primary osmolyte in L. monocytogenes is glycine betaine, which is accumulated from the environment via two transport systems: glycine betaine porter I, an Na+-glycine betaine symporter; and glycine betaine porter II, an ATP-dependent transporter. The biochemical characteristics of glycine betaine porter I were investigated in a mutant strain (LTG59) lacking the ATP-dependent transporter. At 4% NaCl, glycine betaine uptake in LTG59 was about fivefold lower than in strain DP-L1044, which has both transporters, indicating that the ATP-dependent transporter is the primary means by which glycine betaine enters the cell. In the absence of osmotic stress, cold-activated uptake by both transporters was most rapid between 7 and 12°C, but a larger fraction of the total uptake was via the ATP-dependent transporter than was observed under salt-stressed conditions. Twelve glycine betaine analogs were tested for their ability to inhibit glycine betaine uptake and growth of stressed cultures. Carnitine, dimethylglycine, and γ-butyrobetaine appear to inhibit the ATP-dependent transporter, while trigonelline and triethylglycine primarily inhibit glycine betaine porter I. Triethylglycine was also able to retard the growth of osmotically stressed L. monocytogenes grown in the presence of glycine betaine.  相似文献   

19.
In caudal regions of the CNS, glycine constitutes the major inhibitory neurotransmitter. Here, we describe a mouse line that expresses Cre recombinase under the control of a BAC transgenic glycine transporter 2 (GlyT2) promoter fragment. Mating of GlyT2‐Cre mice with the Cre reporter mouse lines Rosa26/LacZ and Rosa26/YFP and analysis of double transgenic offsprings revealed strong transgene activity in caudal regions of the central nervous system, i.e., brain stem and spinal cord. Some additional Cre expression was observed in cortical and cerebellar regions. In brain stem and spinal cord, Cre expressing cells were identified as glycinergic interneurons by staining with GlyT2‐ and glycine‐immunoreactive antibodies; here, >80% of the glycine‐immunoreactive cells expressed the Cre reporter protein. These data indicate that GlyT2‐Cre mice are a useful tool for the genetic manipulation of glycinergic interneurons. genesis 48:437–445, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号