首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structural comparison of multiple-chain protein complexes is essential in many studies of protein–protein interactions. We develop a new algorithm, MM-align, for sequence-independent alignment of protein complex structures. The algorithm is built on a heuristic iteration of a modified Needleman–Wunsch dynamic programming (DP) algorithm, with the alignment score specified by the inter-complex residue distances. The multiple chains in each complex are first joined, in every possible order, and then simultaneously aligned with cross-chain alignments prevented. The alignments of interface residues are enhanced by an interface-specific weighting factor. MM-align is tested on a large-scale benchmark set of 205 × 3897 non-homologous multiple-chain complex pairs. Compared with a naïve extension of the monomer alignment program of TM-align, the alignment accuracy of MM-align is significantly higher as judged by the average TM-score of the physically-aligned residues. MM-align is about two times faster than TM-align because of omitting the cross-alignment zone of the DP matrix. It also shows that the enhanced alignment of the interfaces helps in identifying biologically relevant protein complex pairs.  相似文献   

2.
Structural alignment of proteins is widely used in various fields of structural biology. In order to further improve the quality of alignment, we describe an algorithm for structural alignment based on text modelling techniques. The technique firstly superimposes secondary structure elements of two proteins and then, models the 3D-structure of the protein in a sequence of alphabets. These sequences are utilized by a step-by-step sequence alignment procedure to align two protein structures. A benchmark test was organized on a set of 200 non-homologous proteins to evaluate the program and compare it to state of the art programs, e.g. CE, SAL, TM-align and 3D-BLAST. On average, the results of all-against-all structure comparison by the program have a competitive accuracy with CE and TM-align where the algorithm has a high running speed like 3D-BLAST.  相似文献   

3.
A significant number of protein sequences in a given proteome have no obvious evolutionarily related protein in the database of solved protein structures, the PDB. Under these conditions, ab initio or template-free modeling methods are the sole means of predicting protein structure. To assess its expected performance on proteomes, the TASSER structure prediction algorithm is benchmarked in the ab initio limit on a representative set of 1129 nonhomologous sequences ranging from 40 to 200 residues that cover the PDB at 30% sequence identity and which adopt alpha, alpha + beta, and beta secondary structures. For sequences in the 40-100 (100-200) residue range, as assessed by their root mean square deviation from native, RMSD, the best of the top five ranked models of TASSER has a global fold that is significantly close to the native structure for 25% (16%) of the sequences, and with a correct identification of the structure of the protein core for 59% (36%). In the absence of a native structure, the structural similarity among the top five ranked models is a moderately reliable predictor of folding accuracy. If we classify the sequences according to their secondary structure content, then 64% (36%) of alpha, 43% (24%) of alpha + beta, and 20% (12%) of beta sequences in the 40-100 (100-200) residue range have a significant TM-score (TM-score > or = 0.4). TASSER performs best on helical proteins because there are less secondary structural elements to arrange in a helical protein than in a beta protein of equal length, since the average length of a helix is longer than that of a strand. In addition, helical proteins have shorter loops and dangling tails. If we exclude these flexible fragments, then TASSER has similar accuracy for sequences containing the same number of secondary structural elements, irrespective of whether they are helices and/or strands. Thus, it is the effective configurational entropy of the protein that dictates the average likelihood of correctly arranging the secondary structure elements.  相似文献   

4.
Zhang Y  Skolnick J 《Proteins》2004,57(4):702-710
We have developed a new scoring function, the template modeling score (TM-score), to assess the quality of protein structure templates and predicted full-length models by extending the approaches used in Global Distance Test (GDT)1 and MaxSub.2 First, a protein size-dependent scale is exploited to eliminate the inherent protein size dependence of the previous scores and appropriately account for random protein structure pairs. Second, rather than setting specific distance cutoffs and calculating only the fractions with errors below the cutoff, all residue pairs in alignment/modeling are evaluated in the proposed score. For comparison of various scoring functions, we have constructed a large-scale benchmark set of structure templates for 1489 small to medium size proteins using the threading program PROSPECTOR_3 and built the full-length models using MODELLER and TASSER. The TM-score of the initial threading alignments, compared to the GDT and MaxSub scoring functions, shows a much stronger correlation to the quality of the final full-length models. The TM-score is further exploited as an assessment of all 'new fold' targets in the recent CASP5 experiment and shows a close coincidence with the results of human-expert visual assessment. These data suggest that the TM-score is a useful complement to the fully automated assessment of protein structure predictions. The executable program of TM-score is freely downloadable at http://bioinformatics.buffalo.edu/TM-score.  相似文献   

5.
Wu S  Zhang Y 《Proteins》2008,72(2):547-556
We develop a new threading algorithm MUSTER by extending the previous sequence profile-profile alignment method, PPA. It combines various sequence and structure information into single-body terms which can be conveniently used in dynamic programming search: (1) sequence profiles; (2) secondary structures; (3) structure fragment profiles; (4) solvent accessibility; (5) dihedral torsion angles; (6) hydrophobic scoring matrix. The balance of the weighting parameters is optimized by a grading search based on the average TM-score of 111 training proteins which shows a better performance than using the conventional optimization methods based on the PROSUP database. The algorithm is tested on 500 nonhomologous proteins independent of the training sets. After removing the homologous templates with a sequence identity to the target >30%, in 224 cases, the first template alignment has the correct topology with a TM-score >0.5. Even with a more stringent cutoff by removing the templates with a sequence identity >20% or detectable by PSI-BLAST with an E-value <0.05, MUSTER is able to identify correct folds in 137 cases with the first model of TM-score >0.5. Dependent on the homology cutoffs, the average TM-score of the first threading alignments by MUSTER is 5.1-6.3% higher than that by PPA. This improvement is statistically significant by the Wilcoxon signed rank test with a P-value < 1.0 x 10(-13), which demonstrates the effect of additional structural information on the protein fold recognition. The MUSTER server is freely available to the academic community at http://zhang.bioinformatics.ku.edu/MUSTER.  相似文献   

6.
Rocha J  Alberich R 《PloS one》2011,6(6):e20889
BACKGROUND: When a researcher uses a program to align two proteins and gets a score, one of her main concerns is how often the program gives a similar score to pairs that are or are not in the same fold. This issue was analysed in detail recently for the program TM-align with its associated TM-score. It was shown that because the TM-score is length independent, it allows a P-value and a hit probability to be defined depending only on the score. Also, it was found that the TM-scores of gapless alignments closely follow an Extreme Value Distribution (EVD). The program ProtDeform for structural protein alignment was developed recently and is characterised by the ability to propose different transformations of different protein regions. Our goal is to analyse its associated score to allow a researcher to have objective reasons to prefer one aligner over another, and carry out a better interpretation of the output. RESULTS: The study on the ProtDeform score reveals that it is length independent in a wider score range than TM-scores and that PD-scores of gapless (random) alignments also approximately follow an EVD. On the CASP8 predictions, PD-scores and TM-scores, with respect to native structures, are highly correlated (0.95), and show that around a fifth of the predictions have a quality as low as 99.5% of the random scores. Using the Gold Standard benchmark, ProtDeform has lower probabilities of error than TM-align both at a similar speed. The analysis is extended to homology discrimination showing that, again, ProtDeform offers higher hit probabilities than TM-align. Finally, we suggest using three different P-values according to the three different contexts: Gapless alignments, optimised alignments for fold discrimination and that for superfamily discrimination. In conclusion, PD-scores are at the very least as valuable for prediction scoring as TM-scores, and on the protein classification problem, even more reliable.  相似文献   

7.
We have developed an ab initio protein structure prediction method called chunk-TASSER that uses ab initio folded supersecondary structure chunks of a given target as well as threading templates for obtaining contact potentials and distance restraints. The predicted chunks, selected on the basis of a new fragment comparison method, are folded by a fragment insertion method. Full-length models are built and refined by the TASSER methodology, which searches conformational space via parallel hyperbolic Monte Carlo. We employ an optimized reduced force field that includes knowledge-based statistical potentials and restraints derived from the chunks as well as threading templates. The method is tested on a dataset of 425 hard target proteins < or =250 amino acids in length. The average TM-scores of the best of top five models per target are 0.266, 0.336, and 0.362 by the threading algorithm SP(3), original TASSER and chunk-TASSER, respectively. For a subset of 80 proteins with predicted alpha-helix content > or =50%, these averages are 0.284, 0.356, and 0.403, respectively. The percentages of proteins with the best of top five models having TM-score > or =0.4 (a statistically significant threshold for structural similarity) are 3.76, 20.94, and 28.94% by SP(3), TASSER, and chunk-TASSER, respectively, overall, while for the subset of 80 predominantly helical proteins, these percentages are 2.50, 23.75, and 41.25%. Thus, chunk-TASSER shows a significant improvement over TASSER for modeling hard targets where no good template can be identified. We also tested chunk-TASSER on 21 medium/hard targets <200 amino-acids-long from CASP7. Chunk-TASSER is approximately 11% (10%) better than TASSER for the total TM-score of the first (best of top five) models. Chunk-TASSER is fully automated and can be used in proteome scale protein structure prediction.  相似文献   

8.
We evaluate tertiary structure predictions on medium to large size proteins by TASSER, a new algorithm that assembles protein structures through rearranging the rigid fragments from threading templates guided by a reduced Calpha and side-chain based potential consistent with threading based tertiary restraints. Predictions were generated for 745 proteins 201-300 residues in length that cover the Protein Data Bank (PDB) at the level of 35% sequence identity. With homologous proteins excluded, in 365 cases, the templates identified by our threading program, PROSPECTOR_3, have a root-mean-square deviation (RMSD) to native < 6.5 angstroms, with >70% alignment coverage. After TASSER assembly, in 408 cases the best of the top five full-length models has a RMSD < 6.5 angstroms. Among the 745 targets are 18 membrane proteins, with one-third having a predicted RMSD < 5.5 A. For all representative proteins less than or equal to 300 residues that have corresponding multiple NMR structures in the Protein Data Bank, approximately 20% of the models generated by TASSER are closer to the NMR structure centroid than the farthest individual NMR model. These results suggest that reasonable structure predictions for nonhomologous large size proteins can be automatically generated on a proteomic scale, and the application of this approach to structural as well as functional genomics represent promising applications of TASSER.  相似文献   

9.
Skolnick J  Kihara D  Zhang Y 《Proteins》2004,56(3):502-518
This article describes the PROSPECTOR_3 threading algorithm, which combines various scoring functions designed to match structurally related target/template pairs. Each variant described was found to have a Z-score above which most identified templates have good structural (threading) alignments, Z(struct) (Z(good)). 'Easy' targets with accurate threading alignments are identified as single templates with Z > Z(good) or two templates, each with Z > Z(struct), having a good consensus structure in mutually aligned regions. 'Medium' targets have a pair of templates lacking a consensus structure, or a single template for which Z(struct) < Z < Z(good). PROSPECTOR_3 was applied to a comprehensive Protein Data Bank (PDB) benchmark composed of 1491 single domain proteins, 41-200 residues long and no more than 30% identical to any threading template. Of the proteins, 878 were found to be easy targets, with 761 having a root mean square deviation (RMSD) from native of less than 6.5 A. The average contact prediction accuracy was 46%, and on average 17.6 residue continuous fragments were predicted with RMSD values of 2.0 A. There were 606 medium targets identified, 87% (31%) of which had good structural (threading) alignments. On average, 9.1 residue, continuous fragments with RMSD of 2.5 A were predicted. Combining easy and medium sets, 63% (91%) of the targets had good threading (structural) alignments compared to native; the average target/template sequence identity was 22%. Only nine targets lacked matched templates. Moreover, PROSPECTOR_3 consistently outperforms PSIBLAST. Similar results were predicted for open reading frames (ORFS) < or =200 residues in the M. genitalium, E. coli and S. cerevisiae genomes. Thus, progress has been made in identification of weakly homologous/analogous proteins, with very high alignment coverage, both in a comprehensive PDB benchmark as well as in genomes.  相似文献   

10.
Protein structure prediction has great potential of understanding the function of proteins at the molecular level and designing novel protein functions. Here, we report rapid and accurate structure prediction system running in an automated manner. Since fold recognition of the target protein to be modeled is the starting point of the template-guided model building process, various approaches – such as profile analysis, threading, and SCOP fold classification – have been applied to generate the template library and to select the best template structure. After the best template was determined, fold consistency within the template candidates was considered using TM-score and SCOP database to select additional template structures among the template library. To generate a total of 100 decoy sets, MODELLER was used with the selected template structure. The predicted decoys were clustered with the RMSD deviation criterion of 3 Å to obtain centroids from each cluster. Finally, the selected centroids were subject to side-chain rearrangement using SCWRL module. Our fully automated structure prediction system was examined with sample test sets consisting of recently released 80 PDB chains. Judged by the TM-score (≥0.4), we concluded that 60 cases (75%) showed similar structures of statistical significance. This prediction system provides the users with simple and reliable models within hours of query submission, so that it is quite simply used for high throughput enzyme screening.  相似文献   

11.
The total number of protein-protein complex structures currently available in the Protein Data Bank (PDB) is six times smaller than the total number of tertiary structures in the PDB, which limits the power of homology-based approaches to complex structure modeling. We present a threading-recombination approach, COTH, to boost the protein complex structure library by combining tertiary structure templates with complex alignments. The query sequences are first aligned to complex templates using a modified dynamic programming algorithm, guided by ab initio binding-site predictions. The monomer alignments are then shifted to the multimeric template framework by structural alignments. COTH was tested on 500 nonhomologous dimeric proteins, which can successfully detect correct templates for 50% of the cases after homologous templates are excluded, which significantly outperforms conventional homology modeling algorithms. It also shows a higher accuracy in interface modeling than rigid-body docking of unbound structures from ZDOCK although with lower coverage. These data demonstrate new avenues to model complex structures from nonhomologous templates.  相似文献   

12.
TMCompare is an alignment and visualization tool for comparison of sequence information for membrane proteins contained in SWISS-PROT entries, with structural information contained in PDB files. The program can be used for: detection of breaks in alpha helical structure of transmembrane regions; examination of differences in coverage between PDB and SWISS-PROT files; examination of annotation differences between PDB files and associated SWISS-PROT files; examination and comparison of assigned PDB alpha helix regions and assigned SWISS-PROT transmembrane regions in linear sequence (one letter code) format; examination of these differences in 3D using the CHIME plugin, allowing; analysis of the alpha and non-alpha content of transmembrane regions. AVAILABILITY: TMCompare is available for use through selection of a query protein via the internet (http://www.membraneproteins.org/TMCompare) CONTACT: tmcompare@membraneproteins.org  相似文献   

13.
The ability to determine the structure of a protein in solution is a critical tool for structural biology, as proteins in their native state are found in aqueous environments. Using a physical chemistry based prediction protocol, we demonstrate the ability to reproduce protein loop geometries in experimentally derived solution structures. Predictions were run on loops drawn from (1)NMR entries in the Protein Databank (PDB), and from (2) the RECOORD database in which NMR entries from the PDB have been standardized and re-refined in explicit solvent. The predicted structures are validated by comparison with experimental distance restraints, a test of structural quality as defined by the WHAT IF structure validation program, root mean square deviation (RMSD) of the predicted loops to the original structural models, and comparison of precision of the original and predicted ensembles. Results show that for the RECOORD ensembles, the predicted loops are consistent with an average of 95%, 91%, and 87% of experimental restraints for the short, medium and long loops respectively. Prediction accuracy is strongly affected by the quality of the original models, with increases in the percentage of experimental restraints violated of 2% for the short loops, and 9% for both the medium and long loops in the PDB derived ensembles. We anticipate the application of our protocol to theoretical modeling of protein structures, such as fold recognition methods; as well as to experimental determination of protein structures, or segments, for which only sparse NMR restraint data is available.  相似文献   

14.
MOTIVATION: Local structure segments (LSSs) are small structural units shared by unrelated proteins. They are extensively used in protein structure comparison, and predicted LSSs (PLSSs) are used very successfully in ab initio folding simulations. However, predicted or real LSSs are rarely exploited by protein sequence comparison programs that are based on position-by-position alignments. RESULTS: We developed a SEgment Alignment algorithm (SEA) to compare proteins described as a collection of predicted local structure segments (PLSSs), which is equivalent to an unweighted graph (network). Any specific structure, real or predicted corresponds to a specific path in this network. SEA then uses a network matching approach to find two most similar paths in networks representing two proteins. SEA explores the uncertainty and diversity of predicted local structure information to search for a globally optimal solution. It simultaneously solves two related problems: the alignment of two proteins and the local structure prediction for each of them. On a benchmark of protein pairs with low sequence similarity, we show that application of the SEA algorithm improves alignment quality as compared to FFAS profile-profile alignment, and in some cases SEA alignments can match the structural alignments, a feat previously impossible for any sequence based alignment methods.  相似文献   

15.
Genome-wide protein–protein interaction (PPI) determination remains a significant unsolved problem in structural biology. The difficulty is twofold since high-throughput experiments (HTEs) have often a relatively high false-positive rate in assigning PPIs, and PPI quaternary structures are more difficult to solve than tertiary structures using traditional structural biology techniques. We proposed a uniform pipeline, Threpp, to address both problems. Starting from a pair of monomer sequences, Threpp first threads both sequences through a complex structure library, where the alignment score is combined with HTE data using a naïve Bayesian classifier model to predict the likelihood of two chains to interact with each other. Next, quaternary complex structures of the identified PPIs are constructed by reassembling monomeric alignments with dimeric threading frameworks through interface-specific structural alignments. The pipeline was applied to the Escherichia coli genome and created 35,125 confident PPIs which is 4.5-fold higher than HTE alone. Graphic analyses of the PPI networks show a scale-free cluster size distribution, consistent with previous studies, which was found critical to the robustness of genome evolution and the centrality of functionally important proteins that are essential to E. coli survival. Furthermore, complex structure models were constructed for all predicted E. coli PPIs based on the quaternary threading alignments, where 6771 of them were found to have a high confidence score that corresponds to the correct fold of the complexes with a TM-score >0.5, and 39 showed a close consistency with the later released experimental structures with an average TM-score = 0.73. These results demonstrated the significant usefulness of threading-based homologous modeling in both genome-wide PPI network detection and complex structural construction.  相似文献   

16.
Protein structure prediction by comparative modeling benefits greatly from the use of multiple sequence alignment information to improve the accuracy of structural template identification and the alignment of target sequences to structural templates. Unfortunately, this benefit is limited to those protein sequences for which at least several natural sequence homologues exist. We show here that the use of large diverse alignments of computationally designed protein sequences confers many of the same benefits as natural sequences in identifying structural templates for comparative modeling targets. A large-scale massively parallelized application of an all-atom protein design algorithm, including a simple model of peptide backbone flexibility, has allowed us to generate 500 diverse, non-native, high-quality sequences for each of 264 protein structures in our test set. PSI-BLAST searches using the sequence profiles generated from the designed sequences ("reverse" BLAST searches) give near-perfect accuracy in identifying true structural homologues of the parent structure, with 54% coverage. In 41 of 49 genomes scanned using reverse BLAST searches, at least one novel structural template (not found by the standard method of PSI-BLAST against PDB) is identified. Further improvements in coverage, through optimizing the scoring function used to design sequences and continued application to new protein structures beyond the test set, will allow this method to mature into a useful strategy for identifying distantly related structural templates.  相似文献   

17.
The bias in protein structure and function space resulting from experimental limitations and targeting of particular functional classes of proteins by structural biologists has long been recognized, but never continuously quantified. Using the Enzyme Commission and the Gene Ontology classifications as a reference frame, and integrating structure data from the Protein Data Bank (PDB), target sequences from the structural genomics projects, structure homology derived from the SUPERFAMILY database, and genome annotations from Ensembl and NCBI, we provide a quantified view, both at the domain and whole-protein levels, of the current and projected coverage of protein structure and function space relative to the human genome. Protein structures currently provide at least one domain that covers 37% of the functional classes identified in the genome; whole structure coverage exists for 25% of the genome. If all the structural genomics targets were solved (twice the current number of structures in the PDB), it is estimated that structures of one domain would cover 69% of the functional classes identified and complete structure coverage would be 44%. Homology models from existing experimental structures extend the 37% coverage to 56% of the genome as single domains and 25% to 31% for complete structures. Coverage from homology models is not evenly distributed by protein family, reflecting differing degrees of sequence and structure divergence within families. While these data provide coverage, conversely, they also systematically highlight functional classes of proteins for which structures should be determined. Current key functional families without structure representation are highlighted here; updated information on the "most wanted list" that should be solved is available on a weekly basis from http://function.rcsb.org:8080/pdb/function_distribution/index.html.  相似文献   

18.
Qu Y  Guo JT  Olman V  Xu Y 《Nucleic acids research》2004,32(2):551-561
Residual dipolar coupling (RDC) represents one of the most exciting emerging NMR techniques for protein structure studies. However, solving a protein structure using RDC data alone is still a highly challenging problem. We report here a computer program, RDC-PROSPECT, for protein structure prediction based on a structural homolog or analog of the target protein in the Protein Data Bank (PDB), which best aligns with the 15N–1H RDC data of the protein recorded in a single ordering medium. Since RDC-PROSPECT uses only RDC data and predicted secondary structure information, its performance is virtually independent of sequence similarity between a target protein and its structural homolog/analog, making it applicable to protein targets beyond the scope of current protein threading techniques. We have tested RDC-PROSPECT on all 15N–1H RDC data (representing 43 proteins) deposited in the BioMagResBank (BMRB) database. The program correctly identified structural folds for 83.7% of the target proteins, and achieved an average alignment accuracy of 98.1% residues within a four-residue shift.  相似文献   

19.
MOTIVATION: How critical is the sequence order information in predicting protein secondary structure segments? We tried to get a rough insight on it from a theoretical approach using both a prediction algorithm and structural fragments from Protein Databank (PDB). RESULTS: Using reverse protein sequences and PDB structural fragments, we theoretically estimated the significance of the order for protein secondary structure and prediction. On average: (1) 79% of protein sequence segments resulted in the same prediction in both normal and reverse directions, which indicated a relatively high conservation of secondary structure propensity in the reverse direction; (2) the reversed sequence prediction alone performed less accurately than the normal forward sequence prediction, but comparably high (2% difference); (3) the commonly predicted regions showed a slightly higher prediction accuracy (4%) than the normal sequences prediction; and (4) structural fragments which have counterparts in reverse direction in the same protein showed a comparable degree of secondary structure conservation (73% identity with reversed structures on average for pentamers). CONTACT: jong@biosophy.org; dietmann@ebi.ac.uk; heger@ebi.ac.uk; holm@ebi.ac.uk  相似文献   

20.

Background

Large-scale protein structure alignment, an indispensable tool to structural bioinformatics, poses a tremendous challenge on computational resources. To ensure structure alignment accuracy and efficiency, efforts have been made to parallelize traditional alignment algorithms in grid environments. However, these solutions are costly and of limited accessibility. Others trade alignment quality for speedup by using high-level characteristics of structure fragments for structure comparisons.

Findings

We present ppsAlign, a parallel protein structure Alignment framework designed and optimized to exploit the parallelism of Graphics Processing Units (GPUs). As a general-purpose GPU platform, ppsAlign could take many concurrent methods, such as TM-align and Fr-TM-align, into the parallelized algorithm design. We evaluated ppsAlign on an NVIDIA Tesla C2050 GPU card, and compared it with existing software solutions running on an AMD dual-core CPU. We observed a 36-fold speedup over TM-align, a 65-fold speedup over Fr-TM-align, and a 40-fold speedup over MAMMOTH.

Conclusions

ppsAlign is a high-performance protein structure alignment tool designed to tackle the computational complexity issues from protein structural data. The solution presented in this paper allows large-scale structure comparisons to be performed using massive parallel computing power of GPU.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号