首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Live trapping at 0.9 m of alate aphid vectors of barley yellow dwarf virus (BYDV) at Aberystwyth from 1970 to 1979 showed that ten species transmitted the virus to oat test plants. Conversion of percentage infective at 0.9 m to numbers infective based on continuous trapping at 1.2 m showed Rhopalosiphum padi and R. insertum to be the main vector species in most years, whilst Metopolophium dirhodum and Sitobion auenae were normally of minor importance. The data obtained suggest that epiphytotics of BYDV in autumn-sown cereals were caused by numerous infective vectors flying late in the year and transmitting severe strains of the virus. Evidence is presented that gynoparae and males of R. padi are involved in the autumn spread of BYDV and that three further aphid species, Anoecia corni, Metopolophium albidum and M. frisicum are BYDV vectors. The use of live and continuous trapping techniques in forecasting BYDV epiphytotics is discussed.  相似文献   

3.
Migrations of aphid vectors of Barley yellow dwarf viruses (BYDV) were monitored using a Rothamsted Insect Survey suction trap in Friuli-Venezia Giulia (north-eastern Italy). Catches from 1983 to 2002 were studied for trends, correlations of total catches of each year with those of previous years, correlations between the autumn and the spring + summer catches of the same year and between spring + summer catches of one year with catches of the previous autumn. Infectivity of autumn alates was studied using biological tests, and infectivity indexes were calculated for all vector species and for Rhopalosiphum padi alone. Colonisation of barley and proportion of infected plants were checked in a field close to the suction trap from 1992 to 2002 and related to trap catches. Catches were also correlated to acreage dedicated to cereal and fodder crops in the region. During the 20 years, 15 BYDV vector species were caught in the trap, but only five species were found consistently colonising barley plants during autumn. R. padi was the most numerous species in catches, while Sitobion avenae was the predominant colonising species in the barley field. Relatively to R. padi , S. avenae colonies were about six times more numerous than expected from catches. The yearly abundance of catches of most species did not change significantly during the 20 years, with a few exceptions, significantly correlated to changes in the acreage dedicated to cereal and fodder crops. There was a significant decrease of the autumn catches of both R. padi and the total of BYDV vectors.  相似文献   

4.
The tripartite interactions in a pathosystem involving wheat (Triticum aestivum L.), the Barley yellow dwarf virus (BYDV), and the BYDV vector aphid Sitobion avenae were studied under field conditions to determine the impact of these interactions on aphid populations, virus pathology and grain yield. Wheat varietal resistance to BYDV and aphids varied among the three wheat varieties studied over two consecutive years. The results demonstrated that (1) aphid peak number (APN) in the aphid + BYDV (viruliferous aphid) treatment was greater and occurred earlier than that in the non-viruliferous aphid treatment. The APN and the area under the curve of population dynamics (AUC) on a S. avenae-resistant variety 98-10-30 was significantly lower than on two aphid-susceptible varieties Tam200(13)G and Xiaoyan6. (2) The production of alatae (PA) was greater on the variety 98-10-30 than on the other varieties, and PA was greater in the aphid + BYDV treatment on 98-10-30 than in the non-viruliferous aphid treatment, but this trend was reversed on Tam200(13)G and Xiaoyan6. (3) The BYDV disease incidence (DIC) on the variety 98-10-30 was greater than that on the other two varieties in 2012, and the disease index (DID) on Tam200(13)G was lower than on the other varieties in the aphid + BYDV and BYDV treatments in 2012, but not in 2011 when aphid vector numbers were generally lower. (4) Yield loss in the aphid + BYDV treatment tended to be greater than that in the aphid or BYDV alone treatments across varieties and years. We suggested that aphid population development and BYDV transmission tend to promote each other under field conditions. The aphids + BYDV treatment caused greater yield reductions than non-viruliferous aphids or virus treatment. Wheat varietal resistance in 98-10-30 affects the aphid dispersal, virus transmission and wheat yield loss though inhibits aphid populations from increasing.  相似文献   

5.
We studied the effects of fungal endophyte infection of meadow ryegrass (Lolium pratense=Festuca pratensis) on the frequency of the barley yellow dwarf virus (BYDV). The virus is transferred by aphids, which may be deterred by endophyte-origin alkaloids within the plant. In our experiment, we released viruliferous aphid vectors on endophyte-infected and endophyte-free plants in a common garden. The number of aphids and the percentage of BYDV infections were lower in endophyte-infected plants compared to endophyte-free plants, indicating that endophyte infection may protect meadow ryegrass from BYDV infections.  相似文献   

6.
The ability of seven aphid species, collected in west-central Morocco, to transmit barley yellow dwarf virus (BYDV) was determined. Aphids were either collected from grasses showing symptoms of BYDV infection or were allowed acquisition access to plants infected with a PAV-like isolate of BYDV before transfer to oat test plants. BYDV transmission by six of the seven aphid species was confirmed by ELISA test; only Melanaphis donacis failed to transmit. The six newly defined BYDV vector species brings the total known to occur in Morocco to ten.  相似文献   

7.
Barley yellow dwarf (BYD) is one of the most common diseases of cereal crops, caused by the phloem‐limited, cereal aphid‐borne Barley yellow dwarf virus (BYDV) (Luteoviridae). Delayed planting and controlling aphid vector numbers with insecticides have been the primary approaches to manage BYD. There is limited research on nitrogen (N) application effects on plant growth, N status, and water use in the BYDV pathosystem in the absence of aphid control. Such information will be essential in developing a post‐infection management plan for BYDV‐infected cereals. Through a greenhouse study, we assessed whether manipulation of N supply to BYDV‐infected winter wheat, Triticum aestivum L. (Poaceae), in the presence or absence of the aphid vector Rhopalosiphum padi L. (Hemiptera: Aphididae), could improve N and/or water uptake, and subsequently promote plant growth. Similar responses of shoot biomass and of water and N use efficiencies to various N application rates were observed in both BYDV‐infected and non‐infected plants, suggesting that winter wheat plants with only BYDV infection may be capable of outgrowing infection by the virus. Plants, which simultaneously hosted aphids and BYDV, suffered more severe symptoms and possessed higher virus loads than those infected with BYDV only. Moreover, in plants hosting both BYDV and aphids, aphid pressure was positively associated with N concentration within plant tissue, suggesting that N application and N concentration within foliar tissue may alter BYDV replication indirectly through their influence on aphid reproduction. Even though shoot biomass, tissue N concentration, and water use efficiency increased in response to increased N application, decision‐making on N fertilization to plants hosting both BYDV and aphids should take into consideration the potential of aphid outbreak and/or the possibility of reduced plant resilience to environmental stresses due to decreased root growth.  相似文献   

8.
The effects of straw baling or incorporation, combined with ploughing, non-inversion tillage, or direct drilling on the incidence of barley yellow dwarf virus (BYDV), were investigated in plots of winter barley. Virus infection was more prevalent after ploughing (> 40% of the plot area damaged) than after non-inversion tillage (9 – 24%) or direct drilling (< 3%). For each cultivation method, more infection was associated with straw baling than with straw incorporation. There was a strong negative correlation between plot yields and the incidence of BYDV(r= -0.87). Monthly pitfall sampling of non-specific aphid predators showed that the population activity of several taxa (e.g. Linyphiidae, and the larger species of adult and larval Carabidae and Staphylinidae) declined for a short period in autumn-winter following cultivation. The overall treatment-ranking for numbers of predators in autumn (direct drilled > non-inversion > ploughed) was the opposite of subsequent virus infection. The possible roles of aphid predators and other biological mechanisms in determining the observed effects on BYDV, are briefly discussed.  相似文献   

9.
In the Rennes basin, Rhopalosiphum padi is anholocyclic and represents more than 90% of suction trap catches of potential vectors of barley yellow dwarf virus (BYDV) during autumn. From 1983 to 1987 the possibility of predicting the risk of BYDV infection of batches of barley test seedlings (sampling units) exposed each week from September to December near a 12.2 m high suction trap was investigated. Three kinds of variables were checked as possible predictors: weekly mean or maximum temperatures; weekly catches of R. padi (including or excluding males); and percentage of sampling units infested by aphids. Three contrasting examples were observed: during the first three years (1983–1985), infection was high and its change with time followed temperature, aphid catches and plant infestation changes; in 1986, high numbers of aphids caught and a high proportion of plants infested resulted in only low infection and in 1987, both infestation and infection were very low. Simple linear regression analysis showed that the more reliable predictors of infection were the proportion of infested plants and to a lesser extent the numbers of trapped aphids. Multiple linear regressions including either of the three groups of ‘predicting’ variables did not result in any improvement in the prediction. At a practical level, the use of counts of aphid catches would seem a better compromise between accuracy and consistency of prediction and ease of gathering data than that of plant infestation but any significant improvement of the prediction should be sought in an early estimate of the amount of virus available to aphids before they colonise the plants.  相似文献   

10.
Suction trapping data indicate three periods of migration of Rhopalosiphum padi in spring, summer and autumn. Four alate morphs are present at different times during the year. A comparison of data from suction traps operating at 12·2 and 1·5 m suggests a different behaviour of females in autumn with more being recorded at 12·2 than 1·5 m. Males, which are only present in autumn, were also more numerous at 12·2 m. During tests to measure barley yellow dwarf virus (BYDV) infectivity, only 9% of female R. padi reproduced on oat seedlings in autumn compared with 74% in summer. Tests on alate female R. padi trapped alive showed that in summer all were exules, but during the first half of September these were largely replaced by gynoparae so that in autumn only 5% of all R. padi trapped at 12·2 m were alate exules. The aerial densities of gynoparae and males were 10 times greater at 12·2 than 1·5 m while densities of alate exules were similar at both heights. It is suggested that gynoparae and males fly higher to increase the chance of finding a taller dispersed host plant. The implications for BYDV epidemiology of the behaviour and presence of the various R. padi alate morphs indicate that autumn-sown cereals emerging before mid-September are particularly at risk from colonisation by alate exules before the transition to a mainly sexual migrant population is complete. Alate exules introduce BYDV from comparatively local sources. The ratio of total R. padi to Sitobion avenae in suction trap samples in autumn usually exceeds 100: 1, but on crops it was only 10: 1. The ratio of alate exule R. padi to S. avenae in suction traps in autumn was only 12: 1, similar to that observed on crops.  相似文献   

11.
Data from bioassays of field collected aphids, barley indicator plants exposed to natural conditions, and various types of aphid traps were used to describe the spread of barley yellow dwarf virus (BYDV) in wheat and barley near Prosser, Washington. Bioassays were also used to assess the relative importance of local vector species. Of alate aphids collected from grain in the 1982 and 1983 fall migration seasons, 3.4–14–5% transmitted BYDV. Data from concurrent and post-migration assays of resident aphids (apterae and nymphs) reflected an increase in the proportion of infected plants in the field. Maximum increase in the percentage of viruliferous aphids occurred in late November and December of 1982 and November of 1983. The 1982 increase occurred after aphid flights had ceased for the year, suggesting active secondary spread. Collections in pitfall traps and infected trap plants from November to February confirmed aphid activity and virus spread. Rhopalosiphum padi was the most important vector in central Washington in 1982 and 1983 because of its abundance and relative BYDV transmission efficiency. Metopolophium dirhodum was more winter-hardy than R. padi and equal to R. padi in its efficiency as a vector; however, it was not as abundant as R. padi except during the mild winter of 1982–83, when it was a major contributor to secondary spread. Sitobion avenae may be important in years when it is abundant, but it was only a quarter as efficient as R. padi. Rhopalosiphum maidis was a much less efficient vector than R. padi and it only reached high populations in late autumn barley.  相似文献   

12.
The yellow dwarf (YD) disease complex epidemics in cultivated cereals grown in a specific period of the year mainly depend on the presence of potential reservoir alternative hosts harbouring both the viruses and the vectors over the off‐season and serve as a source of inoculum in subsequent cropping season, further spread being supported by efficient aphid vectors. As such, an extensive and intensive exploration to generate base line information on the identity and prevalence of YD viruses [barley yellow dwarf virus (BYDV)‐PAV, BYDV‐MAV and BYDV‐SGV; cereal yellow dwarf virus (CYDV)‐RPV; and maize yellow dwarf virus (MYDV)‐RMV] on wild annual and perennial grasses and forage cereals alternative hosts was conducted consecutively during 2013–2015 main‐ and short‐rainy seasons in cereals growing belts of Ethiopia. Random sampling was employed to collect the samples that were tested by the tissue blot immunoassay (TBIA) to identify the YDVs associated with the hosts using a battery of virus‐specific polyclonal antibodies. Of 13,604 samples analysed, YDVs were detected in 392 (2.9%) samples, which consisted of various wild grasses, forage cereals and three cultivated crops. YDVs were identified from at least 26 grass species and forage cereals, some of them are new records, and some are previously documented hosts. To our knowledge, this is the first report of YDV infection of Andropogon abyssinicus (FresenR.Br. ex Fresen.) (BYDV‐PAV), Avena abyssinica Hochst (BYDV‐PAV), Bromus pectinatus Thunb. (BYDV‐PAV and BYDV‐MAV), Eragrostis tef (Zuccagni) Trotter (BYDV‐PAV), Eragrostis sp. (BYDV‐PAV), Hyparrhenia anthistrioides Stapf. (BYDV‐PAV), Panicum coloratum L. (BYDV‐PAV), Polypogon monspeliensis (L.) Desf. (BYDV‐PAV), Setaria pumila (Poir.) Roem & Schult (BYDV‐PAV, BYDV‐SGV and MYDV‐RMV), Setaria australiensis (Scribn. & Merrill) Vickery (BYDV‐PAV, BYDV‐MAV and CYDV‐RPV) and Snowdenia polystachya (Fresen.) Pilg (BYDV‐PAV, BYDV‐MAV, BYDV‐SGV, CYDV‐RPV and MYDV‐RMV).  相似文献   

13.
A Canadian PAV-like isolate of barley yellow dwarf virus (BYDV) was used to infect durum wheat (Triticum durum) cultivars previously identified in field trials involving artificial inoculation as highly sensitive (12 IDSN74), slightly tolerant (La Dulce), and relatively tolerant (Boohai and 12 IDSN227) to BYDV. The cultivars were inoculated in the greenhouse as seedlings, and indexed for virus accumulation by enzyme-linked immunosorbent assay (ELISA) at various intervals between 3 and 60 days thereafter. Mean ELISA values were somewhat consistent with tolerance levels for 4 durum wheat cultivars, but the use of ELISA to screen for BYDV resistance in durum wheat is not practical. The magnitude of the difference between sensitive and tolerant cultivars for the mean ELISA value is not high enough, and it may be necessary to average readings between 3 and 60 days after inoculation to obtain somewhat meaningful ELISA data. The effect of vector aphid numbers on virus titre and aerial biomass in the sensitive durum wheat cv. Karim was also evaluated. There was no significant effect on virus content in a preliminary trial, but a second trial revealed that more viruliferous aphids per plant resulted in higher ELISA values. Infestation with 32 or 50 viruliferous Rhopalosiphum padi per plant depressed biomass yield below the level observed with 1–10 aphids per plant.  相似文献   

14.
Factorial experiments in 1976–1979 investigated the effects of sowing date, fungicides (ethirimol seed treatments and tridemorph sprays) and insecticides (phorate applied to the soil, and menazon or dimethoate sprays) on powdery mildew, aphids, barley yellow dwarf virus (BYDV) and grain yield of spring barley (cv. Julia in 1976 and 1977; cv. Wing in 1978 and 1979). Late sowing usually increased the severity of powdery mildew, numbers of aphids and incidence of BYDV and generally decreased yield. Responses to pesticides were commonly greater on the late-sown than on the early-sown barley. Response to fungicides are principally attributed to the control of powdery mildew (Erysiphe graminis f. sp. hordei; the target species) but responses to insecticides cannot be attributed to virus control and seem unlikely to be due solely to control of aphids, whose numbers were relatively small. There were some effects of fungicides on aphids and insecticides on mildew, but they were inconsistent and too small to affect crop protection strategies.  相似文献   

15.
Barley yellow dwarf virus (BYDV) was detected in forage cereals and small grain cereals by indirect enzyme-linked immunosorbent assay. Samples of forage cereals collected in the winters of 1987/1988, 1988/1989 and 1989/1990 showed that this crop is a reservoir of BYDV during the end of summer and autumn. PAV-like and MAV-like isolates, in single or mixed infection, were the most common. The proportion of isolates in the infected samples was relatively stable, Samples of winter cereals collected in the springs of 1988, 1989 and 1990 showed that PAV- and MAV-like isolates were widespread. The proportion of samples infected with PAV-like isolates was much more variable than that of MAV-like isolates. The incidence of PAV-like isolates in winter cereals is more dependent on the population of Rhopalosiphum padi during the winter and early spring, than is the incidence of MAV-like isolates on Sitobion avenae density. In northeast Spain (Lleida basin) forage cereals are a constant source of PAV- and MAV- like isolates from which BYDV inoculum is introduced into winter cereals.  相似文献   

16.
Five spring barleys, grown either in pots out of doors or in the field, were inoculated with barley yellow dwarf virus (BYDV) using 5, 10, 20 or 50 infective aphids (Rhopalosiphum padi) per plant. Control plants of each variety received no aphids. Infection with all aphid numbers had highly significant adverse effects on all varieties except Cb 1029, an early maturing BYDV-resistant barley of Ethiopian origin. 12583 Co, a locally bred, late maturing barley possessing the same resistance gene as Cb 1029 suffered more in a pot experiment, but less than three susceptible varieties all of which were severely damaged even when few infective aphids were used. Progressive effects with increasing aphid numbers, indicative of dosage response, occurred in some varieties. These effects included delay in heading and increased stunting, but not less yield. In Cb 1029, BYDV infection caused a reduction in the number of heads per plant, but this was partly compensated for by an increase in the number of grains per head. Conversely, BYDV infection in 12583 Co caused an increase in the number of heads, partly offset by a decrease in the number of Brains tier head.  相似文献   

17.
Winged individuals of Rhopalosiphum padi and Sitobion avenae transmitted the PAV-like and MAV-like isolates of barley yellow dwarf virus respectively. Success of transmission after inoculation access periods of 2, 6, 12, 24, 48 and 72 h were examined and survival, reproduction and movement of the aphid vectors were recorded at these times. The experiment was done at four different temperatures: 6oC, 12oC, 18oC and 23oC. For both isolates the inoculation efficacy did not increase after a 24 h inoculation access period and there was no difference in inoculation efficiency at the three highest temperatures, that at 6oC being significantly lower than at 12oC to 23oC. The results suggest that autumn temperature is a critical factor for BYDV epidemiology in Britain with a small increase in autumn temperature leading to greatly increased infection rates.  相似文献   

18.
The tolerance of spring and winter varieties of wheat, oats and barley to infection by barley yellow dwarf virus (BYDV) was examined in glasshouse tests. Severely affected plants were stunted and grain yields were considerably decreased because of decreases in both ear number and numbers and sizes of grains. Winter barley varieties were very susceptible and many were killed by BYDV infection. The winter wheat varieties were more widely tolerant than those of oats and barley. Individual seedling symptoms, although correlated with reductions in yield, could not be relied upon for accurate classification of all varieties in order of their susceptibility to infection. Symptoms of seedling infection incorporated into an index of infection permit estimates to be made o eventual decreases in yield by applying the formula DY = 1.4 × (SH+LA+LL)+18. Thus decrease in grain yield (DY) can be related to decreases in height (SH) and leaf length (LL) and increases in leaf area discoloured (LA) in seedling plants infected with BYDV.  相似文献   

19.
We analysed interactions in the system of two Barley Yellow Dwarf Virus (BYDV) strains (MAV and PAV), and wheat (cv. Tinos) as host plant for the virus, and the cereal aphid Sitobion avenae (F.) as vector, in particular whether or not infection by the virus might alter host plant suitability in favour of vector development. By measuring the amino acid and sugar content in the phloem sap of infected and non‐infected wheat plants we found a significant reduction in the concentration of the total amount of amino acids on BYDV‐infected plants. Qualitative and quantitative analysis of honeydew and honeydew excretion indicated a lower efficiency of phloem sap utilisation by S. avenae on infected plants. In addition, S. avenae excreted less honeydew on infected plants. Both BYDV strains significantly affected aphid development by a reduction in the intrinsic rate of natural increase. Hence, infection by the virus reduced the host suitability in terms of aphid population growth potential on BYDV‐infected plants. However, more alate morphs developed on virus‐infected plants. These findings are discussed in relation to the population dynamics of S. avenae, and, as a consequence, the spread of BYDV.  相似文献   

20.
From June to early August 1970, populations of Macrosiphum avenae and Metopolophium dirhodum on marked tillers of field barley were compared with the numbers of alatae trapped at crop height and at 12.2 m. There were always more M. dirhodum than M. avenae on the tillers. Only apterae were produced until mid-June when both alatae and apterae occurred; after mid-July only alate M. avenae were found. Until mid-June most of the flying alatae were caught at 12.2 m as they migrated from spring hosts to cereals. Thereafter, more alate M. avenae were trapped at 12.2 m than at crop level, whereas numbers of alate M. dirhodum were usually comparable at both heights. Although crop and flying populations occasionally showed temporal similarities, insufficient is known about their field distribution and the factors affecting their alate production and flight activity to interpret this relationship. In the autumn, two consecutive reproductive phases of M. dirhodum occurred on winter wheat grown in pots outdoors. Initially, apterous virginoparae and alatae, probably sexuparae, were produced, whereas only alate males appeared during the second phase. In contrast, M. avenae deposited mainly apterous virginoparae although some oviparae developed in October to lay scattered, probably infertile eggs on the tillers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号