首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 701 毫秒
1.
The aim of this study was to explore the molecular profile of proliferating rheumatoid arthritis synovial fibroblasts (RA-SF). Total RNA was extracted from two cultures of RA-SF (low-density [LD] proliferating cells and high-density [HD] nonproliferating cells) and suppression subtractive hybridization was performed to compare differential gene expression of these two cultures. Subtracted cDNA was subcloned, and nucleotide sequences were analyzed to identify each clone. Differential expression of distinct clones was confirmed by semiquantitative RT-PCR. The expression of certain genes in synovial tissues was examined by in situ hybridization. In both LD and HD cells, 44 clones were upregulated. Of the 88 total clones, 46 were identical to sequences that have previously been characterized. Twenty-nine clones were identical to cDNAs that have been identified, but with unknown functions so far, and 13 clones did not show any significant homology to sequences in GenBank (NCBI). Differential expression of distinct clones was confirmed by RT-PCR. In situ hybridization showed that certain genes, such as S100A4, NFAT5, unr and Fbx3, were also expressed predominantly in synovial tissues from patients with RA but not from normal individuals. The expression of distinct genes in proliferating RA-SF could also be found in RA synovium, suggesting that these molecules are involved in synovial activation in RA. Most importantly, the data indicate that the expression of certain genes in RA-SF depends on the stage of proliferation; therefore, the stage needs to be considered in any analysis of differential gene expression in SF.  相似文献   

2.
In patients with rheumatoid arthritis (RA), chemokine and chemokine receptor interactions play a central role in the recruitment of leukocytes into inflamed joints. This study was undertaken to characterize the expression of chemokine receptors in the synovial tissue of RA and non-RA patients. RA synovia (n = 8) were obtained from knee joint replacement operations and control non-RA synovia (n = 9) were obtained from arthroscopic knee biopsies sampled from patients with recent meniscal or articular cartilage damage or degeneration. The mRNA expression of chemokine receptors and their ligands was determined using gene microarrays and PCR. The protein expression of these genes was demonstrated by single-label and double-label immunohistochemistry. Microarray analysis showed the mRNA for CXCR5 to be more abundant in RA than non-RA synovial tissue, and of the chemokine receptors studied CXCR5 showed the greatest upregulation. PCR experiments confirmed the differential expression of CXCR5. By immunohistochemistry we were able to detect CXCR5 in all RA and non-RA samples. In the RA samples the presence of CXCR5 was observed on B cells and T cells in the infiltrates but also on macrophages and endothelial cells. In the non-RA samples the presence of CXCR5 was limited to macrophages and endothelial cells. CXCR5 expression in synovial fluid macrophages and peripheral blood monocytes from RA patients was confirmed by PCR. The present study shows that CXCR5 is upregulated in RA synovial tissue and is expressed in a variety of cell types. This receptor may be involved in the recruitment and positioning of B cells, T cells and monocytes/macrophages in the RA synovium. More importantly, the increased level of CXCR5, a homeostatic chemokine receptor, in the RA synovium suggests that non-inflammatory receptor–ligand pairs might play an important role in the pathogenesis of RA.  相似文献   

3.
4.
5.
6.
During ethanol fermentation, yeast cells are exposed to stress due to the accumulation of ethanol, cell growth is altered and the output of the target product is reduced. For Agave beverages, like tequila, no reports have been published on the global gene expression under ethanol stress. In this work, we used microarray analysis to identify Saccharomyces cerevisiae genes involved in the ethanol response. Gene expression of a tequila yeast strain of S. cerevisiae (AR5) was explored by comparing global gene expression with that of laboratory strain S288C, both after ethanol exposure. Additionally, we used two different culture conditions, cells grown in Agave tequilana juice as a natural fermentation media or grown in yeast-extract peptone dextrose as artificial media. Of the 6368 S. cerevisiae genes in the microarray, 657 genes were identified that had different expression responses to ethanol stress due to strain and/or media. A cluster of 28 genes was found over-expressed specifically in the AR5 tequila strain that could be involved in the adaptation to tequila yeast fermentation, 14 of which are unknown such as yor343c, ylr162w, ygr182c, ymr265c, yer053c-a or ydr415c. These could be the most suitable genes for transforming tequila yeast to increase ethanol tolerance in the tequila fermentation process. Other genes involved in response to stress (RFC4, TSA1, MLH1, PAU3, RAD53) or transport (CYB2, TIP20, QCR9) were expressed in the same cluster. Unknown genes could be good candidates for the development of recombinant yeasts with ethanol tolerance for use in industrial tequila fermentation.  相似文献   

7.

Introduction

Methotrexate (MTX) exerts at least part of its anti-inflammatory effects through adenosine receptors (ADOR). The aims of this study were to determine the expression of all four adenosine receptor genes (ADORA1, ADORA2A, ADORA2B, ADORA3 and ADORA3variant) in rheumatoid synovial tissue and any influence of MTX exposure on this expression. Furthermore, we investigated whether polymorphisms within ADORA3 were associated with response and/or adverse effects associated with MTX.

Methods

Adenosine receptor gene expression was undertaken using PCR in 20 rheumatoid arthritis (RA) synovial samples. A separate cohort of 225 RA patients receiving MTX was genotyped for SNPs in the ADORA3 receptor gene. Double immunofluorescence was used to identify cells expressing ADOR protein.

Results

All ADOR genes were expressed in all synovial samples. ADORA3 and A3variant were the dominant subtypes expressed irrespective of MTX therapy. Expression of ADORA2A and ADORA2B was increased in patients receiving MTX compared to those not receiving MTX. There was no association between the ADORA3 rs1544224 SNP and high and low disease activity or MTX-associated adverse effects. ADORA2B protein expression was most obvious in vascular endothelial cells whereas ADORA3 protein was more abundant and expressed by synovial fibroblasts.

Conclusions

We have shown that adenosine receptors are expressed in RA synovium. There is differential expression of receptors such that ADORA3 is expressed at significantly higher levels. This evidence demonstrates the potential for MTX to exert its anti-inflammatory effects at the primary site of pathology within the joints of patients with RA.  相似文献   

8.
Osteoarthritis (OA) is one of the most common age-related chronic disorders of articular cartilage, joints and bone tissue. Diagnosis of OA commonly depends on clinical and radiographic findings. However, changes in cartilage associated with the early stage of OA cannot be detected using radiographs, because significant cartilage degeneration must occur before radiographic findings show alterations of the appearance of cartilage. To identify new biomarkers of OA, we analysed gene expression profiles of synovium from 43 patients with OA, ten patients with rheumatoid arthritis (RA), and eight non-OA/non-RA patients using a novel cDNA microarray chip. We identified 21 genes with simultaneous significant differences in expression between OA and non-OA/non-RA groups and between OA and RA groups. Linear discriminant analysis showed that the three groups could be well separated using those 21 genes. Statistical analysis also revealed that several of the 21 genes were associated with disease progression and clinical presentation. The graphical modelling method indicated that some of the 21 genes are significantly associated with a particular clinical presentation, suggesting biological relationships among those genes. This is the first report of the use of cDNA microarray technology to create large-scale gene expression profiles differentially expressed in situ in OA synovium of the knee joint.  相似文献   

9.
In order to identify genes involved in oogenesis and spermatogenesis in penaeid shrimp Marsupenaeus japonicus, a modified annealing control primer (ACP) system was adapted to identify genes differentially expressed in ovary and testis at different developmental stages. By using 20 pairs of ACP primers, 8 differentially expressed genes were obtained. One of these genes is ubiquitin-conjugating enzyme E2r (UBE2r). Bioinformatics analyses show that this gene encodes a protein of 241 amino acids with a predicted molecular mass of 27.4 kDa. Real time PCR analyses demonstrated that the expression level changed significantly in the developing testis and ovary. In the stage 2 of testis, it reached its highest expression level, the lowest expression level present in the stage 1 of ovary. The significantly different expression levels in developing testis and ovary suggest that UBE2r has an important role in oogenesis and spermatogenesis. This article is the first report of UBE2r in crustaceans and also is the first report showing that UBE2r is differentially expressed at different stages of the developing ovary and testis in an animal.  相似文献   

10.
11.
Acidithiobacillus ferrooxidans is a mesophilic, acidophilic, chemolithoautotrophic bacterium that obtains energy from the oxidation of ferrous iron (Fe2+), elemental sulfur and reduced sulfur compounds. The industrial interest in A. ferrooxidans resides in its capacity to oxidize insoluble metal sulfides into soluble metal sulfates, thus allowing the recovery of the desired metals from low-grade sulfide ores. In the present work, RNA arbitrarily primed PCR (RAP-PCR) was performed to identify cDNAs differentially expressed in A. ferrooxidans cells grown in the presence of Fe2+ and cells maintained for 24 h in the presence of the copper sulfides bornite and chalcopyrite. Eighteen cDNAs corresponding to genes with known function were identified, and their relative expression was further characterized by real-time quantitative PCR. Bornite had a mild effect on the expression of the 18 genes analyzed. None of these genes was down-regulated and among the few genes up-regulated, it is worth mentioning lepA and def-2 that are involved in protein synthesis. Chalcopyrite presented the most significant changes. Five genes related to protein processing were down-regulated, and another 5 genes related to the transport system were up-regulated. The up- and down-regulation of these genes in the presence of bornite and chalcopyrite could be due to alterations in the ideal pH, presence of copper ions in solution and nutrient limitation. The results suggest that gene expression modulation might be important for the A. ferrooxidans early response to copper sulfides.  相似文献   

12.

Introduction  

The objective was to study the potential genetic contribution of Toll-like receptor (TLR) genes in rheumatoid arthritis (RA). TLRs bind to pathogen-associated molecular patterns, and TLR genes influence both proinflammatory cytokine production and autoimmune responses. Host–pathogen interactions are involved in RA physiopathology.  相似文献   

13.
14.
15.
16.
《Epigenetics》2013,8(5):444-450
Genomic imprinting is defined as an epigenetic modification that leads to parent-of-origin specific monoallelic expression. Some current research on the fetal control growth has been focused on the study of genes that display imprinted expression in utero. Four imprinted genes, two paternally expressed (IGF2 and PEG10) and two maternally expressed (PHLDA2 and CDKN1C), are well known to play a role in fetal growth and placental development. Pregnancy loss in the general reproductive population is a very common occurrence and other genetic causes beyond chromosomal abnormalities could be involved in spontaneous miscarriages or fetal deaths, such as alteration of expression in imprinted genes particularly those related to fetal or placental growth. Quantitative Real Time PCR was performed to evaluate gene expressions patterns of the four mentioned genes in spontaneous miscarriages or fetal deaths from 38 women. Expression levels of PHLDA2 gene were upregulated in the first trimester pregnancy cases and all four imprinted genes studied were upregulated in the second trimester of pregnancy cases comparing with controls. In third trimester PEG10 was downregulated in fetal samples group. This is the first study presenting data from human imprinted genes expression in spontaneous miscarriages or fetal deaths cases from the three trimesters of pregnancy.  相似文献   

17.
18.
19.
The aim of this study was to identify genes expressed in an age-dependent manner in mouse (Mus musculus) liver. To search for age-dependently expressed genes, we used a fluorescence differential display–PCR (FDD–PCR) technique on total RNA extracted from mouse livers collected at seven different developmental stages. All differentially expressed cDNAs detected by FDD–PCR were reamplified, subcloned and sequenced, and six genes were confirmed to show age-dependent expression by quantitative real-time PCR analysis. Nucleotide sequence analyses showed that four of them had high homology with known genes (mitochondrial DNA, cytosolic aldehyde dehydrogenase, cell division cycle 2-like 5 and complement component 8 alpha polypeptide), and two with expressed sequence tags of unknown genes. The FDD–PCR technique was effective for detecting novel age-dependently expressed genes, and also for newly characterizing individual expression patterns of known genes. The age-dependent expression patterns of known genes revealed in this study may provide an opportunity to investigate the unknown physiological roles of the proteins they encode.  相似文献   

20.
Retinoic acid (RA), the most potent natural form of vitamin A, is a key morphogen in vertebrate development and a potent regulator of both adult and embryonic cell differentiation. Specifically, RA regulates clustered Hox gene expression during embryogenesis and is required to establish the anteroposterior body plan. The PI3K/Akt pathway was also reported to play an essential role in the process of RA‐induced cell differentiation. Therefore, we tested whether the PI3K/Akt pathway is involved in RA‐induced Hox gene expression in a F9 murine embryonic teratocarcinoma cells. To examine the effect of PI3K/Akt signaling on RA‐induced initiation of collinear expression of Hox genes, F9 cells were treated with RA in the presence or absence of PI3K inhibitor LY294002, and time‐course gene expression profiles for all 39 Hox genes located in four different clusters—Hoxa, Hoxb, Hoxc, and Hoxd—were analyzed. Collinear expression of Hoxa and ‐b cluster genes was initiated earlier than that of the ‐c and ‐d clusters upon RA treatment. When LY294002 was applied along with RA, collinear expression induced by RA was delayed, suggesting that the PI3K/Akt signaling pathway somehow regulates RA‐induced collinear expression of Hox genes in F9 cells. The initiation of Hox collinear expression by RA and the delayed expression following LY294002 in F9 cells would provide a good model system to decipher the yet to be answered de novo collinear expression of Hox genes during gastrulation, which make the gastrulating cells to remember their positional address along the AP body axis in the developing embryo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号