首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Two new steroid glycosides: distolasteroside D6, (24S)-24-O-(β-D-xylopyranosyl)-5α-cholestane-3β,6α,8,15β,16β,24-hexaol, and distolasteroside D7, (22E,24R)-24-O-(β-D-xylopyranosyl)-5α-cholest-22-ene-3β,6α,8,15β,24-pentaol were isolated along with the previously known distolasterosides D1, D2, and D3, echinasteroside C, and (25S)-5α-cholestane-3β4β,6α,7α,8,15α,16β,26-octaol from the Far Eastern starfish Distolasterias nipon. The structures of new compounds were elucidated by NMR spectroscopy and MALDI TOF mass spectrometry. Like neurotrophins, distolasterosides D1, D2, and D3 were shown to induce neuroblast differentiation in a mouse neuroblastoma C1300 cell culture.  相似文献   

2.
Two new steroid glycosides were isolated from the Far East starfish Hippasteria kurilensis collected in the Sea of Okhotsk. They were characterized as (22E,24R)-3-O-(2-O-methyl-β-D-xylopyranosyl)-24-O-[2-O-methyl-β-D-xylopyranosyl-(1→5)-α-L-arabinofuranosyl]-5α-cholest-22-ene-3β,4β,6α,7α,8,15β,24-heptaol (kurilensoside I) and (24S)-3-O-(2-O-methyl-β-D-xylopyranosyl)-24-O-(α-L-arabinofuranosyl)-5α-cholestane-3β,4β,6β,15α,24-pentaol (kurilensoside J). In addition, the earlier known glycosides linkosides F and L1, leviusculoside G, forbeside L, desulfated echinasteroside, and granulatoside A were isolated and identified. The structures of the new compounds were established with the help of two-dimentional NMR spectroscopy and mass- spectrometry.  相似文献   

3.
Six new natural compounds were isolated from two Far Eastern starfish species, Henricia aspera and H. tumida, collected in the Sea of Okhotsk. Two new glycosylated steroid polyols were obtained from H. aspera: asperoside A and asperoside B, which were shown to be (20R,24R, 25S)-3-O-(2,3-di-O-methyl-β -D-xylopyranosyl)-24-methyl-5α-cholest-4-ene-3β, 6β,8,15α,16β,26-hexaol and (20R, 24R,25S,22E)-3-O-(2,4-di-O-methyl-β-D-xylopyranosyl)-24-methyl-5α-cholest-22-ene-3β,4β,6β,8,15α,26-hexaol, respectively. Two other glycosylated polyols, tumidoside A, with the structure elucidated as (20R, 22E)-3-O-(2,4-di-O-methyl-β -D-xylopyranosyl)-26,27-dinor-24-methyl-5α-cholest-22-ene-3β,4β,6β,8,15α,25-hexaol, and tumidoside B, whose structure was elucidated as (20R,24S)-3-O-(2,3-di-O-methyl-β-D-xylopyranosyl)-5α-cholestan-3β,4β,6β,8,15α,24-hexaol, were isolated from the two starfish species. (20R, 24S)-5α-Cholestan-3β,6β,15α,24-tetraol and (20R, 24S)-5α-cholestan-3β,6β,8,15α,24-pentaol were identified only in H. tumida. The known monoglycosides henricioside H1 and laeviuscolosides H and G were also identified in both species.  相似文献   

4.
Three new polar steroids identified as trofoside A, 20R,24S)-24-O-(3-O-methyl-β-D-xylopyranosyl)-3β,6α,8,15β,24-pentahydroxy-5α-cholestane, its 22(23)-dehydro derivative (trofoside B), and 15-sulfooxy-(20R,24S)-5α-cholestane-3β,6β,8,15α,24-pentaol sodium salt, were isolated fromTrofodiscus über starfish extracts collected in the Sea of Ohotsk. Two known compounds, trofoside A aglycone, (20R,24S)-3β,6α,8,15β,24-pentahydroxy-5α-cholestane, and triseramide, (20R,24R,25S,22E)-24-methyl-3β6α,8,15β-tetrahydroxy-5α-cholest-22-en-27-oic acid (2-sulfoethyl)amide sodium salt, were also found. The structures of the isolated polyoxysteroids were established from their spectra. Minimal concentrations causing degradation of unfertilized egg-cells of the sea-urchin Strongylocentrotus intermedius(C min) and terminating the cell division at the stage of the first division (C min embr.), as well as the concentrations causing 50% immobilization of sperm cells (OC50) and inhibiting their ability to fertilize egg-cells by 50% (IC50) were determined for the isolated compounds. Of three compounds highly toxic in embryos and sea-urchin sperm cells, the polyol with a sulfo group in the steroid core was the most active; two glycosides with monosaccharide chains located at C3 and C24 atoms were less toxic. Note that all the compounds with the spermiotoxic activities differently affected the embryo development. The positions of monosaccharide residues in the core considerably influence the compound activity. For example, both mono-and double chained glycosides with the monosaccharide fragment at C3 and fragments at C3 and C4 atoms are active against sea-urchin sperm cells and embryos, whereas the C24 glycosylated trofoside A does not affect embryos and displays a poor spermiotoxicity.  相似文献   

5.
Two new steroid glycosides from the starfish Fromia milleporella collected in the Seychelles were isolated and characterized: milleporoside A, (20R, 24R)-29-O-[3-O-methyl-β-D-xylopyranosyl-(1→4)-3-O-methyl-β-D-xylopyranosyl]-24-ethyl-5α-cholestane-3β,4β,6α,8,15β,16β,29-heptaol, and milleporoside B, (20R, 24R)-(22E)-28-O-[3-O-methyl-β-D-xylopyranosyl-(1→4)-3-O-methyl-β-D-xylopyranosyl]-24-methyl-5α-cholest-22-ene-3β,4β,6α,8,15β,16β,28-heptaol. The structures of the glycosides were determined from their spectra and a comparison with spectral characteristics of known compounds. These compounds exhibit a moderate cytostatic activity toward the embryos of the sea urchin Strongylocentrotus intermedius.  相似文献   

6.
Seven sulfated polyhydroxysteroids were isolated from the Far East starfish Pteraster obscurus and the ophiura (snake star) Asteronyx loveni (collected in the Sea of Okhotsk) and characterized: disodium and sodium salts of (20R)-24-methyl-2β-hydroxycholesta-5,24(28)-diene-3α,21-diyl disulfate, (20R)-5α-cholestane-3β,21-diyl disulfate, (20R)-3β-hydroxy-5α-cholestan-21-yl sulfate, (20R)-cholest-5-ene-3β,21-diyl disulfate, (20R)-2β-hydroxycholest-5-ene-3α,21-diyl disulfate, (20R)-cholest-5-en-3β-yl sulfate, and (20R)-5α-cholestan-3β-yl sulfate. The first four compounds turned out to be new, whereas the others were identical to the known compounds. Structures of the isolated steroids were identified by two-dimensional NMR spectroscopy and other physicochemical methods. The compounds isolated from starfish are structurally similar to typical ophiuroid metabolites, which support the opinion of some taxonomists that starfish and ophiuroids are phylogenetically related classes.  相似文献   

7.
The structure of the O-specific polysaccharide from Shigella dysenteriae type 10, which has been reported previously in Bioorganic chemistry (1977, vol.3, pp. 1219–1225), is refined: →2)-β-D-Manp-(1→3)-α-D-ManpNAc-(1→3)-β-L-Rhap-(1→4)-α-D-GlcpNAc-(1→.  相似文献   

8.
3-Aminopropyl glycosides of α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→2)-α-D-mannopyranose, α-D-mannopyranosyl-(1→3)-α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→2)-α-D-mannopyranose, and α-D-mannopyranosyl-(1→2)-[α-D-mannopyranosyl-(1→3)]-α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→2)-α-D-mannopyranose were efficiently synthesized starting from ethyl 2-O-acetyl(benzoyl)-3,4,6-tri-O-benzyl-1-thio-α-D-mannopyranoside, ethyl 4,6-di-O-benzyl-2-O-benzoyl-1-thio-α-D-mannopyranoside, ethyl 4,6-di-O-benzyl-2,3-di-O-benzoyl-1-thio-α-D-mannopyranoside, and 2,3,4,6-tetra-O-benzoyl-α-D-mannopyranosyl bromide. The oligosaccharide chains synthesized correspond to the three structural types of side chains of mannan from Candida albicans cell wall. A conjugate of the third pentasaccharide with bovine serum albumin was prepared using the squarate method.  相似文献   

9.
From the surface of the dikaryotic mycelium of the xylotrophic basidiomycete Grifola frondosa 0917 a lectin has been isolated with a molecular mass of 68 ± 1 kDa, consisting of two subunits of 33–34 kDa each. The lectin is a hydrophilic glycoprotein with the protein: glycan ratio of 3: 1. It exhibits high affinity to native rabbit erythrocytes and to human erythrocytes of the 0 blood group, but not to trypsin-treated ones. The hemagglutination (HA) caused by lectin was not blocked by any of the 25 tested mono-, di-, and amino sugars; it was also not blocked by some of glyco derivatives. Only 13.9 μg/ml of the homogeneous preparation of a polysaccharide, a linear D-rhamnan with the structure of the repeated component →2)-β-D-Rhap-(1→3)-α-D-Rhap-(1→3)-α-D-Rhap-(1→2)-α-D-Rhap-(1→2)-α-sD-Rhap-1(→ blocked hemagglutination completely. The analysis of the amino acid composition of the lectin showed the greatest percentage of amino acids with positively charged R groups, arginine, lysine, and histidine, as well as the complete absence of sulfurcontaining amino acids, cysteine, and methionine. D-glucose and D-glucosamine were detected in the carbohydrate part. Original Russian Text ? L.V. Stepanova, V.E. Nikitina, A.S. Boiko, 2007, published in Mikrobiologiya, 2007, Vol. 76, No. 4, pp. 488–493.  相似文献   

10.
The cell wall of Streptomyces sp. VKM Ac-2534, the causative agent of common scab in potato tubers, which does not synthesize thaxtomin and is phylogenetically close to phytopathogen Streptomyces setonii sp. ATCC 25497, contains two anionic carbohydrate-containing polymers. The major polymer is teichuronic acid, whose repeating unit is disaccharide → 4)-β-D-ManpNAc3NAcyA-(1 → 3)-α-D-GalpNAc-(1→, where Acy is a residue of acetic or L-glutamic acid. The polymer of such structure has been found in Gram-positive bacteria for the first time. The minor polymer is teichoic acid [1,5-poly(ribitol phosphate)], in which a part of the ribitol residues are glycosylated at C4 with β-D-Glcp and, probably, with β-D-GlcpNAc and some residues are O-acylated with Lys residues. The structures were proved by chemical and NMR spectroscopic methods. It is likely that the presence of acidic polysaccharides on the surface of the phytopathogenic streptomycete is necessary for its attachment to the host plant.  相似文献   

11.
Thirteen steroidal compounds including three new polyhydroxysteroids, (24R,25S)-24-methyl-5α-cholestane-3β,6α,8,15β,16β,26-hexaol, (22E,24R,25S)-24-methyl-5α-cholest-22-ene-3β,6α,8,15β,16β,26-hexaol and (22E,24R,25S)-24-methyl-5α-cholest-22-ene-3β,4β,6α,8,15β,16β,26-heptaol, have been isolated along with the previously known ten polyhydroxysteroids from the tropical starfish Asteropsis carinifera collected near the coast of Vietnam. The structures of new compounds were elucidated by spectroscopic methods (mainly 2D NMR and ESI-mass-spectrometry).  相似文献   

12.
Peculiarities of the rat behavior were studied in a series of experimental stress models after a systemic administration of new N-uronoyl derivatives of amino acids. The psychotropic effect was shown to be determined by the nature of the amino acid fragment. N-(1,2:3,4-Di-O-isopropylidene-α-D-galactopyraneuronoyl)-glycylglycine exhibited an anxiolytic effect more pronounced than that of pyracetam, whereas N-(1,2:3,4-di-O-isopropilidene-α-D-galactopyranuronoyl)-glycylglutamic acid has antidepressant action stronger than that of amitriptyline. Mechanisms for the psychotropic effects of the examined derivatives are discussed.  相似文献   

13.
A spirostane with an attached trisaccharide, (25R)-5α-spirostane-2α,3β,5α-triol 3-O-(O-α-l-rhamnopyranosyl-(1 → 2)-O-(β-d-galactopyranosyl-(1 → 3))-β-d-glucopyranoside), was isolated and identified from the aerial parts of Agapanthus africanus by activity-guided fractionation. Fungicidal properties of the crude extract, semi-purified fractions as well as the purified active saponin from A. africanus were screened in vitro against Fusarium oxysporum. At a concentration of 1 mg mL?1, the crude extract and semi-purified ethyl acetate and dichloromethane fractions showed significant antifungal activity. The purified saponin inhibited the in vitro mycelial growth of F. oxysporum completely (100 %) at a concentration of 125 µg mL?1. Furthermore, to verify previously observed induced resistance by crude extracts of A. africanus towards leaf rust, intercellular PR-protein activity was determined in wheat seedlings following foliar application of the purified saponin at 100 µg mL?1. In vitro peroxidase enzyme activity increased significantly (60 %) in wheat seedlings 48 h after treatment with the purified saponin, demonstrating its role as an elicitor to activate a defence reaction in wheat.  相似文献   

14.
The preparative method for the synthesis of 2-fluoroadenosine starting from commercially available guanosine was developed. It included the intermediate formation of 2-amino-6-azido-9-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)purine, which was isolated exclusively in the tetrazolo[5,1-i]-form {5-amino-7-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)-7H -tetrazolo[5,1-i]purine}. The latter compound was converted by the Schiemann reaction to 6-azido-2-fluoro-9-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)purine, which was isolated at an 80% yield after careful optimization of the process. The IR and 1H NMR spectroscopy data indicated the 6-azido-2-fluoropurine structure of the aglycone. The catalytic reduction of the azido group in 6-azido-2-fluoro-9-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)purine to the amino moiety and the subsequent deacetylation by the routine procedure resulted in 2-fluoroadenosine at a total yield of 74%.  相似文献   

15.
Molecular complexes of triterpene glycosides such as α-hederin (hederagenin 3-O-α-L-rhamnopyranosyl-(1 → 2)-O-α-L-arabinopyranoside) and hederasaponin C (hederagenin 3-O-α-L-rhamnopyranosyl-(1 → 2)-O-α-L-arabinopyranosyl-28-O-α-L-rhamnopyranosyl-(1 → 4)-O-β-D-glucopyranosyl-(1 → 6)-O-β-D-glucopyranoside) with β-cyclodextrin were synthesized. The complex formation was studied by FTIR spectroscopy. Toxic properties of the molecular complexes were examined.  相似文献   

16.
3-Aminopropyl glycoside of 3,2′-di-O-α-L-fucosyl-N-acetyllactosamine (Ley tetrasaccharide) was synthesized. The glycosyl donor, 2-O-acetyl-2,4,6-tri-O-benzoyl-α-D-galactopyranosyl bromide, was coupled with glycosyl acceptor, 1,6-anhydro-2-acetamido-2-deoxy-β-D-glucopyranose or its 3-O-acetyl derivative, to give the corresponding N-acetyllactosamine derivatives in 20 and 71% yields, respectively. The glycosyl donor was synthesized from 1,2-di-O-acetyl-3,4,6-triO-benzoyl-D-galactopyranose, which was obtained by the treatment of benzobromogalactose with sodium borohydride to yield 1,2-O-benzylidene derivative and subsequent removal of benzylidene group and acetylation. Acidic methanolysis of the disaccharide derivatives resulted in the selective removal of one or both acetyl groups to give the disaccharide acceptor bearing hydroxy groups at C3 of the glucosamine residue and C2 of the galactose residue. The introduction of fucose residues in these positions by the treatment with tetrabenzylfucopyranosyl bromide resulted in a tetrasaccharide derivative, which was converted into 3,2′-di-O-α-L-fucopuranosyl-1,6-anhydro-N-acetyllactosamine peracetate after substitution of acetyl groups for benzoyl and benzyl groups. Opening of the anhydro ring by acetolysis resulted in peracetate, which was then converted into the corresponding oxazoline derivative by two steps. Glycosydation of the oxazoline derivative with 3-trifluoroacetamidopropan-1-ol and removal of O-acetyl and N-trifluoroacetyl protective groups resulted in a free spacered Ley tetrasaccharide.  相似文献   

17.
Epothilone A is a derivative of 16-membered polyketide natural product, which has comparable chemotherapeutic effect like taxol. Introduction of sialic acids to these chemotherapeutic agents could generate interesting therapeutic glycoconjugates with significant effects in clinical studies. Since, most of the organisms biosynthesize sialic acids in their cell surface, they are key mediators in cellular events (cell-cell recognition, cell-matrix interactions). Interaction between such therapeutic sugar parts and cellular polysaccharides could generate interesting result in drugs like epothilone A. Based on this hypothesis, epothilone A glucoside (epothilone A 6-O-β-D-glucoside) was further decorated by conjugating enzymatically galactose followed by sialic acids to generate epothilone A 7-O-β-D-glucopyranosyl, 4′-O-α-D-galactoside i.e., lactosyl epothilone A (lac epoA) and two sialosides of epothilone A namely epothilone A 7-O-β-D-glucopyranosyl, 4′-O-α-D-galactopyranosyl 3″-O-α-N-acetyl neuraminic acid and epothilone A 7-O-β-D-glucopyranosyl, 4′-O-α-D-galactopyranosyl 6″-O-α-N-acetylneuraminic acid i.e., 3′sialyllactosyl epothilone A: 3′SL-epoA, and 6′sialyllactosyl epothilone A: 6′SL-epoA, respectively. These synthesized analogs were spectroscopically analyzed and elucidated, and biologically validated using HUVEC and HCT116 cancer cell lines.  相似文献   

18.
Two polysaccharides were isolated from Escherichia coli O12, the major being identified as the O12-antigen and the minor as the K5-antigen. The polysaccharides were studied by sugar analysis, Smith degradation, and one- and twodimensional 1H and 13C NMR spectroscopy. As a result, the following structure of the O12-polysaccharide was elucidated, which, to our knowledge, has not been hitherto found in bacterial carbohydrates: →2)-β-D-Glcp-(1→6)-α-D-GlcpNAc(1→3)-α-L-FucpNAc-(1→3)-β-D-GlcpNAc-(1→. The →4)-β-D-GlcpA-(1→4)-α-D-GlcpNAc-(1→ structure established for the K5-polysaccharide (heparosan) is previously known. Functions of genes in the O-antigen biosynthesis gene cluster of E. coli O12 were assigned by comparison with sequences in the available databases and found to be consistent with the O12-polysaccharide structure.  相似文献   

19.
Chemical investigation of the freshwater microalga Chlorella sorokiniana led to the isolation of a monogalactosyldiacylglycerol (MGDG)-rich fraction possessing dose-dependent inhibitory activity against pancreatic lipase activity. The MGDG-rich fraction contains 12 MGDGs identified by LC/HRMS analysis. Among them, three MGDGs were new compounds, namely, (2S)-1-O-(7Z,10Z-hexadecadienoyl)-2-O-(7Z,10Z,13Z-hexadecatrienoyl)-3-O-β-D-galactopyranosylglycerol (1), (2S)-1-O-linoleoyl-2-O-(7Z,10Z-hexadecadienoyl)-3-O-β-D-galactopyranosylglycerol (6), and (2S)-1-O-oleoyl-2-O-(7Z,10Z-hexadecadienoyl)-3-O-β-D-galactopyranosylglycerol (8). The major galactolipids were isolated by semipreparative HPLC and tested for their effect toward pancreatic lipase inhibitory activity. All the tested MGDGs showed significant reduction of pancreatic lipase activity indicating possible beneficial use for management of lipase-related disorders such as obesity.  相似文献   

20.
The structures of cell wall glycopolymers from the type strains of three Actinoplanes species were investigated using chemical methods, NMR spectroscopy, and mass spectrometry. Actinoplanes digitatis VKM Ac-649T contains two phosphate-containing glycopolymers: poly(diglycosyl-1-phosphate) →6)-α-D-GlcpNAc-(1-P-6)-α-D-GlcpN-(1→ and teichoic acid →1)-sn-Gro-(3-P-3)-β-[β-D-GlcpNAc-(1→2]-D-Galp-(1→. Two glycopolymers were identified in A. auranticolor VKM Ac-648T and A. cyaneus VKM Ac-1095T: minor polymer–unsubstituted 2,3-poly(glycerol phosphate), widely abundant in actinobacteria (Ac-648T), and mannan with trisaccharide repeating unit →2)-α-D-Manp-(1→2)-α-D-Manp(1→6)-α-D-Manp-(1→(Ac-1095T). In addition, both microorganisms contain a teichuronic acid of unique structure containing a pentasaccharide repeating unit with two residues of glucopyranose and three residues of diaminouronic acids in D-manno- and/or D-gluco-configuration. Each of the strains demonstrates peculiarities in the structure of teichuronic acid with respect to the ratio of diaminouronic acids and availability and location of O-methyl groups in glucopyranose residues. All investigated strains contain a unique set of glycopolymers in their cell walls with structures not described earlier for prokaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号