首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
We report localisation of the chickpea βI-Gal, a member of the chickpea β-galactosidase family, which contains at least four members. After generation of specific antibodies, the distribution and cellular immunolocalisation of the protein in different organs and developmental stages of the plant was studied. βI-Gal protein is much longer than the other chickpea β-galactosidases because of the presence of a lectin-like domain in the carboxyl terminus of the protein. Western blot experiments indicated that the active βI-Gal retains this lectin-like domain for its function in the plant. The βI-Gal protein was mainly detected in cell walls of elongating organs, such as seedling epicotyls and stem internodes. An immunolocation study indicated a very good correlation between the presence of this βΙ-galactosidase and cells whose walls are thickening, not only in aged epicotyls and mature internodes in the final phase of elongation, but mostly in cells with a support function, such as collenchyma cells, xylem and phloem fibres and a layer of sclerenchyma cells surrounding the vascular cylinder (perivascular fibres). These results could suggest a function for the βI-Gal in modification of cell wall polymers, leading to thicker walls than the primary cell walls.  相似文献   

5.
6.
7.
8.
Cho SK  Kim JE  Park JA  Eom TJ  Kim WT 《FEBS letters》2006,580(13):3136-3144
Xyloglucan endotransglucosylase/hydrolase (XTH) has been recognized as a cell wall-modifying enzyme, participating in the diverse physiological roles. From water-stressed hot pepper plants, we isolated three different cDNA clones (pCaXTH1, pCaXTH2, and pCaXTH3) that encode XTH homologs. RT-PCR analysis showed that three CaXTH mRNAs were concomitantly induced by a broad spectrum of abiotic stresses, including drought, high salinity and cold temperature, and in response to stress hormone ethylene, suggesting their role in the early events in the abiotic-related defense response. Transgenic Arabidopsis plants that constitutively expressed the CaXTH3 gene under the control of the CaMV 35S promoter exhibited abnormal leaf morphology; the transgenic leaves showed variable degrees of twisting and bending along the edges, resulting in a severely wrinkled leaf shape. Microscopic analysis showed that 35S-CaXTH3 leaves had increased numbers of small-sized cells, resulting in disordered, highly populated mesophyll cells in each dorsoventral layer, and appeared to contain a limited amount of starch. In addition, the 35S-CaXTH3 transgenic plants displayed markedly improved tolerance to severe water deficit, and to lesser extent to high salinity in comparison with the wild-type plants. These results indicate that CaXTH3 is functional in heterologous Arabidopsis cells, thereby effectively altering cell growth and also the response to abiotic stresses. Although the physiological function of CaXTHs is not yet clear, there are several possibilities for their involvement in a subset of physiological responses to counteract dehydration and high salinity stresses in transgenic Arabidopsis plants.  相似文献   

9.
10.
Addition of xyloglucan-derived oligosaccharides shifted the wall-bound xyloglucans to a lower molecular mass distribution and increased the cell wall extensibility of the native epidermal tissue strips isolated from azuki bean (Vigna angularis) epicotyls. To ascertain the mechanism of oligosaccharide function, we examined the action of a xyloglucan endotransglucosylase/hydrolase (XTH) showing both endotransglucosylase and endohydrolase activities, isolated from azuki bean epicotyl cell walls, in the presence of xyloglucan oligosaccharides. The addition of xyloglucan oligosaccharides enhanced the xyloglucan-degrading activity of XTH against isolated xyloglucan substrates. When the methanol-fixed epidermal tissue strips were incubated with XTH, the molecular mass of wall-bound xyloglucans was decreased and the cell wall extensibility increased markedly in the presence of the oligosaccharides. These results suggest that xyloglucan oligosaccharides stimulate the degradation of xyloglucans by enhancing the XTH activity within the cell wall architecture, thereby increasing the cell wall extensibility in azuki bean epicotyls.  相似文献   

11.
The plant cell wall is a dynamic structure whose constant modification is necessary for plant cells to grow and divide. In the cell walls of chickpea (Cicer arietinum) there are at least four β‐galactosidases, whose presence and location in embryonic axes during the first 48 h of seed imbibition are discussed in this paper. We examined their roles as cell wall‐modifying enzymes in germinative and/or post‐germinative events. At the start of germination, only βV‐Gal, and to a lesser extent βIV‐Gal, appear in the axes before rupture of the testa, suggesting they are related to germination sensu stricto. Once the testa has broken, the four β‐galactosidases are involved in growth and differentiation of the axes. Immunolocation of the different proteins in axes, which in part confirms previous results in seedlings and plants, allows assignment of post‐germinative roles to βI‐Gal and βIII‐Gal as cell wall modifiers in vascular tissue elements. βIV‐Gal and βV‐Gal participate in the initial events of germination in which cell walls are involved: βV‐Gal in cell proliferation, detachment of root cap cells and initial vascular tissue differentiation; both of them in xylem maturation; and βIV‐Gal in thickening of the primary cell wall. Together with other cell wall‐modifying enzymes, such as expansins and XTH, chickpea galactosidases might function in a sequential order in turnover of the primary cell wall, allowing the elongation of embryonic axes during seed germination.  相似文献   

12.
Hypergravity produced by centrifugation caused inhibition of elongation growth and a decrease in the cell wall extensibility in azuki bean epicotyls ( Vigna angularis Ohwi et Ohashi). Also, hypergravity increased the molecular mass of xyloglucans, whereas it decreased xyloglucan-degrading activity in epicotyls. When the expression profiles of three xyloglucan endotransglucosylase/hydrolase ( XTH ) genes, VaXTHS4 , VaXTH1 and VaXTH2 , were analyzed under hypergravity conditions, the expression of VaXTHS4 , which shows only hydrolase activity, was downregulated in proportion to the logarithm of the magnitude of gravity (R = −0.94). However, the gene expression of VaXTH1 or VaXTH2 , which shows only transglucosylase activity, was not affected by gravitational conditions. When the seedlings that had been grown at 1  g were transferred to hypergravity conditions at 300  g , the downregulation of VaXTHS4 expression was detected within 1 h. By removal of hypergravity stimulus, VaXTHS4 expression was increased within 1 h. These results suggest that azuki bean epicotyls promptly regulate the expression level of only VaXTHS4 in response to gravity stimuli. The regulation of xyloglucan-hydrolyzing activity as a result of changes in VaXTHS4 expression may be involved in the regulation by gravity of molecular mass of xyloglucans, leading to modifications of cell wall mechanical properties and cell elongation. Lanthanum and gadolinium, potential blockers of mechanosensitive calcium ion permeable channels (mechanoreceptors), nullified the suppression of VaXTHS4 expression, suggesting that mechanoreceptors are responsible for inhibition by hypergravity of VaXTHS4 expression.  相似文献   

13.
Plant cell walls contain a glycoprotein component rich in the otherwise rare amino acid hydroxyproline. We examined the synthesis and accumulation of wall hydroxyproline during different states of elongation growth in pea epicotyls. Light-grown peas contained more wall hydroxyproline than their taller, dark-grown counterparts. When elongation was studied by marking growing stems in situ, there was a marked accumulation of wall hydroxyproline coincident with the cessation of elongation. Dividing and elongating regions of the epicotyl showed less wall hydroxyproline than did regions where elongation was no longer occurring.Hydroxyproline biosynthesis was examined by incubation of excised sections of tissues in various growth states in 14C-proline. The extent of conversion of these residues to 14C-hydroxyproline served as a measure of the rate of hydroxyproline synthesis. This rate was highest in tissues which had ceased elongation. The low rate of hydroxyproline synthesis in dividing and elongating cells was probably not due to the inability to hydroxylate peptidyl proline or to secrete proteins.These data show a positive correlation between the synthesis and accumulation of cell wall hydroxyproline and the cessation of cell elongation in pea epicotyls.  相似文献   

14.
Genetic regulation of vascular tissue patterning in Arabidopsis   总被引:5,自引:0,他引:5       下载免费PDF全文
Plants transport water and nutrients through a complex vascular network comprised of interconnected, specialized cell types organized in discrete bundles. To identify genetic determinants of vascular tissue patterning, we conducted a screen for mutants with altered vascular bundle organization in Arabidopsis cotyledons. Mutations in two genes, CVP1 and CVP2 (for cotyledon vascular pattern), specifically disrupt the normal pattern of vascular bundles in cotyledons, mature leaves, and inflorescence stems. The spatial distribution of the procambium, the precursor to mature vascular tissue, is altered in cvp1 and cvp2 embryos, suggesting that CVP1 and CVP2 act at a very early step in vascular patterning. Similarly, in developing stems of cvp1 and leaves of cvp2, the pattern of vascular differentiation is defective, but the maturation of individual vascular cells appears to be normal. There are no discernible alterations in cell morphology in cvp2 mutants. In contrast, cvp1 mutants are defective in directional orientation of the provascular strand, resulting in a failure to establish uniformly aligned vascular cells, and they also show a reduction in vascular cell elongation. Neither cvp1 nor cvp2 mutants displayed altered auxin perception, biosynthesis, or transport, suggesting that auxin metabolism is not generally affected in these mutants.  相似文献   

15.
16.
The cDNA clone (CanBGal-3) encoding a cell wall pectin-degrading beta-galactosidase (beta III-Gal) from Cicer arietinum L. cv. Castellana has been identified. The identification was carried out by comparing the deduced amino acid sequences of several isolated chickpea beta-galactosidase clones with the purified beta III-Gal protein sequence. The expression pattern of the gene corresponding to CanBGal-3 was in concordance with the fluctuations of the enzyme beta III-Gal in different seedling organs, being specific to elongating organs such as epicotyls and roots. Transformation of Solanum tuberosum plants with the chickpea CanBGal-3 clone indicated that the beta-galactosidase encoded by this clone is a pectin-degrading enzyme. The authors propose an important role for chickpea beta III-Gal in pectin degradation in cell walls of vegetative organs such as epicotyls and roots. The degradation of galactan carried out by this enzyme may determine structural changes and affect cell wall porosity. It is suggested that the increase in the size of cell wall pores could permit access of other cell wall-modifying enzymes to their substrate.  相似文献   

17.
18.
Auxin-induced elongation of epicotyl segments of azuki bean ( Vigna angularis Ohwi et Ohashi cv. Takara) was suppressed by a fucose-binding lectin from Tetragonolobus purpureas Moench and by polyclonal antibodies raised against xyloglucan heptasaccharide (Xyl3Glc4) when the cuticle present in the outer surface of epicotyls was abraded. In contrast, elongation of non-abraded segments was not influenced by the lectin or the antibodies. Epicotyl segments, from which the epidermal and the outer cortical cells had been removed, elongated rapidly for 2 h and than only slowly. Auxin slightly stimulated elongation of the inner tissue segments in the phase of slow growth. Neither in the presence nor in the absence of auxin did the lectin or the antibodies affect elongation of the inner tissue segments. The split portions of outer surface-abraded epicotyl segments incubated in buffer extended outward, and auxininhibited this outward bending. The lectin and the antibodies reversed the effect of auxin on bending. The fucose-binding lectin pretreated with fucose or the immunoglobulin fraction obtained from preimmune serum exhibited little or no inhibitory effect on auxin-induced elongation of abraded or split segments. These results support the view that a breakdown of xyloglucans in the epidermal cell walls plays an essential role in auxin-induced elongation in dicotyledons.  相似文献   

19.
The present study was undertaken to identify and characterize clones whose expression increase during Cicer arietinum epicotyl growth. Two cDNAs encoding two different plant metallothionein (MT)‐like proteins have been isolated from a cDNA library from epicotyls of Cicer arietinum L. cv. Castellana. The CanMT‐1 deduced protein appears to have the typical structure of type 1 MT where all Cys residues are in Cys‐X‐Cys motifs, while the CanMT‐2 has the typical structure of type 2 MT having Cys‐Cys and Cys‐X‐X‐Cys motifs within the N‐terminal domain. Both chickpea CanMTs are up‐regulated during epicotyl growth, showing increased expression in mature tissues, mostly CanMT‐1, which is undetectable in young epicotyls. Accordingly, stem of chickpea plants displayed the highest level of CanMT‐1 expression in the basal internode, with reduced growth, decreasing towards the apex. Osmotic stress by PEG, which inhibited growth, and ABA treatment induced the expression of MT‐like genes, which points to a relationship between chickpea MTs and ABA‐mediated stress response. Unlike CanMT‐2, CanMT‐1 is induced in chickpea epicotyls by cadmium indicating a different function for both clones. We conclude that these MT‐like proteins, in particular CanMT‐1, are regulated by the developmental stage and may participate in cell maturation process.  相似文献   

20.
Lee HY  Bahn SC  Kang YM  Lee KH  Kim HJ  Noh EK  Palta JP  Shin JS  Ryu SB 《The Plant cell》2003,15(9):1990-2002
To elucidate the cellular functions of phospholipase A(2) in plants, an Arabidopsis cDNA encoding a secretory low molecular weight phospholipase A(2) (AtsPLA(2)beta) was isolated. Phenotype analyses of transgenic plants showed that overexpression of AtsPLA(2)beta promotes cell elongation, resulting in prolonged leaf petioles and inflorescence stems, whereas RNA interference-mediated silencing of AtsPLA(2)beta expression retards cell elongation, resulting in shortened leaf petioles and stems. AtsPLA(2)beta is expressed in the cortical, vascular, and endodermal cells of the actively growing tissues of inflorescence stems and hypocotyls. AtsPLA(2)beta then is secreted into the extracellular spaces, where signaling for cell wall acidification is thought to occur. AtsPLA(2)beta-overexpressing or -silenced transgenic plants showed altered gravitropism in inflorescence stems and hypocotyls. AtsPLA(2)beta expression is induced rapidly by auxin treatment and in the curving regions of inflorescence stems undergoing the gravitropic response. These results suggest that AtsPLA(2)beta regulates the process of cell elongation and plays important roles in shoot gravitropism by mediating auxin-induced cell elongation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号