首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Mitochondrial uncoupling protein 2 (UCP2) is highly abundant in rapidly proliferating cells that utilize aerobic glycolysis, such as stem cells, cancer cells, and cells of the immune system. However, the function of UCP2 has been a longstanding conundrum. Considering the strict regulation and unusually short life time of the protein, we propose that UCP2 acts as a “signaling protein” under nutrient shortage in cancer cells. We reveal that glutamine shortage induces the rapid and reversible downregulation of UCP2, decrease of the metabolic activity and proliferation of neuroblastoma cells, that are regulated by glutamine per se but not by glutamine metabolism. Our findings indicate a very rapid (within 1?h) metabolic adaptation that allows the cell to survive by either shifting its metabolism to the use of the alternative fuel glutamine or going into a reversible, more quiescent state. The results imply that UCP2 facilitates glutamine utilization as an energetic fuel source, thereby providing metabolic flexibility during glucose shortage. The targeting UCP2 by drugs to intervene with cancer cell metabolism may represent a new strategy for treatment of cancers resistant to other therapies.  相似文献   

2.
1. The metabolism of mouse thioglycollate-elicited peritoneal macrophages was studied in culture for up to 96 h. 2. The rates of glycolysis, lactate formation and glutamine utilization were approximately linear with time for at least 80 h of culture. 3. The rates of glucose and glutamine utilization by cultured macrophages were approx. 500 and 90 nmol/h per mg of protein respectively. This rate of glucose utilization is at least 50% greater than that previously reported for macrophages during 60 min incubation in a shaking flask; and it is now increased by addition of glutamine to the culture medium. The rate of glutamine utilization in culture is similar to that previously reported for macrophages during 60 min incubation. The major end-product of glucose metabolism is lactate, and those of glutamine metabolism are CO2, glutamate, ammonia and alanine. 4. Oleate was utilized by these cells: 14C from [14C]oleate was incorporated into CO2 and cellular lipid. The highest rate of oleate utilization was observed when both glucose and glutamine were present in the culture medium. The presence of oleate in the culture medium did not affect the rates of utilization of either glucose or glutamine. Of the [14C]oleate incorporated into lipid, approx. 80% was incorporated into triacylglycerol and only 18% into phospholipid. 5. The turnover rate for the total ATP content of the macrophage in culture is about 10 times per minute: the value for the perfused isolated maximally working rat heart is 22. This indicates a high metabolic rate for macrophages, and consequently emphasizes the importance of the provision of fuels for their function in an immune response.  相似文献   

3.
Glutamine and glucose as energy substrates for Ehrlich ascites tumour cells   总被引:4,自引:0,他引:4  
Energy metabolism of freshly harvested Ehrlich ascites tumour cells in the presence of 5 mM glucose and/or 0.5 mM glutamine was studied. The rate of oxygen utilization was not altered by the addition of 0.5 mM glutamine; 5 mM glucose induced an inhibition of respiration. In the presence of both glucose and glutamine, the Crabtree effect decreased. In these conditions, the rates of oxygen uptake, the CO2 evolution and the changes in the redox states of cytochromes indicate that glucose is preferred by Ehrlich ascites tumour cells as energy substrate. Glucose decreased the rate of glutamine utilization by 34%. On the other hand, glutaminolysis did not inhibit glycolysis.  相似文献   

4.
Glutamine can play a critical role in cellular growth in multiple cancers. Glutamine‐addicted cancer cells are dependent on glutamine for viability, and their metabolism is reprogrammed for glutamine utilization through the tricarboxylic acid (TCA) cycle. Here, we have uncovered a missing link between cancer invasiveness and glutamine dependence. Using isotope tracer and bioenergetic analysis, we found that low‐invasive ovarian cancer (OVCA) cells are glutamine independent, whereas high‐invasive OVCA cells are markedly glutamine dependent. Consistent with our findings, OVCA patients’ microarray data suggest that glutaminolysis correlates with poor survival. Notably, the ratio of gene expression associated with glutamine anabolism versus catabolism has emerged as a novel biomarker for patient prognosis. Significantly, we found that glutamine regulates the activation of STAT3, a mediator of signaling pathways which regulates cancer hallmarks in invasive OVCA cells. Our findings suggest that a combined approach of targeting high‐invasive OVCA cells by blocking glutamine's entry into the TCA cycle, along with targeting low‐invasive OVCA cells by inhibiting glutamine synthesis and STAT3 may lead to potential therapeutic approaches for treating OVCAs.  相似文献   

5.
微囊化技术是一种有发展潜力的生物技术,在细胞移植和药物控释等方面具有广泛的应用。然而由于目前微囊化细胞规模化培养技术还不成熟,阻碍了其在临床治疗中的推广与应用。为了了解微囊化重组CHO细胞的生长代谢特性为今后规模化培养优化提供技术参考,考察了主要氮源物质谷氨酰胺对微囊化重组CHO细胞生长代谢及内皮抑素表达的影响。结果显示:当谷氨酰胺起始浓度从2.69mmolL增加到9.05mmolL时最大活细胞密度并没有增高,细胞增殖没有显著差异。当谷氨酰胺起始浓度较低(2.69mmolL)时,葡萄糖的比消耗速率较大;当谷氨酰胺起始浓度增高时(7.91mmolL~9.05mmolL)葡萄糖和谷氨酰胺的比消耗速率增大,但细胞对葡萄糖和谷氨酰胺的利用率降低。谷氨酰胺对产物表达有显著影响,起始浓度为4.97mmolL时的内皮抑素累积浓度最高,达546.36ngmL,过低和过高谷氨酰胺起始浓度下内皮抑素的累积浓度均较低。  相似文献   

6.
Glutamine and glutamate--their central role in cell metabolism and function   总被引:4,自引:0,他引:4  
Glucose is widely accepted as the primary nutrient for maintenance and promotion of cell function. However, we propose that the 5-carbon amino acids, glutamine and glutamate, should be considered to be equally important for maintenance and promotion of cell function. The functions of glutamine are many and include: substrate for protein synthesis, anabolic precursor for muscle growth, acid-base balance in the kidney, substrate for ureogenesis in the liver, substrate for hepatic and renal gluconeogenesis, an oxidative fuel for intestine and cells of the immune system, inter-organ nitrogen transport, precursor for neurotransmitter synthesis, precursor for nucleotide and nucleic acid synthesis and precursor for glutathione production. Many of these functions are connected to the formation of glutamate from glutamine. We propose that the unique properties regarding concentration and routes of metabolism of these amino acids allow them to be used for a diverse array of processes related to the specialized function of each of the glutamine utilizing cells. In this review we highlight the specialized aspects of glutamine/glutamate metabolism of different glutamine-utilizing cells and in each case relate key aspects of metabolism to cell function.  相似文献   

7.
Batch and continuous cultures were carried out to study the stoichiometry, kinetics, and regulation of glucose and amino acid metabolism of a recombinant BHK cell line, with particular attention to the metabolism at low levels of glucose and glutamine. The apparent yields of cells on glucose and glutamine, lactate on glucose, and ammonium on glutamine were all found to change significantly at low residual concentrations of glucose (<5 mmol/L) and glutamine (<1 mmol/L) . The uptake rates of glucose and glutamine were markedly reduced at low concentrations, leading to a more effective utilization of these nutrients for energy metabolism and biosynthesis and reduced formation rates of lactate and ammonium. However, the consumption of other amino acids, especially the essential amino acids leucine, isoleucine, and valine and the nonessential amino acids serine and glutamate, was strongly enhanced at low glutamine concentration. Quantitatively, it was shown that the cellular yields and rates associated with glucose metabolism were primarily determined by the residual glucose concentration, while those associated with glutamine metabolism depended mainly on the residual glutamine. Both experimental results and analysis of the kinetic data with models showed that the glucose metabolism of BHK cells is not affected by glutamine except for a slight influence under glucose limitation and glutaminolysis not by glucose, at least not significantly under the experimental conditions. Compared to hybridoma and other cultured animal cells, the recombinant BHK cell line showed remarkable differences in terms of nutrient sensitivity, stoichiometry, and amino acid metabolism at low levels of nutrients. These cell-line-specific stoichiometry and nutrient needs should be considered when designing an optimal medium and/or feeding strategy for achieving high cell density and high productivity of BHK cells. In this work, a cell density of 1.1 × 107 cells/mL was achieved in a conventional continuous culture by using a proper feed medium.  相似文献   

8.
Summary Several studies indicate that glutamine is a critical requirement for growth of cultured cells. The present studies describe the effect of deprivation of glucose or glutamine on mouse bone marrow cell or HL-60 cell colony formation in soft agar. The mouse bone marrow cells were induced to undergo granulocyte/macrophage type differentiation by colony-stimulating factor. Glutamine, but not glucose, was found to be an indispensable metabolite for the cloning of HL-60 cells or differentiated mouse bone marrow cells. In addition, the effect of glucose or glutamine on the rate of differentiation of dimethylsulfoxide (DMSO)-induced HL-60 cells in liquid culture was studied. Glutamine was found to be superior to glucose in its ability to support the proliferation and myeloid differentiation of HL-60 cells. When an optimal concentration of DMSO was used, the rate of differentiation of induced HL-60 cells was found to be a function of the concentration of glutamine. In addition to these studies glutamine utilization and product formation was studied in induced and uninduced HL-60 cells after 60 min incubation with 1 mM initial glutamine concentration. The fractional distribution of the glutamine carbon into its metabolic products remained unchanged in induced versus uninduced HL-60 cells. However, the rate of utilization of glutamine and product formation by terminally differentiated HL-60 cells was less than the rate of utilization of glutamine by undifferentiated HL-60 cells. The data do not explain the role of glutamine in the complex process of differentiation but establish the critical requirements for glutamine, but not glucose, in myelopoiesis. This work has been supported by USPHS Grants AM 31624 and CA 00859 and a Faculty Research Grant from Texas College of Osteopathic Medicine.  相似文献   

9.
Glutamine and the immune system   总被引:24,自引:0,他引:24  
Calder PC  Yaqoob P 《Amino acids》1999,17(3):227-241
Summary Glutamine is utilised at a high rate by cells of the immune system in culture and is required to support optimal lymphocyte proliferation and production of cytokines by lymphocytes and macrophages. Macrophage-mediated phagocytosis is influenced by glutamine availability. Hydrolysable glutamine dipeptides can substitute for glutamine to support in vitro lymphocyte and macrophage functions. In man plasma and skeletal muscle glutamine levels are lowered by sepsis, injury, burns, surgery and endurance exercise and in the overtrained athlete. The lowered plasma glutamine concentrations are most likely the result of demand for glutaminne (by the liver, kidney, gut and immune system) exceeding the supply (from the diet and from muscle). It has been suggested that the lowered plasma glutamine concentration contributes, at least in part, to the immunosuppression which accompanies such situations. Animal studies have shown that inclusion of glutamine in the diet increases survival to a bacterial challenge. Glutamine or its precursors has been provided, usually by the parenteral route, to patients following surgery, radiation treatment or bone marrow transplantation or suffering from injury. In most cases the intention was not to stimulate the immune system but rather to maintain nitrogen balance, muscle mass and/or gut integrity. Nevertheless, the maintenance of plasma glutamine concentrations in such a group of patients very much at risk of immunosuppression has the added benefit of maintaining immune function. Indeed, the provision of glutamine to patients following bone marrow transplantation resulted in a lower level of infection and a shorter stay in hospital than for patients receiving glutamine-free parenteral nutrition.  相似文献   

10.
1. The oxidation of glutamine by kidney-cortex mitochondria from normal and acidotic rats was not inhibited by avenaciolide, which did inhibit glutamate uptake and oxidation. The oxidation of glutamine by these mitochondria was always greater than that of glutamate. Direct measurements of the metabolism of [1-14C]glutamine in the presence of glutamate, and of [1-14C]glutamate in the presence of glutamine, demonstrated that the uptake and metabolism of external glutamate is insufficient to account for the observed rate of glutamine uptake and metabolism. Thus the postulated glutamine/glutamate antiport does not play a quantitatively important role in the metabolism of glutamine by renal mitochondria. 2. Rapid swelling of these mitochondria was observed in iso-osmotic solutions of L-glutamine and L-glutamyl-gamma-monohydroxamate but not in D-glutamine or L-isoglutamine (1-amido-2-aminoglutaric acid). Thus a relatively specific glutamine uniport exists in these mitochondria. 3. The utilization of glutamine was increased about 3-fold in mitochondria from chronically acidotic rats. Thus mitochondrial adaptations play an important part in the renal response to metabolic acidosis.  相似文献   

11.
The concentrations of ATP and the ATP/AMP concentration ratios were maintained in thioglycollate-elicited mouse peritoneal macrophages incubated in vitro for 90 min in the presence or absence of added substrate: rates of glycolysis, lactate formation and glutamine utilization were approximately linear with time for at least 60 min of incubation. The rate of oxygen consumption by macrophages was only increased above the basal rate (i.e. that in the absence of added substrate) by addition of succinate or pyruvate, or by addition of the uncoupling agent carboxyl cyanide m-chlorophenylhydrazone ('CCCP'); it was decreased by 75% by the addition of KCN. These findings suggest that metabolism of endogenous substrate can provide most, if not all, of the energy requirement of these cells, at least for a short period. The rates of glucose and glutamine utilization by incubated macrophages were approx. 300 and 100 nmol/min per mg of protein respectively. A large proportion of the glutamine that is utilized is converted into glutamate and aspartate, and very little (perhaps less than 10%) is oxidized. Similarly almost all of the glucose that is utilized is converted into lactate and very little is oxidized. This characteristic is similar to that of resting lymphocytes and rapidly dividing cells; in non-proliferating macrophages it may be a mechanism to provide precision in control of the rate of biosynthetic processes that utilize intermediates of these pathways, e.g. purines and pyrimidines for mRNA for the synthesis of secretory proteins and glycerol 3-phosphate for phospholipid synthesis for membrane recycling. No utilization of acetoacetate or 3-hydroxybutyrate by macrophages was detected. In contrast, both butyrate and oleate were oxidized. The rate of [14C]oleate conversion into 14CO2 (1.3 nmol/h per mg of protein) could account for most of the oxygen consumption by incubated macrophages, suggesting that long-chain fatty acids might provide an important fuel in situ. This may be one explanation for the secretion of lipoprotein lipase by these cells, to provide fatty acids for oxidation from the degradation of local triacylglycerol.  相似文献   

12.
Maximum activities of some key enzymes of metabolism were studied in elicited (inflammatory) macrophages of the mouse and lymph-node lymphocytes of the rat. The activity of hexokinase in the macrophage is very high, as high as that in any other major tissue of the body, and higher than that of phosphorylase or 6-phosphofructokinase, suggesting that glucose is a more important fuel than glycogen and that the pentose phosphate pathway is also important in these cells. The latter suggestion is supported by the high activities of both glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. However, the rate of glucose utilization by 'resting' macrophages incubated in vitro is less than the 10% of the activity of 6-phosphofructokinase: this suggests that the rate of glycolysis is increased dramatically during phagocytosis or increased secretory activity. The macrophages possess higher activities of citrate synthase and oxoglutarate dehydrogenase than do lymphocytes, suggesting that the tricarboxylic acid cycle may be important in energy generation in these cells. The activity of 3-oxoacid CoA-transferase is higher in the macrophage, but that of 3-hydroxybutyrate dehydrogenase is very much lower than those in the lymphocytes. The activity of carnitine palmitoyltransferase is higher in macrophages, suggesting that fatty acids as well as acetoacetate could provide acetyl-CoA as substrate for the tricarboxylic acid cycle. No detectable rate of acetoacetate or 3-hydroxybutyrate utilization was observed during incubation of resting macrophages, but that of oleate was 1.0 nmol/h per mg of protein or about 2.2% of the activity of palmitoyltransferase. The activity of glutaminase is about 4-fold higher in macrophages than in lymphocytes, which suggests that the rate of glutamine utilization could be very high. The rate of utilization of glutamine by resting incubated macrophages was similar to that reported for rat lymphocytes, but was considerably lower than the activity of glutaminase.  相似文献   

13.
The effect of tumour bearing on skeletal muscle glutamine metabolism.   总被引:2,自引:0,他引:2  
1. The effects of tumour bearing on glutamine metabolism in rat skeletal muscle were examined using the Walker 256 carcinosarcoma. 2. There was a rapid and marked decrease in skeletal muscle glutamine content, which was correlated with the size of the tumour, and a decrease in plasma glutamine concentration. 3. The rate of release of glutamine from EDL muscle in vitro was increased in cachectic, tumour bearing animals, but was unaffected from the soleus muscle of the same animals. 4. It is hypothesized that the increase in the rate of muscle glutamine release during cachexia represents a response of this tissue in order to satisfy the demand for glutamine by the tumour or by cells of the immune system.  相似文献   

14.
A number of factors have been shown to affect the metabolism of glucose and glutamine in mammalian cells and their mechanisms have been partially elucidated. Despite these efforts, a quantitative knowledge of the significance of these factors, the regulation of glucose and glutamine utilization, and particularly the interactions of these two nutrients is still lacking. Controversies exist in the literature. To clarify some of these controversies, mathematical models are proposed in this work which enable to separate and identify the effects of individual factors. Experimental data from five cell lines obtained in batch, fed-batch, and continuous cultures, both under steady-state and transient conditions, were used to verify the model formulations. The resulting kinetic models successfully describe all these cultures. According to the models, the specific consumption rate of glucose (Q(Glc)) of continuous animal cells under normal culture conditions can be expressed as a sum of three parts: a part owing to cell growth; a part owing to glucose excess; and a part owing to glutamine regulation. The specific consumption rate of glutamine (q(Glc)7) can be expressed as a sum of only two parts: a part owing to cell growth; and a part owing to glutamine excess. Using the kinetic models the interaction and regulation of glucose and glutamine utilizations are quantitatively analyzed. The results indicate that, whereas q(Glc) is affected by glutamine, q(Gln) appears to be not or less significantly affected by glucose. It is also shown that the relative utilizations of glucose and glutamine by anabolism and catabolism are mainly affected by the residual concentrations of the respective compounds and are less sensitive to growth rate and the nature of growth limitation.(c) 1995 John Wiley & Sons, Inc.  相似文献   

15.
Glutamine metabolism in lymphocytes of the rat.   总被引:24,自引:7,他引:17       下载免费PDF全文
The metabolism of glutamine in resting and concanavalin-A-stimulated lymphocytes was investigated. In incubated lymphocytes isolated from rat mesenteric lymph nodes, the rates of oxygen and glutamine utilization and that of aspartate production were approximately linear with respect to time for 60 min, and the concentrations of adenine nucleotides plus the ATP/ADP or ATP/AMP concentration ratios remained approximately constant for 90 min. The major end products of glutamine metabolism were glutamate, aspartate and ammonia: the carbon from glutamine may contribute about 30% to respiration. When both glucose and glutamine were presented to the cells, the rates of utilization of both substances increased. Evidence was obtained that the stimulation of glycolysis by glutamine could be due, in part, to an activation of 6-phosphofructokinase. Starvation of the donor animal increased the rate of glutamine utilization. The phosphoenolpyruvate carboxykinase inhibitor mercaptopicolinate decreased the rate of glutamine utilization by 28%; the rates of accumulation of glutamate and ammonia were decreased, whereas those of lactate, aspartate and malate were increased. The mitogen concanavalin A increased the rate of glutamine utilization (by about 51%). The rate of [3H]thymidine incorporation into DNA caused by concanavalin A in cultured lymphocytes was very low in the absence of glutamine; it was increased about 4-fold at 1 microM-glutamine and was maximal at 0.3 mM-glutamine; neither other amino acids nor ammonia could replace glutamine.  相似文献   

16.
Metabolism of radiolabelled energy-yielding substrates by rat Sertoli cells   总被引:2,自引:0,他引:2  
The rates of metabolism in vitro of 3H- or 14C-labelled glucose, pyruvate, glutamine and leucine by Sertoli cells from immature rats were estimated. The overall rate of glucose utilization exceeded by far the rates of oxidation of pyruvate (derived from glucose) via the citric acid cycle and glucose metabolism via the oxidative branch of the pentose phosphate pathway. This pattern of glucose metabolism was not markedly altered after stimulation of glucose metabolism by FSH. The rate of oxidation of exogenous pyruvate indicated that the energy yield from glucose metabolism by Sertoli cells could be dependent on the extracellular concentrations of pyruvate and lactate. There is no evidence that a high rate of aerobic glycolysis is of vital importance for Sertoli cells. In medium containing glucose and all amino acids, 14C-labelled glutamine and leucine were converted to 14CO2 at considerable rates. It was calculated that the oxidation of glutamine and leucine in addition to glucose and fatty acids can yield much of the required energy of Sertoli cells.  相似文献   

17.
Acetate and the long chain free fatty acid palmitate provoked a decrease in the rates of glutamine utilization and glutamate production in Ehrlich ascites tumor cells incubated with 0.5 mM glutamine. There was a cumulative effect with glucose on glutamine metabolism.  相似文献   

18.
Glucose and glutamine metabolism in several cultured mammalian cell lines (BHK, CHO, and hybridoma cell lines) were investigated by correlating specific utilization and formation rates with specific maximum activities of regulatory enzymes involved in glycolysis and glutaminolysis. Results were compared with data from two insect cell lines and primary liver cells. Flux distribution was measured in a representative mammalian (BHK) and an insect (Spodoptera frugiperda) cell line using radioactive substrates. A high degree of similarity in many aspects of glucose and glutamine metabolism was observed among the cultured mammalian cell lines examined. Specific glucose utilization rates were always close to specific hexokinase activities, indicating that formation of glucose-6-phosphate from glucose (catalyzed by hexokinase) is the rate limiting step of glycolysis. No activity of the key enzymes connecting glycolysis with the tricarboxylic acid cycle, such as pyruvate dehydrogenase, pyruvate carboxylase, and phosphoenolpyruvate carboxykinase, could be detected. Flux distribution in BHK cells showed glycolytic rates very similar to lactate formation rates. No glucose- or pyruvate-derived carbon entered the tricarboxylic acid cycle, indicating that glucose is mainly metabolized via glycolysis and lactate formation. About 8% of utilized glucose was metabolized via the pentose phosphate shunt, while 20 to 30% of utilized glucose followed pathways other than glycolysis, the tricarboxylic acid cycle, or the pentose phosphate shunt. About 18% of utilized glutamine was oxidized, consistent with the notion that glutamine is the major energy source for mammalian cell lines. Mammalian cells cultured in serum-free low-protein medium showed higher utilization rates, flux rates, and enzyme activities than the same cells cultured in serum-supplemented medium. Insect cells oxidized glucose and pyruvate in addition to glutamine. Furthermore, insect cells produced little or no lactate and were able to channel glycolytic intermediates into the tricarboxylic acid cycle. Metabolic profiles of the type presented here for a variety of cell lines may eventually enable one to interfere with the metabolic patterns of cells relevant to biotechnology, with the hope of improving growth rate and/or productivity. © 1996 Wiley-Liss, Inc.  相似文献   

19.
20.
Despite the importance of endothelial cells little is known about their metabolic fuel requirements. To provide some information in this area, the maximum catalytic activities of key enzymes of important metabolic pathways have been measured in bovine pulmonary endothelial cells. The results suggest that both glucose and glutamine are important fuels for these cells: in addition, the oxidation of fatty acids may also be of quantitative significance. The activity of glutaminase in these cells was about 20-fold higher than that in lymphocyte, a cell which exhibits high rates of glutaminolysis. It is suggested that a high rate of glutamine metabolism by endothelial cells is important not only for energy provision but also for provision of nitrogen for biosynthetic purposes including production of local messengers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号