首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Wave-driven water flow is a major force structuring marine communities. Species distributions are partly determined by the ability to cope with variation in water flow, such as differences in the assemblage of fish species found in a given water flow environment being linked to swimming ability (based on fin shape and mode of locomotion). It remains unclear, however, whether similar assembly rules apply within a species. Here we show phenotypic variation among sites in traits functionally linked to swimming ability in the damselfish Acanthochromis polyacanthus. These sites differ in wave energy and the observed patterns of phenotypic differences within A. polyacanthus closely mirrored those seen at the interspecific level. Fish from high-exposure sites had more tapered fins and higher maximum metabolic rates than conspecifics from sheltered sites. This translates to a 36 % larger aerobic scope and 33 % faster critical swimming speed for fish from exposed sites. Our results suggest that functional relationships among swimming phenotypes and water flow not only structure species assemblages, but can also shape patterns of phenotypic divergence within species. Close links between locomotor phenotype and local water flow conditions appear to be important for species distributions as well as phenotypic divergence across environmental gradients.  相似文献   

2.
We compared ancestral anadromous-marine and nonmigratory, stream-resident threespine stickleback (Gasterosteus aculeatus) populations to examine the outcome of relaxed selection on prolonged swimming performance. We reared marine and stream-resident fish from two locations in a common environment and found that both stream-resident populations had lower critical swimming speeds (U(crits) ) than marine populations. F1 hybrids from the two locations displayed significant differences in dominance, suggesting that the genetic basis for variation in U(crit) differs between locations. To determine which traits evolved in conjunction with, and may underlie, differences in performance capacity we measured a suite of traits known to affect prolonged swimming performance in fish. Although some candidate traits did not evolve (standard metabolic rate and two body shape traits), multiple morphological (pectoral fin size, shape, and four body shape measures) and physiological (maximum metabolic rate; MMR) traits evolved in the predicted direction in both stream-resident populations. However, data from F1 hybrids suggested that only one of these traits (MMR) had dominance effects similar to those of U(crit) in both locations. Overall, our data suggest that reductions in prolonged swimming performance were selected for in nonmigratory populations of threespine stickleback, and that decreases in MMR may mediate these reductions in performance.  相似文献   

3.
While morphological variation across geographical clines has been well documented, it is often unclear whether such changes enhance individual performance to local environments. We examined whether the damselfish Acanthochromis polyacanthus display functional changes in swimming phenotype across a 40-km cline in wave-driven water motion on the Great Barrier Reef, Australia. A. polyacanthus populations displayed strong intraspecific variation in swimming morphology and performance that matched local levels of water motion: individuals on reefs subject to high water motion displayed higher aspect-ratio fins and faster swimming speeds than conspecifics on sheltered reefs. Remarkably, intraspecific variation within A. polyacanthus spanned over half the diversity seen among closely related damselfish species from the same region. We find that local selection driven by wave-induced abiotic stress is an overarching ecological mechanism shaping the inter- and intraspecific locomotor diversity of coral reef fishes.  相似文献   

4.
The harvest of animals by humans may constitute one of the strongest evolutionary forces affecting wild populations. Vulnerability to harvest varies among individuals within species according to behavioural phenotypes, but we lack fundamental information regarding the physiological mechanisms underlying harvest-induced selection. It is unknown, for example, what physiological traits make some individual fish more susceptible to capture by commercial fisheries. Active fishing methods such as trawling pursue fish during harvest attempts, causing fish to use both aerobic steady-state swimming and anaerobic burst-type swimming to evade capture. Using simulated trawling procedures with schools of wild minnows Phoxinus phoxinus, we investigate two key questions to the study of fisheries-induced evolution that have been impossible to address using large-scale trawls: (i) are some individuals within a fish shoal consistently more susceptible to capture by trawling than others?; and (ii) if so, is this related to individual differences in swimming performance and metabolism? Results provide the first evidence of repeatable variation in susceptibility to trawling that is strongly related to anaerobic capacity and swimming ability. Maximum aerobic swim speed was also negatively correlated with vulnerability to trawling. Standard metabolic rate was highest among fish that were least vulnerable to trawling, but this relationship probably arose through correlations with anaerobic capacity. These results indicate that vulnerability to trawling is linked to anaerobic swimming performance and metabolic demand, drawing parallels with factors influencing susceptibility to natural predators. Selection on these traits by fisheries could induce shifts in the fundamental physiological makeup and function of descendent populations.  相似文献   

5.
Swimming performance tests of fish have been integral to studies of muscle energetics, swimming mechanics, gas exchange, cardiac physiology, disease, pollution, hypoxia and temperature. This paper describes a flexible protocol to assess fish swimming performance using equipment in which water velocity can be controlled. The protocol involves one to several stepped increases in flow speed that are intended to cause fish to fatigue. Step speeds and their duration can be set to capture swimming abilities of different physiological and ecological relevance. Most frequently step size is set to determine critical swimming velocity (Ucrit), which is intended to capture maximum sustained swimming ability. Traditionally this test has consisted of approximately ten steps each of 20 min duration. However, steps of shorter duration (e.g. 1 min) are increasingly being utilized to capture acceleration ability or burst swimming performance. Regardless of step size, swimming tests can be repeated over time to gauge individual variation and recovery ability. Endpoints related to swimming such as measures of metabolic rate, fin use, ventilation rate, and of behavior, such as the distance between schooling fish, are often included before, during and after swimming tests. Given the diversity of fish species, the number of unexplored research questions, and the importance of many species to global ecology and economic health, studies of fish swimming performance will remain popular and invaluable for the foreseeable future.  相似文献   

6.
Plastic responses can have adaptive significance for organisms occurring in unpredictable environments, migratory species and organisms occupying novel environments. Zebrafish (Danio rerio) occur in a wide range of habitats and environments that fluctuate frequently across seasons and habitats. We expect wild populations of fish to be behaviorally more flexible than fish reared in conventional laboratory and hatchery environments. We measured three behavioral traits among 2 wild (U and PN) and 1 laboratory bred (SH) zebrafish populations in four environments differing in water flow and vegetation regimes. We found that the degree of plasticity varied with the type of behavior and also among populations. In general, vegetation increased aggression and water flow decreased latency to feed after a disturbance, but the patterns were population dependent. For example, while wild U fish fed more readily after a disturbance in vegetated and/or flowing habitats, fish from the wild PN population and lab-reared SH strain showed little variation in foraging across different environmental conditions. Zebrafish from all the three populations were more aggressive when tested in an arena with vegetation. In contrast, while there was an inter- population difference in shoaling distances, variation in shoaling distance across environmental conditions within populations was not significant. These results suggest that both foraging and aggression in zebrafish are more plastic and influenced by immediate context than is shoaling distance, which may have a stronger genetic basis. Our findings point to different underlying mechanisms influencing the expression of these traits and warrants further investigations.  相似文献   

7.
A variety of fish species show habitat-related variation in traits associated with swimming performance and foraging behavior. This commonly manifests as a distinction between open water and shallow water littoral ecotypes. In bluegill sunfish (Lepomis macrochirus), open water fish exhibit greater energy economy and speed during sustained locomotion than those from the littoral, whereas littoral fish were more maneuverable than their open water counterparts. These distinctions are associated with variation in diet and foraging behavior and may represent a resource polyphenism that enhances fitness through more effective exploitation of particular habitat types. A lack of field data means that polyphenisms have not been placed in context with swimming behavior in the field. We have used 3D videography to quantify bluegill field swimming performance in open water and littoral habitats. This revealed patterns of performance variation that parallel the trait variation previously established in the laboratory. Open water fish utilized faster average swimming speeds than inshore fish, while indicators of nonlinearity and unsteadiness were greater in the littoral fish. There are, however, differences in propulsive behavior between the field and laboratory. Pectoral-fin-powered, median-paired fin swimming is rarely employed by open water fish. Field body-caudal fin swimming involves short sequences of propulsive tail beats interspersed with gliding, rather than the repeated propulsive cycles employed under steady-state conditions. This suggests a need to re-evaluate the applicability of steady-state performance traits to behavior and fitness in the field and highlights the general importance of obtaining field performance data.  相似文献   

8.
Temperature influences both the physiology offish larvae and the physics of the flow conditions under which they swim. For small larvae in low Reynolds number (Re) hydrodynamic environments dominated by frictional drag, temperature‐induced changes in the physics of water flow have the greatest effect on swimming performance. For larger larvae, in higher Re environments, temperature‐induced changes in physiology become more important as larvae swim faster and changes in swimming patterns and mechanics occur. Physiological rates at different temperatures have been quantified using Q10s with the assumption that temperature only affected physiological variables. Consequently, Q10s that did not consider temperature‐induced changes in viscosity overestimated the effect of temperature on physiology by 58% and 56% in cold‐water herring and cod larvae respectively. In contrast, in warm‐water Danube bleak larvae, Q10s overestimated temperature‐induced effects on physiology by only 5–7%. This may be because in warm water, temperature‐induced changes affect viscosity to a smaller degree than in cold water. Temperature also affects muscle contractility and efficiency and at high swimming velocities, efficiency decreases more rapidly in cold‐exposed than in warm‐exposed muscle fibres. Further experiments are needed to determine whether temperature acts differently on swimming metabolism in different thermal environments. While hydrodynamic factors appear to be very important to larval fish swimming performance in cold water, they appear to lose importance in warm water where temperature effects on physiology dominate. This may suggest that major differences exist among locomotory capacities of larval fish that inhabit cold, temperate waters compared to those that live in warm tropical waters. It is possible that fish larvae may have developed strategies that affect dispersal and recruitment in different aquatic habitats in order to cope not only with temperature‐induced physiological challenges, but physical challenges as well.  相似文献   

9.
为考察鲤科鱼类种内个体标准代谢率的差异及其与运动性能和摄食性能的内在关联,本研究以我国广泛分布的鲤(Cyprinids cardio)幼鱼[体重(4.79±0.08)g,n=36]为实验对象,在(25.0±1.0)℃下分别测量实验鱼的标准代谢率(SMR),随后测定单尾鱼的特殊动力作用(SDA)、自发运动、临界游泳速度以及活跃代谢率(MO2active)。实验鱼标准代谢率(SMR)的变幅为76.7~317.6 mg/(kg·h),其变异系数(CV)达24.4%;实验鱼在10 min内的尾鳍摆动次数(P0.05)和摄食代谢峰值(P0.05)均与标准代谢率(SMR)呈正相关;活跃代谢率(MO2active)(P0.05)与摄食代谢峰值以及活跃代谢范围与摄食代谢范围(P0.05)均呈正相关。然而,鲤幼鱼的标准代谢率(SMR)与相对临界游泳速度、活跃代谢率(MO2active)、特殊动力作用(SDA)时间和特殊动力作用(SDA)总量均不相关(所有P0.05)。研究表明,较高标准代谢率(SMR)的鲤幼鱼个体表现较高的活跃性和较强的摄食代谢能力,可能有助于其更易发现食物、逃避天敌以及加快食物处理。  相似文献   

10.
With the current trends in climate and fisheries, well-designed mitigative strategies for conserving fish stocks may become increasingly necessary. The poor post-release survival of hatchery-reared Pacific salmon indicates that salmon enhancement programs require assessment. The objective of this study was to determine the relative roles that genotype and rearing environment play in the phenotypic expression of young salmon, including their survival, growth, physiology, swimming endurance, predator avoidance and migratory behaviour. Wild- and hatchery-born coho salmon adults (Oncorhynchus kisutch) returning to the Chehalis River in British Columbia, Canada, were crossed to create pure hatchery, pure wild, and hybrid offspring. A proportion of the progeny from each cross was reared in a traditional hatchery environment, whereas the remaining fry were reared naturally in a contained side channel. The resulting phenotypic differences between replicates, between rearing environments, and between cross types were compared. While there were few phenotypic differences noted between genetic groups reared in the same habitat, rearing environment played a significant role in smolt size, survival, swimming endurance, predator avoidance and migratory behaviour. The lack of any observed genetic differences between wild- and hatchery-born salmon may be due to the long-term mixing of these genotypes from hatchery introgression into wild populations, or conversely, due to strong selection in nature—capable of maintaining highly fit genotypes whether or not fish have experienced part of their life history under cultured conditions.  相似文献   

11.
Over the past decade, hundreds of studies have examined the abilities of whole organisms to modify their physiology and behaviour in response to environmental temperature changes; despite this, virtually nothing is known about the ability of sex cells to adjust to different temperature conditions. In fact, a recent meta‐analysis based on studies of 309 species and 112 physiological and ecological traits found no studies examining the influence of temperature on gamete function. Because sex cells play a critical role in the adaptation and persistence of species, this represents a severe oversight in physiological studies of thermal adaptation. Our study examines whether sex cells can respond phenotypically to variation in the thermal environment that is experienced by the whole‐organism. Specifically, we studied the thermal dependence of sperm swimming and the critical thermal limits of sperm cells in males of the poeciliid fish, Gambusia holbrooki. This species is well known for its ability to modify physiological function and maintains burst and sustained swimming performance and mating ability across a wide range of thermal conditions. In contrast, we found that sperm cells from male G. holbrooki did not adjust their physiological function as predicted by adaptive models. After acclimation of adult males to cool or warm temperatures, we found that the critical thermal limits of sperm function remained unchanged, as did the effect of temperature on sperm swimming performance. However, warm‐acclimated fish had sperm with higher swimming speeds across all temperatures. The absence of phenotypic changes in the critical thermal limits of sperm or thermal dependence of sperm swimming performance is surprising given that whole‐organism traits in G. holbrooki generally show improved performance after exposure to novel environments. As such an inability to thermally adjust gamete function may be widespread among other organisms, we urge biologists to investigate the generality of this result.  相似文献   

12.
Hatchery‐reared fish show high mortalities after release to the wild environment. Explanations for this include potentially predetermined genetics, behavioral, and physiological acclimation to fish farm environments, and increased vulnerability to predation and parasitism in the wild. We studied vulnerability to Diplostomum spp. parasites (load of eye flukes in the lenses), immune defense (relative spleen size) and antipredator behaviors (approaches toward predator odor, freezing, and swimming activity) in hatchery‐reared juvenile Arctic charr (Salvelinus alpinus) using a nested mating design. Fish were exposed to eye‐fluke larvae via the incoming water at the hatchery. Fish size was positively associated with parasite load, but we did not find any relationship between relative spleen size and parasitism. The offspring of different females showed significant variation in their parasite load within sires, implying a dam effect in the vulnerability to parasites. However, the family background did not have any effect on spleen size. In the mean sire level over dams, the fish from the bolder (actively swimming) families in the predator trials suffered higher loads of eye flukes than those from more cautiously behaving families. Thus, the results indicate potentially maternally inherited differences in vulnerability to eye‐fluke parasites, and that the vulnerability to parasites and behavioral activity are positively associated with each other at the sire level. This could lead to artificial and unintentional selection for increased vulnerability to both parasitism and predation if these traits are favored in fish farm environments.  相似文献   

13.
The Wujiang River, a tributary of the Three Gorges Reservoir, has many dams along its length. These dams alter the river's natural habitat and produce various flow regimes and degrees of predator stress. To test whether the swimming performance and external body shape of pale chub (Zacco platypus) have changed as a result of alterations in the flow regime and predator conditions, we measured the steady (U crit) and unsteady (fast-start) swimming performances and morphological characteristics of fish collected from different sites along the Wujiang River. We also calculated the maximum respiratory capacity and cost of transport (COT). We demonstrated significant differences in swimming performance and morphological traits among the sampling sites. Steady swimming performance was positively correlated with water velocity and negatively correlated with the abundance of predators, whereas unsteady swimming performance was negatively correlated with water velocity. The body shape was significantly correlated with both swimming performance and ecological parameters. These findings suggested that selection pressure on swimming performance results in a higher U crit and a more streamlined body shape in fast-flow and (or) in habitats with low predator stress and subsequently results in a lower COT. These characteristics were accompanied by a poorer fast-start performance than that of the fish from the slow-flow and (or) high-predator habitats. The divergence in U crit may also be due in part to variation in respiratory capacity.  相似文献   

14.
Few studies have examined the physiological and behavioral consequences of fisheries-induced selection. We evaluated how four generations of artificial truncation selection for vulnerability to recreational angling (i.e., stocks selected for high and low vulnerability [HVF and LVF, respectively]) affected cardiovascular physiology and parental care behavior in the teleost fish largemouth bass Micropterus salmoides. Where possible, we compared artificially selected fish to control fish (CF) collected from the wild. Although, compared to control fish, resting cardiac activity was approximately 18% lower for LVF and approximately 20% higher for HVF, maximal values did not vary among treatments. As a result, the HVF had less cardiac scope than either LVF or CF. Recovery rates after exercise were similar for HVF and CF but slower for LVF. When engaged in parental care activities, nesting male HVF were captured more easily than male LVF. During parental care, HVF also had higher turning rates and pectoral and caudal fin beat rates, increased vigilance against predators, and higher in situ swimming speeds. Energetics simulations indicated that to achieve the same level of growth, the disparity in metabolic rates would require HVF to consume approximately 40% more food than LVF. Selection for angling vulnerability resulted in clear differences in physiological and energetic attributes. Not only is vulnerability to angling a heritable trait, but high vulnerability covaries with factors including higher metabolic rates, reduced metabolic scope, and increased parental care activity. Despite these energetically costly differences, HVF and LVF of the same age were of similar size, suggesting that heightened food consumption in HVF compensated for added costs in experimental ponds. Ultimately, angling vulnerability appears to be a complex interaction of numerous factors leading to selection for very different phenotypes. If HVF are selectively harvested from a population, the remaining fish in that population may be less effective in providing parental care, potentially reducing reproductive output. The strong angling pressure in many freshwater systems, and therefore the potential for this to occur in the wild, necessitate management approaches that recognize the potential evolutionary consequences of angling.  相似文献   

15.
Potential for adaptation to climate change in a coral reef fish   总被引:1,自引:0,他引:1       下载免费PDF全文
Predicting the impacts of climate change requires knowledge of the potential to adapt to rising temperatures, which is unknown for most species. Adaptive potential may be especially important in tropical species that have narrow thermal ranges and live close to their thermal optimum. We used the animal model to estimate heritability, genotype by environment interactions and nongenetic maternal components of phenotypic variation in fitness‐related traits in the coral reef damselfish, Acanthochromis polyacanthus. Offspring of wild‐caught breeding pairs were reared for two generations at current‐day and two elevated temperature treatments (+1.5 and +3.0 °C) consistent with climate change projections. Length, weight, body condition and metabolic traits (resting and maximum metabolic rate and net aerobic scope) were measured at four stages of juvenile development. Additive genetic variation was low for length and weight at 0 and 15 days posthatching (dph), but increased significantly at 30 dph. By contrast, nongenetic maternal effects on length, weight and body condition were high at 0 and 15 dph and became weaker at 30 dph. Metabolic traits, including net aerobic scope, exhibited high heritability at 90 dph. Furthermore, significant genotype x environment interactions indicated potential for adaptation of maximum metabolic rate and net aerobic scope at higher temperatures. Net aerobic scope was negatively correlated with weight, indicating that any adaptation of metabolic traits at higher temperatures could be accompanied by a reduction in body size. Finally, estimated breeding values for metabolic traits in F2 offspring were significantly affected by the parental rearing environment. Breeding values at higher temperatures were highest for transgenerationally acclimated fish, suggesting a possible role for epigenetic mechanisms in adaptive responses of metabolic traits. These results indicate a high potential for adaptation of aerobic scope to higher temperatures, which could enable reef fish populations to maintain their performance as ocean temperatures rise.  相似文献   

16.
Energy metabolism fuels swimming and other biological processes. We compared the swimming performance and energy metabolism within and across eight freshwater fish species. Using swim tunnel respirometers, we measured the standard metabolic rate (SMR) and maximum metabolic rate (MMR) and calculated the critical swimming speed (Ucrit). We accounted for body size, metabolic traits, and some morphometric ratios in an effort to understand the extent and underlying causes of variation. Body mass was largely the best predictor of swimming capacity and metabolic traits within species. Moreover, we found that predictive models using total length or SMR, in addition to body mass, significantly increased the explained variation of Ucrit and MMR in certain fish species. These predictive models also underlined that, once body mass has been accounted for, Ucrit can be independently affected by total length or MMR. This study exemplifies the utility of multiple regression models to assess within-species variability. At interspecific level, our results showed that variation in Ucrit can partly be explained by the variation in the interrelated traits of MMR, fineness, and muscle ratios. Among the species studied, bleak Alburnus alburnus performed best in terms of swimming performance and efficiency. By contrast, pumpkinseed Lepomis gibbosus showed very poor swimming performance, but attained lower mass-specific cost of transport (MCOT) than some rheophilic species, possibly reflecting a cost reduction strategy to compensate for hydrodynamic disadvantages. In conclusion, this study provides insight into the key factors influencing the swimming performance of fish at both intra- and interspecific levels.  相似文献   

17.
The influence of feeding on swimming performance and exercise recovery in fish is poorly understood. Examining swimming behavior and physiological status following periods of feeding and fasting is important because wild fish often face periods of starvation. In the current study, researchers force fed and fasted groups of largemouth bass (Micropterus salmoides) of similar sizes for a period of 16 days. Following this feeding and fasting period, fish were exercised for 60 s and monitored for swimming performance and physiological recovery. Resting metabolic rates were also determined. Fasted fish lost an average of 16 g (nearly 12%) of body mass, while force fed fish maintained body mass. Force fed fish swam 28% further and required nearly 14 s longer to tire during exercise. However, only some physiological conditions differed between feeding groups. Resting muscle glycogen concentrations was twofold greater in force fed fish, at rest and throughout recovery, although it decreased in both feeding treatments following exercise. Liver mass was nearly three times greater in force fed fish, and fasted fish had an average of 65% more cortisol throughout recovery. Similar recovery rates of most physiological responses were observed despite force fed fish having a metabolic rate 75% greater than fasted fish. Results are discussed as they relate to largemouth bass starvation in wild systems and how these physiological differences might be important in an evolutionary context.  相似文献   

18.
Muscle metabolism dominates the energy costs of locomotion. Although in vivo measures of muscle strain, activity and force can indicate mechanical function, similar muscle-level measures of energy use are challenging to obtain. Without this information locomotor systems are essentially a black box in terms of the distribution of metabolic energy. Although in situ measurements of muscle metabolism are not practical in multiple muscles, the rate of blood flow to skeletal muscle tissue can be used as a proxy for aerobic metabolism, allowing the cost of particular muscle functions to be estimated. Axial, undulatory swimming is one of the most common modes of vertebrate locomotion. In fish, segmented myotomal muscles are the primary power source, driving undulations of the body axis that transfer momentum to the water. Multiple fins and the associated fin muscles also contribute to thrust production, and stabilization and control of the swimming trajectory. We have used blood flow tracers in swimming rainbow trout (Oncorhynchus mykiss) to estimate the regional distribution of energy use across the myotomal and fin muscle groups to reveal the functional distribution of metabolic energy use within a swimming animal for the first time. Energy use by the myotomal muscle increased with speed to meet thrust requirements, particularly in posterior myotomes where muscle power outputs are greatest. At low speeds, there was high fin muscle energy use, consistent with active stability control. As speed increased, and fins were adducted, overall fin muscle energy use declined, except in the caudal fin muscles where active fin stiffening is required to maintain power transfer to the wake. The present data were obtained under steady-state conditions which rarely apply in natural, physical environments. This approach also has potential to reveal the mechanical factors that underlie changes in locomotor cost associated with movement through unsteady flow regimes.  相似文献   

19.
Marine organisms living at low temperatures tend to have larger genomes and larger cells which suggest that these traits can be beneficial in colder environments. In fish, triploidy (three complete sets of chromosomes) can be induced experimentally following fertilization, which provides a model system to investigate the hypothesis that larger cells and genomes offers a physiological advantage at low temperatures. We tested this hypothesis by measuring metabolic rates and swimming performance of diploid and triploid Atlantic salmon (Salmo salar) post smolts acclimated to 3 or 10.5 °C. At 10.5 °C, triploids had significantly lower maximum metabolic rates which resulted in a lower aerobic scope compared to diploids. In addition, triploids initiated ram ventilation at lower swimming speeds, providing further evidence of a reduced capacity to meet oxygen demands during strenuous activity at 10.5 °C. However, at 3 °C, metabolic rates and critical swimming speeds were similar between both ploidies, and as expected substantially lower than at 10.5 °C. Therefore, triploidy in colder environments did not provide any advantage over diploidy in terms of metabolic rate traits or swimming performance in Atlantic salmon. We therefore conclude that traits, other than aerobic scope and swimming performance, contribute to the trend for increased cell and genome size in marine ectotherms living in cold environments.  相似文献   

20.
《农业工程》2014,34(5):284-289
Perfluorooctane sulfonate (PFOS) is a ubiquitous environmental contaminant that has been found to pose various risks to fish health and the safety of aquatic ecosystem. Swimming performance is an integrated index of fitness in fish. However, little research has sought on the effects of PFOS on swimming performances of fish. Experiments were carried out to clarify the impacts of acute exposure to PFOS on behavior, swimming ability and metabolic rate in topmouth gudgeon (Pseudorasbora parva), to understand the underlying ecotoxicological effects of waterborne PFOS exposure on fish physiology and behavior. Fish were exposed to PFOS (0, 0.5, 2, 8 or 32 mg/L) for 96 h. Afterwards, the routine metabolic rate (RMR), spontaneous swimming behavior (SSB), fast-start swimming performance (FSP) and critical swimming speed (Ucrit) of the topmouth gudgeon were examined. The results show reduced behavioral performance and increased physiological stress with increasing PFOS concentration. Both RMR, SSB and Ucrit were significantly affected by PFOS exposure (p < 0.05). The lowest observed effect concentration (LOEC) is 2 mg/L for SSB. PFOS treatment resulted in increased RMR (p = 0.001) and decreased Ucrit (p = 0.005), whereas FSP was not influenced by PFOS (p > 0.05). The results indicate that the anaerobic swimming capacity was conserved, but the metabolic level, SSB and aerobic swimming performance in topmouth gudgeon were susceptible to PFOS contamination, and hence might be useful as considerable potential biomarkers of pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号