首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study explored the relative competitive ability and performance of first-feeding growth hormone (GH) transgenic and non-transgenic Atlantic salmon Salmo salar fry under low food conditions. Pair-wise dominance trials indicated a strong competitive advantage for residents of a contested foraging territory. Transgenic and non-transgenic individuals, however, were equally likely to be dominant. Similarly, in stream environments with limited food, the transgene did not influence the growth in mass or survival at high or low fry densities. Fry in low-density treatments, however, performed better than fry in high-density treatments. These results indicate that, under the environment examined, the growth performance of GH-transgenic and non-transgenic S. salar may be similar during first feeding, an intense period of selection in their life history. Similarities in competitive ability and growth performance with wild-type fish suggest that the capacity of transgenic S. salar to establish in natural streams may not be inhibited during early life history.  相似文献   

2.
Substantial evidence from the animal kingdom shows that there is a trade-off between benefits and costs associated with rapid somatic growth. One would therefore expect growth rates under natural conditions to be close to an evolutionary optimum. Nevertheless, natural selection in many salmonid species appears to be toward larger size and earlier emergence from spawning redds, indicating a potential for increased growth rate to evolve. We tested how selection for genetic variants (growth hormone transgenic coho salmon, Oncorhynchus kisutch, with more than doubled daily growth rate potential relative to wild genotypes) depended on predator timing and food abundance during the early period of life (fry stage). In artificial redds, fry of the fast-growing genotypes showed a highly significant developmental shift, emerging from gravel nests approximately two weeks sooner, but with an 18.6% reduced survival, relative to wild-genotype fry. In seminatural streams, fry of the fast-growing genotypes suffered higher predation than those of wild genotypes when predators were present at the time of fry emergence, but this difference was less pronounced when food was scarce. In streams where predators were introduced after emergence, fry survived equally well regardless of food availability. Surviving fry grew faster in habitats provided with more food, and fast-growing genotypes also grew faster than wild genotypes when predators arrived late and food was abundant. Fewer fish migrated downstream past a waterfall when food availability was high and in the presence of predators, and wild-genotype fry were more likely to migrate than fry of the fast-growing genotypes. After being returned to the experimental streams after migration, fast-growing genotypes survived equally well as those of the same genotypes that did not migrate, whereas migrating wild genotypes experienced higher mortality relative to those of the same genotypes that did not migrate. Comparisons of growth rates between siblings retained under hatchery conditions and those from habitats with the fastest growth in the experimental stream revealed that growth rates were similar for wild genotypes in both environments, whereas the fast-growing genotypes in the streams only realized 90% of their growth potential. The present study has shown that a major shift in developmental timing can alter critical early stages affecting survival and can have a significant effect on fitness. Furthermore, ecological conditions such as food abundance and predation pressure can strongly influence the potential for fast-growing variants to survive under natural conditions. The large-scale removal of many predatory species around the world may augment the evolution of increased intrinsic growth rates in some taxa.  相似文献   

3.
Survival rate and growth parameters of Atlantic salmon fry and sea trout fry were determined after stocking in the wild. Before release (22 May 2009) into the wild the larvae were reared for 10 weeks in the hatchery in three groups: (i) fry fed on live zooplankton , (ii) fry fed on larvae of live nekton, and (iii) fry fed on prepared pellet food. In autumn (15 September 2010) the fish were caught in the wild; the survival rate and growth parameters of both Atlantic salmon and sea trout were the highest in the zooplankton‐fed group, whilst the pellet‐fed group had the lowest survival rate and growth value parameters. Most effective food for hatchery‐reared fishes to be used as stock was the natural living zooplankton. The general conclusion is that the live diet supplied in the rearing period has a positively impact on fish survival in the wild.  相似文献   

4.
Domesticated and growth hormone (GH) transgenic salmon provide an interesting model to compare effects of selected versus engineered phenotypic change on relative fitness in an ecological context. Phenotype in domestication is altered via polygenic selection of traits over multiple generations, whereas in transgenesis is altered by a single locus in one generation. These established and emerging technologies both result in elevated growth rates in culture, and are associated with similar secondary effects such as increased foraging, decreased predator avoidance, and similar endocrine and gene expression profiles. As such, there is concern regarding ecological consequences should fish that have been genetically altered escape to natural ecosystems. To determine if the type of genetic change influences fitness components associated with ecological success outside of the culture environments they were produced for, we examined growth and survival of domesticated, transgenic, and wild-type coho salmon fry under different environmental conditions. In simple conditions (i.e. culture) with unlimited food, transgenic fish had the greatest growth, while in naturalized stream tanks (limited natural food, with or without predators) domesticated fish had greatest growth and survival of the three fish groups. As such, the largest growth in culture conditions may not translate to the greatest ecological effects in natural conditions, and shifts in phenotype over multiple rather than one loci may result in greater success in a wider range of conditions. These differences may arise from very different historical opportunities of transgenic and domesticated strains to select for multiple growth pathways or counter-select against negative secondary changes arising from elevated capacity for growth, with domesticated fish potentially obtaining or retaining adaptive responses to multiple environmental conditions not yet acquired in recently generated transgenic strains.  相似文献   

5.
Growth rate is an ecologically important trait, affecting the energy acquisition from, and provisioning to, the surrounding community. One of many costs suggested to counteract the evolution of increased intrinsic growth rate is an associated reduction in tolerance to conditions of nutrient stress. Here we test this concept with individuals possessing experimentally increased intrinsic growth rates (growth hormone transgenic coho salmon, Oncorhynchus kisutch) relative to wild genotypes. Using a series of three experiments, survival and growth of both genotypes were assessed on a physiological and behavioral level while varying food abundance, social interactions, and predation risk. Only in complete absence of exogenous food in newly emerged fry did the high intrinsic growth rate appear costly with a shorter average survival time compared to wild-type (Exp. 1). In experiment 2, genotypes with elevated intrinsic growth showed equal or higher survival and growth than wild-type genotypes In a third experiment, adding very limited amounts of food and allowing for social interactions in a simulated natural environment benefited transgenic individuals relative to wild-types, but at similar magnitudes in both the absence and presence of predators. Populations with transgenic individuals present did not crash under these competitive conditions as previously reported when studied in simple environments where hiding and attack escape were not possible. Our data suggest that transgenic fish have a greater scope for growth under most conditions, but are not obligated to use this capability. Physiological (e.g. appetite and conversion efficiency) and behavioral traits (e.g. competitive ability and risk-taking) found previously to correlate positively with intrinsic growth rate in the transgenic strain likely aided in their survival and growth, even under food limited conditions. Hence, at least in coho salmon, intrinsic growth rate does not appear to strongly affect survival under nutrient stress.  相似文献   

6.
Shadow competition in wild juvenile sea-trout   总被引:3,自引:1,他引:2  
Shadow competition occurs in a group of sit-and-wait predators when those closer to a source of mobile prey reduce the feeding success of those further from the prey source. It was examined in territorial juvenile sea trout Salmo trutta in a small stream. The fry formed groups of two to six fish with adjacent territories and a social hierarchy within each group. It was hypothesized that: (i) as group size increased, the mean number of prey eaten per fish within a group decreased and the variability in prey consumption between fish increased; (ii) prey consumption by individual fish decreased with increasing distance from the food source; (iii) group size increased as the mean water velocity immediately upstream from a group, and hence potential drifting food, increased. Five groups of fry were fed on small shrimps released upstream from each group at a rate of one every 15 s over a 10 min period, this procedure being repeated over 5 days to provide five replicates per group. Experiments were performed three times in 1967, 1969 and 1974 to provide information on 45 groups of fry. The first and third hypotheses were supported, but the second was only partially supported. In 1967 and 1969, territory size and shrimp consumption by individual fry decreased with increasing distance from the food source. This also occurred in 1974, except during a critical period for survival when fry density was exceptionally high with large numbers of sea trout lacking territories. This resulted in sea trout fry with the largest territories eating fewer shrimps than those with medium-sized territories because they spent more time defending their territories against sea trout lacking territories. This study is the first to demonstrate shadow competition in a vertebrate species, but has also shown that territorial defence may modify the consequences of shadow competition when densities are high and there is strong competition for the acquisition of a territory.  相似文献   

7.
《新西兰生态学杂志》2011,34(1):195-206
Compared with the effect of invaders on the native terrestrial fauna of New Zealand, interactions between native fishes and introduced trout (sports fish in the genera Salmo, Oncorhynchus and Salvelinus) are less well known and there have been fewer efforts to remedy their effects. Trout have caused widespread reductions in the distribution and abundance of native galaxiid fishes, a family dominated by threatened species. The effects have been most severe on non-diadromous species (those lacking a marine migratory stage), which are commonly eliminated from streams by trout. Galaxiid populations in lakes, and those with migratory ?whitebait? stages, have also been affected, but the extent of the impacts are less understood. The mechanisms controlling negative interactions between trout and native fish, and how the environment modifies those interactions, will be important for future management. Experiments and field comparisons indicate size-specific predation by trout is the main driver of negative interactions. Large trout (>150 mm long) do the greatest damage and small galaxiids (those with adult sizes <150 mm long) are the most at risk. The fry stage of non-diadromous galaxiids is particularly vulnerable. Despite galaxiid fry production in some trout-invaded reaches, often no fry survive making them population ?sinks? that must be sustained by adult dispersal. Trout are also associated with changes in galaxiid behaviour and alterations to stream benthic communities. However, effects on galaxiid growth and fecundity have been little studied. Recent work also indicates that habitat conditions, especially floods, low flows and natural acidity, can mediate trout?galaxiid interactions. We argue that managers should be more proactive in their response to the plight of galaxiids, and we identify avenues of research that will benefit native fish conservation activities in the future.  相似文献   

8.
Captive-reared fish often have poor survival in the wild and may fail to boost threatened populations. Enrichment during the nursery period can in some circumstances generate a broader behavioural repertoire than conventional hatchery production. Yet, we do not know if enrichment promotes survival after release into the wild. We conducted a field experiment during three field seasons using age 0+ year Atlantic salmon Salmo salar to investigate if enrichment during rearing, in the form of structural complexity (shelters), reduced immediate (within 2 days after release) predation mortality by piscine predators (brown trout Salmo trutta) and if such rearing environments improved long-term (2–3 months after release) post-release survival. In addition, we investigated if predation mortality of released fry was size-selective. S. salar fry were reared in a structurally enriched environment or in a conventional rearing environment and given otolith marks using alizarin during the egg stage to distinguish between enriched and conventionally-reared fry. The outcome from the field experiments showed that structural enrichment did not consistently reduce immediate predation mortality and it did not improve, or had a negative effect on, the recapture rate of fry from the river 2–3 months after release. The data also showed that enriched rearing tended to reduce growth. Additionally, we found that S. trutta predators fed on small individuals of the released fry. Overall, the data suggest that structural enrichment alone is not sufficient to improve long-term survival of hatchery-reared fish after release and that other factors might affect post-release survival.  相似文献   

9.
The ability to distinguish among chemical cues from multiple predators is of key adaptive value for many prey fish. We examined the attractiveness and repulsiveness of chemical stimuli from different coexisting fish species fed on different diets on the behaviour of hatchery reared Arctic charr young in a Y-maze fluviarum, where the charr could choose between two sides either with control water or stimulus water with fish odour. We used stimuli from (1) matching sized conspecifics, large (2) Arctic charr, (3) salmon, (4) brown trout and (5) brown trout fed on Arctic charr fry. Other salmonids were given pellet food. Additional fish odour treatments included piscivorous (6) pike and (7) burbot. In the control trials both sides received control water. Arctic charr young were expected to respond adaptively to the stimuli from coexisting piscivorous fish. The charr most strongly preferred water with the odour of their matching sized conspecifics, which was the only fish odour they were familiar with before the experiments. They also showed significant preference for other salmonid odours, even though these fish are potential predators on small charr. Chemical stimuli from pike and burbot, on the contrary, were strongly avoided, and burbot odour even prevented the charr to swim and enter the lateral halves of the fluviarum. Moreover, odour from brown trout fed on Arctic charr fry was avoided when compared to stimuli from trout fed on pellets. Although the Arctic charr young were completely naive regarding piscivores, the fact that they could distinguish between different predator taxa and diets on the basis of chemical cues only reflects the long coevolutionary history of these fish populations.  相似文献   

10.
Abstract Growth hormone (GH) transgenic fish have dramatically enhanced growth rates, increased oxygen demands and reactive oxygen species production. GH-transgenic coho salmon provide an opportunity to address effects of increased metabolism on physiological aging. The objective of this study was to compare oxidative stress in wild-type (WT) and GH-transgenic (T) coho salmon (Oncorhynchus kisutch) of different ages (1 and 2 years). Antioxidant enzyme activity, protein carbonyls (PC) and glutathione (GSH, GSSG) were measured. PC correlated to growth rates in individual fish. T fish exhibited lower antioxidant enzyme activities and GSH levels compared to the WT, while levels of PC and GSSG were higher. Age affects were observed in both WT and T fish; enzyme activities and GSH decreased while PC and GSSG increased. Our results support the metabolic rate theory of aging. This study aims to be a platform for continued studies of the theories of aging using fish as model organisms.  相似文献   

11.
1. The relative importance of density‐dependent and density‐independent processes in explaining fluctuations in natural populations has been widely debated. In particular, the importance of larval supply and whether it may control the type of regulatory processes a population experiences has proved contentious. 2. Using surveys and field experiments conducted in streams in Canterbury, New Zealand, we investigated how variation in the survival of non‐migratory Galaxias vulgaris fry was affected by density‐dependent and density‐independent processes and how this variation influenced recruitment dynamics. 3. Fry populations with high settlement densities experienced a 70–80% reduction in population size from density‐related mortality during the first fourteen days after peak settlement but thereafter the influence of density‐dependent processes on fry was weak. The impact of environmental conditions on fry populations was dependent on fry size and the magnitude of the perturbation, such that flooding effects on fry survival were most severe when fry were small. 4. In streams not affected by flooding, the size and density of introduced trout (Salmo trutta and Oncorhynchus mykiss) were the most significant factors determining the abundance of eventual recruits. A field experiment manipulating brown trout access to fry populations revealed that trout as small as 110 mm may be capable of greatly reducing and possibly preventing galaxiid recruitment. 5. Overall, the results indicated density‐dependent population regulation was only possible at sites with high native fish densities because trout were likely to be suppressing the number of potential recruits at sites with low native fish numbers. Whilst density‐dependent processes had a strong effect on fry survival following the period of peak fry abundance, density‐independent processes associated with flow and predatory trout influences on fry survival largely determined recruitment variability among galaxiid populations. Focusing conservation efforts on improving habitat to increase fry retention and reducing the impacts of trout on galaxiids would ensure more native fish populations reached their potential abundance.  相似文献   

12.
Domesticated (farm) salmonid fishes display an increased willingness to accept risk while foraging, and achieve high growth rates not observed in nature. Theory predicts that elevated growth rates in domestic salmonids will result in greater risk-taking to access abundant food, but low survival in the presence of predators. In replicated whole-lake experiments, we observed that domestic trout (selected for high growth rates) took greater risks while foraging and grew faster than a wild strain. However, survival consequences for greater growth rates depended upon the predation environment. Domestic trout experienced greater survival when risk was low, but lower survival when risk was high. This suggests that animals with high intrinsic growth rates are selected against in populations with abundant predators, explaining the absence of such phenotypes in nature. This is, to our knowledge, the first large-scale field experiment to directly test this theory and simultaneously quantify the initial invasibility of domestic salmonid strains that escape into the wild from aquaculture operations, and the ecological conditions affecting their survival.  相似文献   

13.
We describe a technique for producing germ-line chimeric rainbow trout, Oncorhynchus mykiss, by microinjection of the isolated blastomeres. FITC-labeled donor cells and non-labeled recipient embryos at various developmental stages between the early blastula and early gastrula stages were used for cell transplantation. The chimera formation rate and the degree of donor cell distribution in recipient embryos were evaluated at both the late gastrula stage (5 days post fertilization (dpf)) and the 40-somite stage (10 dpf). Among the six combinations of developmental stages of donor and recipient embryos, the combination of midblastula (2.5 dpf) donor cells and early blastula (1.5 dpf) recipient embryos gave the highest chimera formation rate and the best distribution pattern of donor cells. Using this combination, chimeric rainbow trout were produced with donor blastomeres from dominant orange-colored mutant embryos and wild-type recipient embryos. Of the 238 chimeric embryos produced, 28 (12%) hatched normally and 14 of the 28 fry (50%) had donor-derived orange body color. To test for germ-line transmission of donor cells, gametes obtained from the matured chimeras were fertilized with gametes from wild-type fish. Of the 19 matured chimeras, 6 (32%) yielded donor-derived orange-colored progeny, in addition to wild-type siblings. The contribution rates of donor cells in the germ-line ranged from 0.3 to 14%. This technique for producing germ-line chimeras should be a powerful tool for cell-mediated gene transfer in rainbow trout. Especially, if body color mutants are used for either donor cells or the host embryos, it will be possible to easily concentrate F1 transgenic embryos derived from transplanted donor cells by body color screening. Mol. Reprod. Dev. 59: 380-389, 2001.  相似文献   

14.
Seasonal variation in daily food intake is a well-documented phenomenon in many organisms including wild-type coho salmon where the appetite is noticeably reduced during periods of decreased day length and low water temperature. This reduction may in part be explained by altered production of cholecystokinin (CCK) and growth hormone (GH). CCK is a hormone produced in the brain and gut that mediates a feeling of satiety and thus has an inhibitory effect on food intake and foraging behaviour. Growth hormone (GH) enhances feeding behaviour and consequently growth, but its production is reduced during winter. The objectives of this study were: first, to compare the seasonal feeding behaviour of wild and GH-transgenic coho salmon; second, to determine the behavioural effect of blocking the action of CCK (by using devazepide) on the seasonal food intake; and third, to measure CCK expression in brain and gut tissues between the two genotypes across seasons. We found that, in contrast to wild salmon, food intake in transgenic salmon was not reduced during winter indicating that seasonal control of appetite regulation has been disrupted by constitutive production of GH in transgenic animals. Blocking of CCK increased food intake in both genotypes in all seasons. The increase was stronger in wild genotypes than transgenic fish; however blocking CCK in wild-type fish in winter did not elevate appetites to levels observed in the summer. The response to devazepide was generally faster in transgenic than in wild salmon with more rapid effects observed during summer than during winter, possibly due to a higher temperature in summer. Overall, a seasonal effect on CCK mRNA levels was observed in telencephalon with levels during winter being higher compared to the summer in wild fish, but with no seasonal effect in transgenic fish. No differences in seasonal CCK expression were found in hypothalamus. Higher levels of CCK were detected in the gut of both genotypes in winter compared to summer. Thus, CCK appears to mediate food intake among seasons in both wild-type and GH-transgenic salmon, and an altered CCK regulation may be responsible at least in part for the seasonal regulation of food intake.  相似文献   

15.
A blue variant of the rainbow trout, which appeared in a French fish farm, displayed an iridescent body color that was cobalt blue on the back, lighter on the undersides, and silvery on the belly and which held up to adult stage. This color was supposed to result from a Tyndall effect involving a structural arrangement of melanin pigments because it disappeared when it was associated with a depigmenting gene. This blue variant appeared to be governed by an autosomal recessive gene. Blue fry survival and body weight were about 25% less than those of wild-type sibs, but no major problem was observed in further breeding performances, including reproduction. These features do not correspond with those of the blue variants previously described in the rainbow trout.  相似文献   

16.
The protective immunogenicity of the nucleoprotein (N), phosphoprotein (P), matrix protein (M), non-virion protein (NV) and glycoprotein (G) of the rhabdovirus infectious hematopoietic necrosis virus (IHNV) was assessed in rainbow trout using DNA vaccine technology. DNA vaccines were produced by amplifying and cloning the viral genes in the plasmid pCDNA 3.1. The protective immunity elicited by each vaccine was evaluated through survival of immunized fry after challenge with live virus. Neutralizing antibody titers were also determined in vaccinated rainbow trout Oncorhynchus mykiss fry (mean weight 2 g) and 150 g sockeye salmon Oncorhynchus nerka. The serum from the 150 g fish was also used in passive immunization studies with naive fry. Our results showed that neither the internal structural proteins (N, P and M) nor the NV protein of IHNV induced protective immunity in fry or neutralizing antibodies in fry and 150 g fish when expressed by a DNA vaccine construct. The G protein, however, did confer significant protection in fry up to 80 d post-immunization and induced protective neutralizing antibodies. We are currently investigating the role of different arms of the fish immune system that contribute to the high level of protection against IHNV seen in vaccinated fish.  相似文献   

17.
The relative effects of inter- and intra-specific competition on the distribution of stocked salmon in relation to depth and gradient were investigated in an upland stream during two summer sampling periods. The stream was divided into two areas by an impassable fish barrier, and trout were removed from the upstream section prior to 2 years of salmon stocking. A small amount of trout re-immigration to the cleared area occurred. Under sympatric conditions in the downstream section the fry of both species were significantly more abundant in shallow water, whereas the yearling and older fish tended to inhabit the deeper, slow-flowing areas. Under near allopatric conditions in the cleared section salmon fry changed their distribution to include deeper areas, with shallow, fast-flowing water becoming the least preferred habitat. This trend for a wide distribution of salmon fry over all the available habitat in the upstream section was maintained in the second year when parr were present but trout remained at very low densities. It was therefore concluded that high inter-specific competition from trout was responsible for restricting the distribution of salmon fry to shallow habitat in the control area. Intra-specific competition from older salmon apparently only affected the growth and survival of salmon fry. The regulating mechanisms involved in these inter- and intra-specific effects are discussed in terms of competition for stream resources and predation. Recommendations based on the findings are made for stocking and habitat management of salmonid waters.  相似文献   

18.
SUMMARY. .1. Chalkstream trout are fast-growing, short-lived with a stable age structure that is a consequence of the lack of extremes in the abiotic environment, especially of water temperature and flow.
2. Levels of secondary (invertebrate) production arc high and there is no evidence that interspecific or intraspecific competition for food resources limits growth.
3. Dietary studies show a broad similarity between trout and other species, but indicate differences that reflect variations in the micro-habitat distributions between fish species.
4. Trout numbers appear to be limited initially by the availability of gravel spawning areas, and then by areas suitable for newly-emerged fry. Reduction in stream discharge in the spring, either naturally or by man, can lower the number of 0+ trout that survive.
5. Eels are not important predators on trout eggs or fry. but a reduction in pike numbers can lead to a decrease in the mean weight of pike. Small pike do not pose a serious threat to stocked yearling trout.  相似文献   

19.
Survival rates and growth parameters of hatchery‐reared sea trout (Salmo trutta trutta L.) fry were determined after stocking in the wild. The larvae were hatchery‐reared for 12 weeks in two groups: fry were fed either on live zooplankton and live chironomidae larvae (LFG), or fed a pellet diet (PFG). The survival rate and specific growth rates were higher in the LFG than in the PFG group. Most effective for hatchery‐reared fish intended for stocking was the natural, live feed. The mean number of chironomid larvae found in the stomachs of fish that were initially captured in the wild was significantly higher in the LFG than in the PFG group. The live diet supplied in the rearing period had a positive impact on the foraging skills of the sea trout fry and their survival in the wild after their release on 24 April 2010.  相似文献   

20.
We have been interested in developing convenient mass gene transfer methods for producing strains of silver sea bream (Sparus sarba) with superior genetic traits for aquaculture. A transgene construct carrying rainbow trout growth hormone (rtGH) complementary DNA driven by a common carp b-actin promoter was introduced into silver sea bream by electroporating the sperm with the rtGH transgene and using the treated sperm to fertilize eggs stripped from mature females. The presence of the GH transgene in presumptive transgenic individuals was detected by polymerase chain reaction (PCR) analysis. Between 56% and 70% of the animals carried the GH transgene. We refer to this method as sperm-mediated gene transfer (SMGT). Since the handling stress of stripping gametes from female sliver sea bream brood fish could cause severe mortality, an alternative gene transfer method would be highly desirable. We developed a liposome-based method to transfer the GH transgene into the fish. This method, referred as testis-mediated gene transfer (TMGT), involves injecting the liposome-transgene mixture into the gonads of male sea bream at least 48 hours before spawning. The males were mated to reproductively active females, and fertilized eggs were collected for further incubation. Between 59% and 76% of the hatched fry were found by PCR analysis to carry the rtGH transgene. The efficiency of gene transfer was improved more than 80% by injecting multiple doses of the liposome-transgene mixture into the gonads of treated males. Results of Southern blot analysis of DNA isolated from PCR-positive animals showed that the transgene was integrated into the host genome and could be transmitted to its offspring. The rtGH transgene was expressed in many of the rtGH-transgenic fish. Several P1 GH-transgenic silver sea bream exhibited significant growth enhancement compared with nontransgenic controls. Our studies showed that faster-growing silver sea bream could be produced by a variety of mass gene transfer technologies. These gene transfer technologies would be of great value to aquaculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号