首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Cholesteryl ester transfer protein (CETP) has been identified as a novel target for increasing HDL cholesterol levels. In this report, we describe the biochemical characterization of anacetrapib, a potent inhibitor of CETP. To better understand the mechanism by which anacetrapib inhibits CETP activity, its biochemical properties were compared with CETP inhibitors from distinct structural classes, including torcetrapib and dalcetrapib. Anacetrapib and torcetrapib inhibited CETP-mediated cholesteryl ester and triglyceride transfer with similar potencies, whereas dalcetrapib was a significantly less potent inhibitor. Inhibition of CETP by both anacetrapib and torcetrapib was not time dependent, whereas the potency of dalcetrapib significantly increased with extended preincubation. Anacetrapib, torcetrapib, and dalcetrapib compete with one another for binding CETP; however anacetrapib binds reversibly and dalcetrapib covalently to CETP. In addition, dalcetrapib was found to covalently label both human and mouse plasma proteins. Each CETP inhibitor induced tight binding of CETP to HDL, indicating that these inhibitors promote the formation of a complex between CETP and HDL, resulting in inhibition of CETP activity.  相似文献   

2.
Cholesteryl ester transfer protein (CETP) transfers cholesteryl ester (CE) and triglyceride between HDL and apoB-containing lipoproteins. Anacetrapib (ANA), a reversible inhibitor of CETP, raises HDL cholesterol (HDL-C) and lowers LDL cholesterol in dyslipidemic patients; however, the effects of ANA on cholesterol/lipoprotein metabolism in a dyslipidemic hamster model have not been demonstrated. To test whether ANA (60 mg/kg/day, 2 weeks) promoted reverse cholesterol transport (RCT), 3H-cholesterol-loaded macrophages were injected and (3)H-tracer levels were measured in HDL, liver, and feces. Compared to controls, ANA inhibited CETP (94%) and increased HDL-C (47%). 3H-tracer in HDL increased by 69% in hamsters treated with ANA, suggesting increased cholesterol efflux from macrophages to HDL. 3H-tracer in fecal cholesterol and bile acids increased by 90% and 57%, respectively, indicating increased macrophage-to-feces RCT. Mass spectrometry analysis of HDL from ANA-treated hamsters revealed an increase in free unlabeled cholesterol and CE. Furthermore, bulk cholesterol and cholic acid were increased in feces from ANA-treated hamsters. Using two independent approaches to assess cholesterol metabolism, the current study demonstrates that CETP inhibition with ANA promotes macrophage-to-feces RCT and results in increased fecal cholesterol/bile acid excretion, further supporting its development as a novel lipid therapy for the treatment of dyslipidemia and atherosclerotic vascular disease.  相似文献   

3.
Chiral N,N-disubstituted trifluoro-3-amino-2-propanols represent a recently discovered class of compounds that inhibit the neutral lipid transfer activity of cholesteryl ester transfer protein (CETP). These compounds all contain a single chiral center that is essential for inhibitory activity. (R,S)SC-744, which is composed of a mixture of the two enantiomers, inhibits CETP-mediated transfer of [(3)H]cholesteryl ester ([(3)H]CE) from HDL donor particles to LDL acceptor particles with an IC(50) = 200 nM when assayed using a reconstituted system in buffer and with an IC(50) = 6 microM when assayed in plasma. Upon isolation of the enantiomers, it was found that the (R,+) enantiomer, SC-795, was about 10-fold more potent than the mixture, and that the (S,-) enantiomer, SC-794, did not have significant inhibitory activity (IC(50) > 0.8 microM). All of the activity of the (S,-)SC-794 enantiomer could be accounted for by contamination of this sample with a residual 2% of the highly potent (R,+) enantiomer, SC-795. The IC(50) of (R,+)SC-795, 20 nM, approached the concentration of CETP (8 nM) in the buffer assay. These chiral N,N-disubstituted trifluoro-3-amino-2-propanols were found to associate with both LDL and HDL, but did not disrupt overall lipoprotein structure. They did not affect the on or off rates of CETP binding to HDL disk particles. Inhibition was highly specific since the activities of phospholipid transfer protein and lecithin cholesterol acyl transferase were not affected. Competition experiments showed that the more potent enantiomer (R)SC-795 prevented cholesteryl ester binding to CETP, and direct binding experiments demonstrated that this inhibitor bound to CETP with high affinity and specificity. It is estimated, based on the relative concentrations of inhibitor and lipid in the transfer assay, that (R)SC-795 binds approximately 5000-fold more efficiently to CETP than the natural ligand, cholesteryl ester. We conclude that these chiral N,N-disubstituted trifluoro-3-amino-2-propanol compounds do not affect lipoprotein structure or CETP-lipoprotein recognition, but inhibit lipid transfer by binding to CETP reversibly and stereospecifically at a site that competes with neutral lipid binding.  相似文献   

4.
5.
Hyperlipidemia is a prominent feature of the nephrotic syndrome. Lipoprotein abnormalities include increased very low and low density lipoprotein (VLDL and LDL) cholesterol and variable reductions in high density lipoprotein (HDL) cholesterol. We hypothesized that plasma cholesteryl ester transfer protein (CETP), which influences the distribution of cholesteryl esters among the lipoproteins, might contribute to lipoprotein abnormalities in nephrotic syndrome. Plasma CETP, apolipoprotein and lipoprotein concentrations were measured in 14 consecutive untreated and 7 treated nephrotic patients, 5 patients with primary hypertriglyceridemia, and 18 normolipidemic controls. Patients with nephrotic syndrome displayed increased plasma concentrations of apoB, VLDL, and LDL cholesterol. The VLDL was enriched with cholesteryl ester (CE), shown by a CE/triglyceride (TG) ratio approximately twice that in normolipidemic or hypertriglyceridemic controls (P < 0.001). Plasma CETP concentration was increased in patients with untreated nephrotic syndrome compared to controls (3.6 vs. 2.3 mg/l, P < 0.001), and was positively correlated with the CE concentration in VLDL (r = 0.69, P = 0.004) and with plasma apoB concentration (r = 0.68, P = 0.007). Treatment with corticosteroids resulted in normalization of plasma CETP and of the CE/TG ratio in VLDL. An inverse correlation between plasma CETP and HDL cholesterol was observed in hypertriglyceridemic nephrotic syndrome patients (r = -0.67, P = 0.03). The dyslipidemia of nephrotic syndrome includes increased levels of apoB-lipoproteins and VLDL that are unusually enriched in CE and likely to be atherogenic. Increased plasma CETP probably plays a significant role in the enrichment of VLDL with CE, and may also contribute to increased concentrations of apoB-lipoproteins and decreased HDL cholesterol in some patients.  相似文献   

6.
The plasma cholesteryl ester-transfer protein (CETP, Mr 74,000) promotes exchange of both neutral lipids and phospholipids (phosphatidylcholine, PC) between lipoproteins. To investigate the mechanism of facilitated lipid transfer, CETP was incubated with unilamellar egg PC vesicles containing small amounts of cholesteryl ester (CE) or triglyceride, and then analyzed by gel filtration chromatography. There was rapid transfer of radiolabeled CE or triglyceride and PC from vesicles to CETP. The CETP with bound lipids was isolated and incubated with low density lipoproteins (LDL), resulting in transfer of the lipids to LDL. The CETP bound up to 0.9 mol of CE or 0.2 mol of triglyceride and 11 mol of PC/mol of CETP. para-Chloromercuriphenylsulfonate, an inhibitor of CE and triglyceride transfer, was found to decrease the binding of radiolabeled CE and triglyceride by CETP. Under various conditions the CETP eluted either as an apparent monomer with bound lipid (Mr 75,000-93,000), or in complexes with vesicles. The distribution of CETP between these two states was influenced by the presence of apoA-I or albumin, incubation time, vesicle/CETP ratio, and buffer pH and ionic strength. The results indicate that the CETP has binding sites for CE, triglyceride, and PC which readily equilibrate with lipoprotein lipids and suggest that CETP can act as a carrier of lipid between lipoproteins.  相似文献   

7.
The plasma cholesteryl ester transfer protein (CETP, Mr 74,000) has a binding site for neutral lipid which can readily equilibrate with lipoprotein cholesteryl esters or triglycerides. Recently, a monoclonal antibody (TP2) was obtained which neutralizes the cholesteryl ester (CE) and triglyceride (TG) transfer activities of the CETP. In this report, the epitope of the inhibitory monoclonal antibody has been localized to a hydrophobic 26-amino acid sequence at the COOH terminus of CETP. The Fab fragments of TP2 caused partial (50%) inhibition of CE transfer and complete inhibition of TG transfer by the CETP. Similarly, the Fab fragments inhibited (37%) the binding of CE to the CETP and abolished the binding of TG to the CETP. Surprisingly, the TP2 Fab was also found to enhance the binding of CETP to plasma lipoproteins and to phospholipid vesicles. In conclusion, the TP2 monoclonal antibody inhibits lipid transfer by blocking the uptake of lipid by CETP. The COOH-terminal epitope may be in or near the neutral lipid binding site. Occupancy of this site by TP2 Fab fragments or by neutral lipid may result in a conformational change of CETP causing enhanced binding to lipoproteins or vesicles.  相似文献   

8.
Plasma cholesteryl ester transfer protein (CETP) mediates the transfer of cholesteryl esters (CE) between lipoproteins and was reported to also directly mediate the uptake of high density lipoprotein (HDL) CE by human Hep G2 cells and fibroblasts. The present study investigates that uptake and its relationship to a pathway for "selective uptake" of HDL CE that does not require CETP. HDL3 labeled in both the CE and apoprotein moieties was incubated with Hep G2 cells. During 4-h incubations, CE tracer was selectively taken up from doubly labeled HDL3 in excess of apoA-I tracer, and added CETP did not modify that uptake. However, during 18-20-h incubations, CETP stimulated the uptake of CE tracer more than 4-fold without modifying the uptake of apoA-I tracer. This suggested that secreted products, perhaps lipoproteins, might be required for the CETP effect. Four inhibitors of lipoprotein uptake via low density lipoprotein (LDL) receptors (heparin, monensin, an antibody against the LDL receptor, and antibodies against the receptor binding domains of apoB and apoE) effectively blocked the CETP stimulation of CE tracer uptake. Heparin caused an increase in CE tracer in a d less than 1.063 g/ml fraction of the medium that more than accounted for the heparin blockade of CETP-stimulated CE uptake. CETP did not affect the uptake of doubly labeled HDL3 by human fibroblasts, even at twice plasma levels of activity, and heparin did not modify uptake of HDL3 tracers. Thus the CETP effect on Hep G2 cells can be accounted for by transfer of HDL CE to secreted lipoproteins which are then retaken up, and there is no evidence for a direct effect of CETP on cellular uptake of HDL CE.  相似文献   

9.
S Wang  L P Deng  M L Brown  L B Agellon  A R Tall 《Biochemistry》1991,30(14):3484-3490
Human plasma cholesteryl ester transfer protein (CETP) enhances transfer and exchange of cholesteryl ester (CE) and triglyceride (TG) between high-density lipoprotein and other lipoproteins. To define regions responsible for the neutral lipid transfer activities at the molecular level, a total of 27 linker insertion mutants at 18 different sites along the CETP molecule were prepared and transiently expressed in a mammalian cell line (COS). The inserted linkers were small (usually 6 bp) and did not interrupt the translational reading frame of the CETP cDNA. Although secretion of each mutant protein was less than that of wild-type CETP, the majority of the mutants had normal cholesteryl ester transfer activity (transfer activity per nanogram of CETP in media). However, insertional alterations in three regions severely impaired CE transfer activity: (1) in the region of amino acids 48-53; (2) at amino acid 165; and (3) in the region of amino acids 373-379. Although the impaired activities could also be a result of globally incorrect folding of these CETP mutants, hydrophobicity analysis and secondary structure predictions tended to exclude this possibility for most of the insertion sites at which insertions resulted in inactivation. The insertion at amino acid 379 occurs immediately after a triplet of lysine residues, suggesting that this region might be involved in an essential step in the mechanism of CE and TG transfer, such as the binding of CETP to phosphatidylcholine molecules in the lipoprotein surface. Effects on TG transfer activity were generally similar to those on CE transfer activity, suggesting a similar structural requirement for both neutral lipid transfer activities.  相似文献   

10.
Plasma cholesteryl ester transfer protein (CETP) facilitates the transfer of cholesteryl ester (CE) from high density lipoprotein (HDL) to apolipoprotein B-containing lipoproteins. Since CETP regulates the plasma levels of HDL cholesterol and the size of HDL particles, CETP is considered to be a key protein in reverse cholesterol transport, a protective system against atherosclerosis. CETP, as well as plasma phospholipid transfer protein, belongs to members of the lipid transfer/lipopolysaccharide-binding protein (LBP) gene family, which also includes the lipopolysaccharide-binding protein (LBP) and bactericidal/permeability-increasing protein. Although these four proteins possess different physiological functions, they share marked biochemical and structural similarities. The importance of plasma CETP in lipoprotein metabolism was demonstrated by the discovery of CETP-deficient subjects with a marked hyperalphalipoproteinemia (HALP). Two common mutations in the CETP gene, intron 14 splicing defect and exon 15 missense mutation (D442G), have been identified in Japanese HALP patients with CETP deficiency. The deficiency of CETP causes various abnormalities in the concentration, composition, and functions of both HDL and low density lipoprotein. Although the pathophysiological significance of CETP in terms of atherosclerosis has been controversial, the in vitro experiments showed that large CE-rich HDL particles in CETP deficiency are defective in cholesterol efflux. Epidemiological studies in Japanese-Americans and in the Omagari area where HALP subjects with the intron 14 splicing defect of CETP gene are markedly frequent, have shown an increased incidence of coronary atherosclerosis in CETP-deficient patients. The current review will focus on the recent findings on the molecular biology and pathophysiological aspects of plasma CETP, a key protein in reverse cholesterol transport.  相似文献   

11.
Human cholesteryl ester transfer protein (CETP) mediates the net transfer of cholesteryl ester mass from atheroprotective high-density lipoproteins to atherogenic low-density lipoproteins by an unknown mechanism. Delineating this mechanism would be an important step toward the rational design of new CETP inhibitors for treating cardiovascular diseases. Using EM, single-particle image processing and molecular dynamics simulation, we discovered that CETP bridges a ternary complex with its N-terminal β-barrel domain penetrating into high-density lipoproteins and its C-terminal domain interacting with low-density lipoprotein or very-low-density lipoprotein. In our mechanistic model, the CETP lipoprotein-interacting regions, which are highly mobile, form pores that connect to a hydrophobic central cavity, thereby forming a tunnel for transfer of neutral lipids from donor to acceptor lipoproteins. These new insights into CETP transfer provide a molecular basis for analyzing mechanisms for CETP inhibition.  相似文献   

12.
The role of human plasma cholesteryl ester transfer protein (CETP) in the cellular uptake of high density lipoprotein (HDL) cholesteryl ester (CE) was studied in a liver tumor cell line (HepG2). When HepG2 cells were incubated with [3H]cholesteryl ester-labeled HDL3 in the presence of increasing concentrations of CETP there was a progressive increase in cell-associated radioactivity to levels that were 2.8 times control. The CETP-dependent uptake of HDL-CE was found to be saturated by increasing concentrations of both CETP and HDL. The CETP-dependent uptake of CE radioactivity increased continuously during an 18-h incubation. In contrast to the effect on cholesteryl ester, CETP failed to enhance HDL protein cell association or degradation. Enhanced uptake of HDL cholesteryl ester was shown for the d greater than 1.21 g/ml fraction of human plasma, partially purified CETP, and CETP purified to homogeneity, but not for the d greater than 1.21 g/ml fraction of rat plasma which lacks cholesteryl ester transfer activity. HDL cholesteryl ester entering the cell under the influence of CETP was largely degraded to free cholesterol by a process inhibitable by chloroquine. CETP enhanced uptake of HDL [3H]CE in cultured smooth muscle cells and to a lesser extent in fibroblasts but did not significantly influence uptake in endothelial cells or J774 macrophages. These experiments show that, in addition to its known role in enhancing the exchange of CE between lipoproteins, plasma CETP can facilitate the in vitro selective transfer of CE from HDL into certain cells.  相似文献   

13.
Cholesteryl ester transfer protein (CETP) transfers cholesteryl ester (CE) and triglyceride (TG) between lipoproteins in plasma. However, short term suppression of CETP biosynthesis in cells alters cellular cholesterol homeostasis, demonstrating an intracellular role for CETP as well. The consequences of chronic CETP deficiency in lipid-storing cells normally expressing CETP have not been reported. Here, SW872 adipocytes stably expressing antisense CETP cDNA and synthesizing 20% of normal CETP were created. CETP-deficient cells had 4-fold more CE but an approximately 3-fold decrease in cholesterol biosynthesis. This phenotype of cholesterol overload is consistent with the observed 45% reduction in low density lipoprotein receptor and 2.5-fold increase in ABCA1 levels. However, cholesterol mass in CETP-deficient adipocytes was actually reduced. Strikingly, CETP-deficient adipocytes stored <50% of normal TG, principally reflecting reduced synthesis. The hydrolysis of cellular CE and TG in CETP-deficient cells was reduced by >50%, although hydrolase/lipase activity was increased 3-fold. Notably, the incorporation of recently synthesized CE and TG into lipid storage droplets in CETP-deficient cells was just 40% of control, suggesting that these lipids are inefficiently transported to droplets where the hydrolase/lipase resides. The capacity of cellular CETP to transport CE and TG into storage droplets was directly demonstrated in vitro. Overall, chronic CETP deficiency disrupts lipid homeostasis and compromises the TG storage function of adipocytes. Inefficient CETP-mediated translocation of CE and TG from the endoplasmic reticulum to their site of storage may partially explain these defects. These studies in adipocytic cells strongly support a novel role for CETP in intracellular lipid transport and storage.  相似文献   

14.
Cholesteryl ester transfer protein (CETP) activity is regulated, in part, by lipoprotein composition. We previously demonstrated that CETP activity follows saturation kinetics as cholesteryl ester (CE) levels in the phospholipid surface of donor particles are increased. We propose here that the plateau of CETP activity occurs because the surface concentration of CE in the acceptor becomes rate limiting. This hypothesis was tested in CETP assays between synthetic liposomes whose CE content was varied independently. As donor CE increased, CETP activity followed saturable kinetics, but the slope of the first-order portion of the curve and the maximum achievable CE transfer rate were linearly related to the acceptor's surface CE concentration. These findings, plus studies with free cholesterol-modified LDL, strongly suggest that CE-rich donor liposomes can measure the CETP-accessible CE in acceptor lipoproteins. CETP activity from CE-rich liposomes to multiple control LDLs ranged 1.8-fold despite equivalent CETP binding capacity, suggesting that LDLs vary widely in their capacity to present CE to CETP. Thus, CETP activity depends on the surface availability of substrate lipids in the donor and acceptor. Donor liposomes with high CE content can be used to assess how subtle changes in composition alter the substrate potential of plasma lipoproteins.  相似文献   

15.
Cholesteryl ester transfer protein (CETP) transfers cholesteryl ester and triglyceride between HDL and apoB-containing lipoproteins. Anacetrapib (ANA), a reversible inhibitor of CETP, raises HDL cholesterol and lowers LDL cholesterol in dyslipidemic patients. We previously demonstrated that ANA increases macrophage-to-feces reverse cholesterol transport and fecal cholesterol excretion in hamsters, and increased preβ HDL-dependent cholesterol efflux via ABCA1 in vitro. However, the effects of ANA on in vivo preβ HDL have not been characterized. In vitro, ANA inhibited the formation of preβ, however in ANA-treated dyslipidemic hamsters, preβ HDL levels (measured by two-dimensional gel electrophoresis) were increased, in contrast to in vitro findings. Because changes in plasma preβ HDL have been proposed to potentially affect markers of cholesterol absorption with other CETP inhibitors, a dual stable isotope method was used to directly measure cholesterol absorption in hamsters. ANA treatment of hamsters (on either dyslipidemic or normal diet) had no effect on cholesterol absorption, while dalcetrapib-treated hamsters displayed an increase in cholesterol absorption. Taken together, these data support the notion that ANA promotes preβ HDL functionality in vivo, with no effects on cholesterol absorption.  相似文献   

16.
Epidemiologic studies have shown that low-density lipoprotein cholesterol (LDL-C) is a strong risk factor, whilst high-density lipoprotein cholesterol (HDL-C) reduces the risk of coronary heart disease (CHD). Therefore, strategies to manage dyslipidemia in an effort to prevent or treat CHD have primarily attempted at decreasing LDL-C and raising HDL-C levels. Cholesteryl ester transfer protein (CETP) mediates the exchange of cholesteryl ester for triglycerides between HDL and VLDL and LDL. We have published the first report indicating that a group of Japanese patients who were lacking CETP had extremely high HDL-C levels, low LDL-C levels and a low incidence of CHD. Animal studies, as well as clinical and epidemiologic evidences, have suggested that inhibition of CETP provides an effective strategy to raise HDL-C and reduce LDL-C levels. Four CETP inhibitors have substantially increased HDL-C levels in dyslipidemic patients. This review will discuss the current status and future prospects of CETP inhibitors in the treatment of CHD. At present anacetrapib by Merck and evacetrapib by Eli Lilly are under development. By 100mg of anacetrapib HDL-C increased by 138%, and LDL-C decreased by 40%. Evacetrapib 500 mg also showed dramatic 132% increase of HDL-C, while LDL-C decreased by 40%. If larger, long-term, randomized, clinical end point trials could corroborate other findings in reducing atherosclerosis, CETP inhibitors could have a significant impact in the management of dyslipidemic CHD patients. Inhibition of CETP synthesis by antisense oligonucleotide or small molecules will produce more similar conditions to human CETP deficiency and may be effective in reducing atherosclerosis and cardiovascular events. We are expecting the final data of prospective clinical trials by CETP inhibitors in 2015.  相似文献   

17.
Cholesteryl ester transfer protein (CETP) mediates triglyceride and cholesteryl ester (CE) transfer between lipoproteins, and its activity is strongly modulated by dietary cholesterol. To better understand the regulation of CETP synthesis and the relationship between CETP levels and cellular lipid metabolism, we selected the SW872 adipocytic cell line as a model. These cells secrete CETP in a time-dependent manner at levels exceeding those observed for Caco-2 or HepG2 cells. The addition of LDL, 25OH-cholesterol, oleic acid, or acetylated LDL to SW872 cells increased CETP secretion (activity and mass) up to 6-fold. In contrast, CETP production was decreased by almost 60% after treatment with lipoprotein-deficient serum or beta-cyclodextrin. These effects, which were paralleled by changes in CETP mRNA, show that CETP biosynthesis in SW872 cells directly correlates with cellular lipid status. To investigate a possible, reciprocal relationship between CETP expression and cellular lipid homeostasis, CETP biosynthesis in SW872 cells was suppressed with CETP antisense oligonucleotides. Antisense oligonucleotides reduced CETP secretion (activity and mass) by 60% compared with sense-treated cells. When CETP synthesis was suppressed for 24 h, triglyceride synthesis was unchanged, but cholesterol biosynthesis was reduced by 20%, and acetate incorporation into CE increased 31%. After 3 days of suppressed CETP synthesis, acetate incorporation into the CE pool increased 3-fold over control. This mirrored a similar increase in CE mass. The efflux of free cholesterol to HDL was the same in sense and antisense-treated cells; however, HDL-induced CE hydrolysis in antisense-treated cells was diminished 2-fold even though neutral CE hydrolase activity was unchanged. Thus, CETP-compromised SW872 cells display a phenotype characterized by inefficient mobilization of CE stores leading to CE accumulation. These results strongly suggest that CETP expression levels contribute to normal cholesterol homeostasis in adipocytic cells. Overall, these studies demonstrate that lipid homeostasis and CETP expression are tightly coupled.  相似文献   

18.
The cholesteryl ester transfer protein (CETP), a key player in cholesterol metabolism, has been shown to promote the transfer of triglycerides from very low density lipoprotein (VLDL) and low density lipoprotein (LDL) to high density lipoprotein (HDL) in exchange for cholesterol ester. Here we demonstrate that farnesoid X receptor alpha (FXRalpha; NR1H4) down-regulates CETP expression in HepG2 cells. A FXRalpha ligand, chenodeoxycholic acid (CDCA), suppressed basal mRNA levels of the CETP gene in HepG2 cells in a dose-dependent manner. Using gel shift and chromatin immunoprecipitation (ChIP) assays, we found that FXRalpha could bind to the liver X receptor alpha (LXRalpha; NR1H3) binding site (LXRE; DR4RE) located within the CETP 5' promoter region. FXRalpha suppressed LXRalpha-induced DR4RE-luciferase activity and this effect was mediated by a binding competition between FXRalpha and LXRalpha for DR4RE. Furthermore, the addition of CDCA together with a LXRalpha ligand, GW3965, to HepG2 cells was shown to substantially decrease mRNA levels of hepatic CETP gene, which is typically induced by GW3965. Together, our data demonstrate that FXRalpha down-regulates CETP gene expression via binding to the DR4RE sequence within the CETP 5' promoter and this FXRalpha binding is essential for FXRalpha inhibition of LXRalpha-induced CETP expression.  相似文献   

19.
Cholesteryl ester transfer protein is a plasma glycoprotein that transfers cholesterol ester between lipoprotein particles. Inhibition of this protein, in vitro and in vivo, produces an increase in plasma high density lipoprotein cholesterol (HDL-C). This communication will describe the SAR and synthesis of a series of substituted tetrahydroquinoxaline CETP inhibitors from early mu lead to advanced enantiomerically pure analogs.  相似文献   

20.
We examined whether postprandial (PP) chylomicrons (CMs) can serve as vehicles for transporting cholesterol from endogenous cholesterol-rich lipoprotein (LDL+HDL) fractions and cell membranes to the liver via lecithin:cholesterol acyltransferase (LCAT) and cholesteryl ester transfer protein (CETP) activities. During incubation of fresh fasting and PP plasma containing [(3)H]cholesteryl ester (CE)-labeled LDL+HDL, both CMs and VLDL served as acceptors of [(3)H]CE or cholesterol from LDL+HDL. The presence of CMs in PP plasma suppressed the ability of VLDL to accept [(3)H]CE from LDL+HDL. In reconstituted plasma containing an equivalent amount of triglycerides from isolated VLDL or CMs, a CM particle was about 40 times more potent than a VLDL particle in accepting [(3)H]CE or cholesterol from LDL+HDLs. When incubated with red blood cells (RBCs) as a source for cell membrane cholesterol, the cholesterol content of CMs, VLDL, LDL, and HDL in PP plasma increased by 485%, 74%, 13%, and 30%, respectively, via LCAT and CETP activities. The presence of CMs in plasma suppressed the ability of endogenous lipoproteins to accept cholesterol from RBCs. Our data suggest that PP CMs may play an important role in promoting reverse cholesterol transport in vivo by serving as the preferred ultimate vehicle for transporting cholesterol released from cell membranes to the liver via LCAT and CETP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号