首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rat hearts were perfused with [1,2,3,4-13C4]palmitic acid (M+4), and the isotopic patterns of myocardial acylcarnitines and acyl-CoAs were analyzed using ultra-HPLC-MS/MS. The 91.2% 13C enrichment in palmitoylcarnitine shows that little endogenous (M+0) palmitate contributed to its formation. The presence of M+2 myristoylcarnitine (95.7%) and M+2 acetylcarnitine (19.4%) is evidence for β-oxidation of perfused M+4 palmitic acid. Identical enrichment data were obtained in the respective acyl-CoAs. The relative 13C enrichment in M+4 (84.7%, 69.9%) and M+6 (16.2%, 17.8%) stearoyl- and arachidylcarnitine, respectively, clearly shows that the perfused palmitate is chain-elongated. The observed enrichment of 13C in acetylcarnitine (19%), M+6 stearoylcarnitine (16.2%), and M+6 arachidylcarnitine (17.8%) suggests that the majority of two-carbon units for chain elongation are derived from β-oxidation of [1,2,3,4-13C4]palmitic acid. These data are explained by conversion of the M+2 acetyl-CoA to M+2 malonyl-CoA, which serves as the acceptor for M+4 palmitoyl-CoA in chain elongation. Indeed, the 13C enrichment in mitochondrial acetyl-CoA (18.9%) and malonyl-CoA (19.9%) are identical. No 13C enrichment was found in acylcarnitine species with carbon chain lengths between 4 and 12, arguing against the simple reversal of fatty acid β-oxidation. Furthermore, isolated, intact rat heart mitochondria 1) synthesize malonyl-CoA with simultaneous inhibition of carnitine palmitoyltransferase 1b and 2) catalyze the palmitoyl-CoA-dependent incorporation of 14C from [2-14C]malonyl-CoA into lipid-soluble products. In conclusion, rat heart has the capability to chain-elongate fatty acids using mitochondria-derived two-carbon chain extenders. The data suggest that the chain elongation process is localized on the outer surface of the mitochondrial outer membrane.  相似文献   

2.
Cell reprogramming from a quiescent to proliferative state requires coordinate activation of multiple -omic networks. These networks activate histones, increase cellular bioenergetics and the synthesis of macromolecules required for cell proliferation. However, mechanisms that coordinate the regulation of these interconnected networks are not fully understood. The oncogene c-Myc (Myc) activates cellular metabolism and global chromatin remodeling. Here we tested for an interconnection between Myc regulation of metabolism and acetylation of histones. Using [13C6]glucose and a combination of GC/MS and LC/ESI tandem mass spectrometry, we determined the fractional incorporation of 13C-labeled 2-carbon fragments into the fatty acid palmitate, and acetyl-lysines at the N-terminal tail of histone H4 in myc−/− and myc+/+ Rat1A fibroblasts. Our data demonstrate that Myc increases mitochondrial synthesis of acetyl-CoA, as the de novo synthesis of 13C-labeled palmitate was increased 2-fold in Myc-expressing cells. Additionally, Myc induced a forty percent increase in 13C-labeled acetyl-CoA on H4-K16. This is linked to the capacity of Myc to increase mitochondrial production of acetyl-CoA, as we show that mitochondria provide 50% of the acetyl groups on H4-K16. These data point to a key role for Myc in directing the interconnection of -omic networks, and in particular, epigenetic modification of proteins in response to proliferative signals.  相似文献   

3.
Lipids can be anaerobically digested to methane, but methanogens are often considered to be highly sensitive to the long-chain fatty acids (LCFA) deriving from lipids hydrolysis. In this study, the effect of unsaturated (oleate [C18:1]) and saturated (stearate [C18:0] and palmitate [C16:0]) LCFA toward methanogenic archaea was studied in batch enrichments and in pure cultures. Overall, oleate had a more stringent effect on methanogens than saturated LCFA, and the degree of tolerance to LCFA was different among distinct species of methanogens. Methanobacterium formicicum was able to grow in both oleate- and palmitate-degrading enrichments (OM and PM cultures, respectively), whereas Methanospirillum hungatei only survived in a PM culture. The two acetoclastic methanogens tested, Methanosarcina mazei and Methanosaeta concilii, could be detected in both enrichment cultures, with better survival in PM cultures than in OM cultures. Viability tests using live/dead staining further confirmed that exponential growth-phase cultures of M. hungatei are more sensitive to oleate than are M. formicicum cultures; exposure to 0.5 mM oleate damaged 99% ± 1% of the cell membranes of M. hungatei and 53% ± 10% of the cell membranes of M. formicicum. In terms of methanogenic activity, M. hungatei was inhibited for 50% by 0.3, 0.4, and 1 mM oleate, stearate, and palmitate, respectively. M. formicicum was more resilient, since 1 mM oleate and >4 mM stearate or palmitate was needed to cause 50% inhibition on methanogenic activity.  相似文献   

4.
The storage triacylglycerols of meadowfoam (Limnanthes alba) seeds are composed essentially of C20 and C22 fatty acids, which contain an unusual Δ5 double bond. When [1-14C]acetate was incubated with developing seed slices, 14C-labeled fatty acids were synthesized with a distribution similar to the endogenous fatty acid profile. The major labeled product was cis-5-eicosenoate, with smaller amounts of palmitate, stearate, oleate, cis-5-octadecenoate, eicosanoate, cis-11-eicosenoate, docosanoate, cis-5-docosenoate, cis-13-docosenoate, and cis-5,cis-13-docosadienoate. The label from [14C]acetate and [14C]malonate was used preferentially for the elongation of endogenous oleate to produce cis-[14C]11-eicosenoate, cis-13-[14C]docosenoate, and cis-5,cis-13-[14C]docosadienoate and for the elongation of endogenous palmitate to produce the remaining C20 and C22 acyl species. The Δ5 desaturation of the preformed acyl chain and chain elongation of oleate and palmitate were demonstrated in vivo by incubation of the appropriate 1-14C-labeled free fatty acids. Using [1-14C]acyl-CoA thioesters as substrates, these enzyme activities were also demonstrated in vitro with a cell-free homogenate.  相似文献   

5.
The coordination of long chain fatty acid (LCFA) transport across the mitochondrial membrane (VPAL) with subsequent oxidation rate through β-oxidation and the tricarboxylic acid (TCA) cycle (Vtca) has been difficult to characterize in the intact heart. Kinetic analysis of dynamic 13C-NMR distinguished these flux rates in isolated rabbit hearts. Hearts were perfused in a 9.4 T magnet with either 0.5 mM [2,4,6,8,10,12,14,16-13C8] palmitate (n = 4), or 0.5 mM 13C-labeled palmitate plus 0.08 mM unlabeled butyrate (n = 4). Butyrate is a short chain fatty acid (SCFA) that bypasses the LCFA transporters of mitochondria. In hearts oxidizing palmitate alone, the ratio of VTCA to VPAL was 8:1. This is consistent with one molecule of palmitate yielding eight molecules of acetyl-CoA for the subsequent oxidation through the TCA cycle. Addition of butyrate elevated this ratio; VTCA/VPAL = 12:1 due to an SCFA-induced increase in VTCA of 43% (p < 0.05). However, SCFA oxidation did not significantly reduce palmitate transport into the mitochondria: VPAL = 1.0 ± 0.2 μmol/min/g dw with palmitate alone versus 0.9 ± 0.1 with palmitate plus butyrate. Thus, the products of β-oxidation are preferentially channeled to the TCA cycle, away from mitochondrial efflux via carnitine acetyltransferase.  相似文献   

6.
We investigated the interrelations between C4 ketogenesis (production of β-hydroxybutyrate + acetoacetate), C5 ketogenesis (production of β-hydroxypentanoate + β-ketopentanoate), and anaplerosis in isolated rat livers perfused with 13C-labeled octanoate, heptanoate, or propionate. Mass isotopomer analysis of C4 and C5 ketone bodies and of related acyl-CoA esters reveal that C4 and C5 ketogenesis share the same pool of acetyl-CoA. Although the uptake of octanoate and heptanoate by the liver are similar, the rate of C5 ketogenesis from heptanoate is much lower than the rate of C4 ketogenesis from octanoate. This results from the channeling of the propionyl moiety of heptanoate into anaplerosis of the citric acid cycle. C5 ketogenesis from propionate is virtually nil because acetoacyl-CoA thiolase does not favor the formation of β-ketopentanoyl-CoA from propionyl-CoA and acetyl-CoA. Anaplerosis and gluconeogenesis from heptanoate are inhibited by octanoate. The data have implications for the design of diets for the treatment of long chain fatty acid oxidation disorders, such as the triheptanoin-based diet.The regulation of the metabolism of C4 ketone bodies, i.e. β-hydroxybutyrate (BHB)2 and acetoacetate (AcAc) has been extensively investigated in vivo in isolated livers, hepatocytes, and subcellular preparations (for reviews, see Refs. 14). In contrast, very little information is available on the metabolism of C5 ketone bodies, i.e. β-hydroxypentanoate (BHP) and β-ketopentanoate (BKP), which are known in the clinical literature as 3-hydroxyvalerate and 3-ketovalerate (5, 6). The C5 ketone bodies are formed in liver from the partial oxidation of odd-chain fatty acids (see Fig. 1, center column). C5 ketogenesis uses the same enzymes of the 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) cycle as C4 ketogenesis. The counterpart of HMG-CoA in C5 ketogenesis is 3-hydroxy-3-ethylglutaryl-CoA (HEG-CoA). We only found one report on the formation of [14C]HEG-CoA in liver extract incubated with propionyl-CoA and [1-14C]acetyl-CoA (7).Open in a separate windowFIGURE 1.Scheme of C4 ketogenesis and C5 ketogenesis in the liver. Numbers refer to the following enzymes: 3-ketoacyl-CoA thiolase (1), HMG-CoA synthase (2), HMG-CoA lyase (3), and β-hydroxybutyrate dehydrogenase (4). The figure also shows the link between propionyl-CoA and the CAC via anaplerosis.Because odd-chain fatty acids are absent from the diet of non-ruminant mammals, body fluids contain only traces of C5 ketone bodies. However, C5 ketone bodies and hydroxyethylglutarate are found in body fluids of patients with disorders of the anaplerotic pathway, propionyl-CoA → methylmalonyl- CoA → succinyl-CoA, such as deficiency in propionyl-CoA carboxylase and methylmalonyl-CoA mutase as well as biotin or vitamin B12 deficiency (5, 6, 8). The formation of C5 ketone bodies in these pathological states involves either the conversion of propionyl-CoA to BKP-CoA via 3-ketoacyl-CoA thiolase (Fig. 1, reaction 1) or the β-oxidation of odd-chain fatty acids synthesized in these patients (9) using propionyl-CoA as a primer (10).Like their C4 counterparts, the C5 ketone bodies are interconverted by mitochondrial BHB dehydrogenase (11). In peripheral tissues, C5 ketone bodies are converted to propionyl-CoA (which is anaplerotic) + acetyl-CoA via 3-oxoacid-CoA transferase (12) and 3-ketoacyl-CoA thiolase. Peripheral tissues have a high capacity to utilize exogenous C5 ketone bodies (13), especially heart, kidney, and brain, which have high activities of 3-oxoacid-CoA transferase (14, 15).Our interest in C5 ketone body metabolism arose from an ongoing clinical trial where patients with long chain fatty acid oxidation disorders are treated with a diet containing triheptanoin (16, 17) instead of the classical treatment with the even-chain triglyceride trioctanoin. These patients suffer from muscle weakness and rhabdomyolysis, manifested by the release of creatine kinase in plasma. It was hypothesized that the accumulation of long chain acyl-CoAs and long chain acylcarnitines results in membrane damage with release of large and small molecules from cells. The leakage of small molecules would deplete intermediates of the citric acid cycle (CAC) which carry acetyl groups as they are oxidized. It was further hypothesized that boosting anaplerosis with a suitable substrate would compensate for the chronic cataplerosis and improve heart and muscle function. The catabolism of heptanoate yields propionyl-CoA, which can be used for anaplerosis in most tissues, and C5 ketone bodies in liver. C5 ketone bodies are converted to propionyl-CoA, which can be used for anaplerosis in peripheral tissues. The marked improvement of the patients'' conditions after switching from a trioctanoin- to a triheptanoin-based diet supported the hypothesis.After ingestion of meals containing triheptanoin as the only lipid component, both C5 ketone bodies and C4 ketone bodies accumulated in the plasma of patients that have been diagnosed with disorders of long chain fatty acid oxidation (16). This suggested that acetyl groups derived from heptanoate can be used for the synthesis of C4 and C5 ketone bodies. Alternatively, the accumulation of C4 ketone bodies after triheptanoin ingestion might result from the inhibition of the utilization of C4 ketone bodies in peripheral tissues by C5 ketone bodies.The aim of the present study was to investigate the interaction between C4 and C5 ketogenesis in rat livers perfused with octanoate and/or heptanoate. To gain insight on the fates of the acetyl groups of both fatty acids and on the fate of the propionyl-CoA moiety of heptanoate, we conducted the experiments with a series of labeled substrates: [1-13C]octanoate, [8-13C]octanoate, [5,6,7-13C3]heptanoate, [1-13C]heptanoate, and [13C3]propionate. The outcome of the propionyl-CoA moiety of [5,6,7-13C3]heptanoate and [13C3]propionate was traced by measurements of anaplerosis and glucose labeling by mass isotopomer3 analysis (18). In previous studies on the metabolism of odd-chain fatty acids in liver or hepatocytes (19, 20), ketone bodies were assayed with BHB dehydrogenase. This assay does not differentiate C4 from C5 ketone bodies. In the present study we used gas chromatography-mass spectrometry to specifically assay C4 and C5 ketone bodies (13).  相似文献   

7.
Legionella pneumophila (Lp) is commonly found in freshwater habitats but is also the causative agent of Legionnaires'' disease when infecting humans. Although various virulence factors have been reported, little is known about the nutrition and the metabolism of the bacterium. Here, we report the application of isotopologue profiling for analyzing the metabolism of L. pneumophila. Cultures of Lp were supplied with [U-13C3]serine, [U-13C6]glucose, or [1,2-13C2]glucose. After growth, 13C enrichments and isotopologue patterns of protein-derived amino acids and poly-3-hydroxybutyrate were determined by mass spectrometry and/or NMR spectroscopy. The labeling patterns detected in the experiment with [U-13C3]serine showed major carbon flux from serine to pyruvate and from pyruvate to acetyl-CoA, which serves as a precursor of poly-3-hydroxybutyrate or as a substrate of a complete citrate cycle with Si specificity of the citrate synthase. Minor carbon flux was observed between pyruvate and oxaloacetate/malate by carboxylation and decarboxylation, respectively. The apparent lack of label in Val, Ile, Leu, Pro, Phe, Met, Arg, and Tyr confirmed that L. pneumophila is auxotrophic for these amino acids. Experiments with [13C]glucose showed that the carbohydrate is also used as a substrate to feed the central metabolism. The specific labeling patterns due to [1,2-13C2]glucose identified the Entner-Doudoroff pathway as the predominant route for glucose utilization. In line with these observations, a mutant lacking glucose-6-phosphate dehydrogenase (Δzwf) did not incorporate label from glucose at significant levels and was slowly outcompeted by the wild type strain in successive rounds of infection in Acanthamoeba castellanii, indicating the importance of this enzyme and of carbohydrate usage in general for the life cycle of Lp.  相似文献   

8.
The effects of carnitine on the metabolism of palmitoylcarnitine were studied by using isolated rat liver mitochondria. Particular attention was given to carnitine acyltransferase-mediated interactions between carnitine and the mitochondrial CoA pool. Carnitine concentrations less than 1.25mm resulted in an increased production of acetylcarnitine during palmitoylcarnitine oxidation. Despite this shunting of C2 units to acetylcarnitine formation, no change was observed in the rate of oxygen consumption or major product formation (citrate or acetoacetate). Further, no changes were observed in the mitochondrial content of acetyl-CoA, total acid-soluble CoA or acid-insoluble acyl-CoA. These observations support the concept, based on studies in vivo, that the carnitine/acylcarnitine pool is metabolically sluggish and the acyl-group flux low as compared with the CoA/acyl-CoA pool. Acid-insoluble acyl-CoA content was decreased and CoA content increased at carnitine concentrations greater than 1.25mm. When [14C]carnitine was used in the incubations, it was demonstrated that this resulted from acid-insoluble acylcarnitine formation from intramitochondrial acid-insoluble acyl-CoA mediated by carnitine palmitoyltransferase B. Again, the higher carnitine concentrations resulted in no changes in the rates of oxygen consumption or major product formation. The above effects of carnitine were observed whether citrate or acetoacetate was the major product of oxidation. In contrast, an increase in acetyl-CoA concentration was observed at high carnitine concentrations only when acetoacetate was the product. Since the rate of acetoacetate production was not changed, these higher acetyl-CoA concentrations suggest that a new steady state had been established to maintain acetoacetate-production rates. Since there was no change in acetyl-CoA concentration when citrate was the major product, a change in the activity of the pathway utilizing acetyl-CoA for ketone-body synthesis and the potential regulation of this pathway must be considered.  相似文献   

9.
Sodium-glucose cotransporter 2 (SGLT2) inhibitors have been shown to increase ketone bodies in patients with type 2 diabetes; however, the underlying mechanisms have not been fully elucidated. Here we examined the effect of the SGLT2 inhibitor dapagliflozin (1 mg/kg/day, formulated in a water, PEG400, ethanol, propylene glycol solution, 4 weeks) on lipid metabolism in obese Zucker rats. Fasting FFA metabolism was assessed in the anesthetized state using a [9,10-3H(N)]-palmitic acid tracer by estimating rates of plasma FFA appearance (Ra), whole-body FFA oxidation (Rox), and nonoxidative disposal (Rst). In the liver, clearance (Kβ-ox) and flux (Rβ-ox) of FFA into β-oxidation were estimated using [9,10-3H]-(R)-bromopalmitate/[U-14C]palmitate tracers. As expected, dapagliflozin induced glycosuria and a robust antidiabetic effect; treatment reduced fasting plasma glucose and insulin, lowered glycated hemoglobin, and increased pancreatic insulin content compared with vehicle controls. Dapagliflozin also increased plasma FFA, Ra, Rox, and Rst with enhanced channeling toward oxidation versus storage. In the liver, there was also enhanced channeling of FFA to β-oxidation, with increased Kβ-ox, Rβ-ox and tissue acetyl-CoA, compared with controls. Finally, dapagliflozin increased hepatic HMG-CoA and plasma β-hydroxybutyrate, consistent with a specific enhancement of ketogenesis. Since ketogenesis has not been directly measured, we cannot exclude an additional contribution of impaired ketone body clearance to the ketosis. In conclusion, this study provides evidence that the dapagliflozin-induced increase in plasma ketone bodies is driven by the combined action of FFA mobilization from adipose tissue and diversion of hepatic FFA toward β-oxidation.Supplementary key words: β-oxidation, diabetes, drug therapy, fatty acids, metabolism, tracer kinetics, SGLT2, HMG-CoA, ketone bodies

SGLT2 inhibitors, including dapagliflozin, are established treatments for patients with type 2 diabetes leading to improved glucose control as well as decreased risk of cardiovascular events and development of kidney disease (1, 2, 3, 4, 5, 6, 7). The improved cardiovascular and renal outcome data for this class of drugs have resulted in a change in standard of care recommendations, placing SGLT2 inhibitors after lifestyle interventions and metformin treatment for patients with combined diabetes and heart failure or chronic kidney disease (8).A consistent effect of SGLT2 inhibitors in patients is an increase in plasma ketone body levels (9, 10, 11), which is presumed to be caused by increased ketogenesis. Enhanced ketogenesis may play a role in the organ protective action of SGLT2 inhibitors (12, 13, 14); therefore, understanding the nature of this phenomenon is important. The increased ketone body levels might result from a systemic increase in FFA mobilization driven by the established treatment-induced reductions in plasma glucose and insulin. Although involvement of enhanced FFA mobilization seems likely, data directly assessing this mechanism is currently lacking in the literature.In patients with type 2 diabetes, empagliflozin (25 mg/day for 4 weeks) increased fasting ketone bodies and plasma FFA levels (15). However, the rate of appearance of glycerol, a measure of whole-body lipolysis, was not markedly altered. As described by Wolfe et al. (16), general changes in FFA mobilization can result not only from changes in lipolysis, but also from alterations in intra-adipocyte re-esterification of fatty acids. This could occur, for example, if reduced circulating glucose and insulin levels lower the intra-adipocyte formation of glycerol-3-phosphate leading to reduced capture of FFA released by the action of ongoing lipolysis.An alternative explanation for the enhanced ketogenesis could be a liver-specific effect of SGLT2 inhibitors. Thus, the major site of ketone body production in the body is the liver (17), and the rate controlling enzyme for ketogenesis, at least in rodents, appears to be carnitine palmitoyl transferase 1 (CPT1) (18). The most important regulator of the activity of CPT1 is cytosolic malonyl-CoA, which is a potent CPT1 inhibitor (19). Glucose excess in the hepatocyte would tend to increase the formation and level of cytosolic malonyl-CoA, resulting in inhibition of ketogenesis. By contrast, unloading glucose from the hepatocyte would reduce malonyl-CoA removing the brake on ketogenesis.The aim of this study was to elucidate the mechanism behind the increased ketone body levels seen following SGLT2 inhibition by measuring whole-body and tissue-specific FFA metabolism and liver co-enzyme A intermediates. Obese Zucker rats were treated with the SGLT2 inhibitor, dapagliflozin (1 mg/kg, 4 weeks), or vehicle before performing dedicated tracer studies using either [9,10-3H(N)]-Palmitic Acid or [9,10-3H]-(R)-bromopalmitate/[U-14C]palmitate. This study provides evidence that the dapagliflozin-induced increase in plasma ketone bodies is driven by the combined action of FFA mobilization from adipose tissue and diversion of hepatic FFA toward β-oxidation.  相似文献   

10.
The noncharacterized protein CLOSCI_02528 from Clostridium scindens ATCC 35704 was characterized as D-psicose 3-epimerase. The enzyme showed maximum activity at pH 7.5 and 60°C. The half-life of the enzyme at 50°C was 108 min, suggesting the enzyme was relatively thermostable. It was strictly metal-dependent and required Mn2+ as optimum cofactor for activity. In addition, Mn2+ improved the structural stability during both heat- and urea-induced unfolding. Using circular dichroism measurements, the apparent melting temperature (T m) and the urea midtransition concentration (C m) of metal-free enzyme were 64.4°C and 2.68 M. By comparison, the Mn2+-bound enzyme showed higher T m and C m with 67.3°C and 5.09 M. The Michaelis-Menten constant (K m), turnover number (k cat), and catalytic efficiency (k cat/K m) values for substrate D-psicose were estimated to be 28.3 mM, 1826.8 s−1, and 64.5 mM−1 s−1, respectively. The enzyme could effectively produce D-psicose from D-fructose with the turnover ratio of 28%.  相似文献   

11.
Mitochondrial Ca2+ uptake exerts dual effects on mitochondria. Ca2+ accumulation in the mitochondrial matrix dissipates membrane potential (ΔΨm), but Ca2+ binding of the intramitochondrial enzymes accelerates oxidative phosphorylation, leading to mitochondrial hyperpolarization. The levels of matrix free Ca2+ ([Ca2+]m) that trigger these metabolic responses in mitochondria in nerve terminals have not been determined. Here, we estimated [Ca2+]m in motor neuron terminals of Drosophila larvae using two methods: the relative responses of two chemical Ca2+ indicators with a 20-fold difference in Ca2+ affinity (rhod-FF and rhod-5N), and the response of a low-affinity, genetically encoded ratiometric Ca2+ indicator (D4cpv) calibrated against known Ca2+ levels. Matrix pH (pHm) and ΔΨm were monitored using ratiometric pericam and tetramethylrhodamine ethyl ester probe, respectively, to determine when mitochondrial energy metabolism was elevated. At rest, [Ca2+]m was 0.22 ± 0.04 μM, but it rose to ∼26 μM (24.3 ± 3.4 μM with rhod-FF/rhod-5N and 27.0 ± 2.6 μM with D4cpv) when the axon fired close to its endogenous frequency for only 2 s. This elevation in [Ca2+]m coincided with a rapid elevation in pHm and was followed by an after-stimulus ΔΨm hyperpolarization. However, pHm decreased and no ΔΨm hyperpolarization was observed in response to lower levels of [Ca2+]m, up to 13.1 μM. These data indicate that surprisingly high levels of [Ca2+]m are required to stimulate presynaptic mitochondrial energy metabolism.  相似文献   

12.
Accurate measures of plasma FA oxidation can improve our understanding of diseases characterized by impaired FA oxidation. We describe and compare the 24 h time-courses of FA oxidation using bolus injections of [1-14C]palmitate versus [9,10-3H]palmitate under postabsorptive, postprandial, and walking conditions. Fifty-one men and 95 premenopausal women participated in one condition (postabsorptive, postprandial, or walking), one tracer (14C- or 3H-labeled), and an acetate or palmitate study. Groups were matched for sex, age, and body mass index (BMI). At 24 h, cumulative [3H]acetate recovery as 3H2O was 80 ± 6%, 78 ± 2%, and 81 ± 6% in the postabsorptive, postprandial, and walking conditions, respectively (not significant). Model-predicted maximum [1-14C]acetate recovery as expired 14CO2 was 59 ± 12%, 52 ± 8%, and 65 ± 10% in the postabsorptive, postprandial, and walking condition, respectively (one way ANOVA, P = 0.12). When corrected with the corresponding acetate recovery factors, 24 h time-courses of FFA oxidation were similar between [1-14C]palmitate and [9,10-3H]palmitate in all three conditions. In contrast to previous meal ingestion studies, an acetate-hydrogen recovery factor was needed to achieve comparable oxidation rates using an intravenous bolus of [3H]palmitate. In conclusion, intravenous boluses of [9,10-3H]palmitate versus [1-14C]palmitate gave similar estimates of 24 h cumulative FFA oxidation in age-, sex- and BMI-matched individuals.  相似文献   

13.
Sodium-glucose cotransporter 2 (SGLT2) inhibitors have been shown to increase ketone bodies in patients with type 2 diabetes; however, the underlying mechanisms have not been fully elucidated. Here we examined the effect of the SGLT2 inhibitor dapagliflozin (1 mg/kg/day, formulated in a water, PEG400, ethanol, propylene glycol solution, 4 weeks) on lipid metabolism in obese Zucker rats. Fasting FFA metabolism was assessed in the anesthetized state using a [9,10-3H(N)]-palmitic acid tracer by estimating rates of plasma FFA appearance (Ra), whole-body FFA oxidation (Rox), and nonoxidative disposal (Rst). In the liver, clearance (Kβ-ox) and flux (Rβ-ox) of FFA into β-oxidation were estimated using [9,10-3H]-(R)-bromopalmitate/[U-14C]palmitate tracers. As expected, dapagliflozin induced glycosuria and a robust antidiabetic effect; treatment reduced fasting plasma glucose and insulin, lowered glycated hemoglobin, and increased pancreatic insulin content compared with vehicle controls. Dapagliflozin also increased plasma FFA, Ra, Rox, and Rst with enhanced channeling toward oxidation versus storage. In the liver, there was also enhanced channeling of FFA to β-oxidation, with increased Kβ-ox, Rβ-ox and tissue acetyl-CoA, compared with controls. Finally, dapagliflozin increased hepatic HMG-CoA and plasma β-hydroxybutyrate, consistent with a specific enhancement of ketogenesis. Since ketogenesis has not been directly measured, we cannot exclude an additional contribution of impaired ketone body clearance to the ketosis. In conclusion, this study provides evidence that the dapagliflozin-induced increase in plasma ketone bodies is driven by the combined action of FFA mobilization from adipose tissue and diversion of hepatic FFA toward β-oxidation.  相似文献   

14.
Isotope dilution is currently the most accurate technique in humans to determine vitamin A status and bioavailability/bioconversion of provitamin A carotenoids such as β-carotene. However, limits of MS detection, coupled with extensive isolation procedures, have hindered investigations of physiologically-relevant doses of stable isotopes in large intervention trials. Here, a sensitive liquid chromatography-tandem mass spectrometry (LC/MS/MS) analytical method was developed to study the plasma response from coadministered oral doses of 2 mg [13C10]β-carotene and 1 mg [13C10]retinyl acetate in human subjects over a 2 week period. A reverse phase C18 column and binary mobile phase solvent system separated β-carotene, retinol, retinyl acetate, retinyl linoleate, retinyl palmitate/retinyl oleate, and retinyl stearate within a 7 min run time. Selected reaction monitoring of analytes was performed under atmospheric pressure chemical ionization in positive mode at m/z 537→321 and m/z 269→93 for respective [12C]β-carotene and [12C] retinoids; m/z 547→330 and m/z 274→98 for [13C10]β-carotene and [13C5] cleavage products; and m/z 279→100 for metabolites of [13C10]retinyl acetate. A single one-phase solvent extraction, with no saponification or purification steps, left retinyl esters intact for determination of intestinally-derived retinol in chylomicrons versus retinol from the liver bound to retinol binding protein. Coadministration of [13C10]retinyl acetate with [13C10]β-carotene not only acts as a reference dose for inter-individual variations in absorption and chylomicron clearance rates, but also allows for simultaneous determination of an individual''s vitamin A status.  相似文献   

15.
A mixture of [2-14C1] and [13C6]indole-3-acetic acid was applied to the cotyledons of 6-day-germinated seeds of “jacarandá do cerrado” (Dalbergia dolichopetala) and after 8 hours the seeds were extracted. Analysis of the fractionated extract by reversed-phase high performance liquid chromatography-radiocounting revealed the presence of five radiolabeled metabolite peaks (I-V). After further purification, the individual peaks of radioactivity were analyzed by combined high performance liquid chromatography-steel filter-fast atom bombardment-mass spectrometry. The metabolite fraction V was found to contain [14C1, 13C6]indole-3-acetylas-partic acid and unlabeled indole-3-acetylglutamic acid. Analysis of the metabolite fraction II revealed the presence of dioxindole-3-acetylaspartic acid and putative dioxindole-3-acetylglutamic acid as well as putative benzene ring-hydroxylated derivatives of oxindole-3-acetylaspartic acid and oxindole-3-acetylglutamic acid. There was no evidence of significant incorporation of label from [2′-14C1] or [13C6]indole-3-acetic acid into any of these conjugated indoles.  相似文献   

16.
Chagas disease is one of the most neglected tropical diseases in the world, affecting nearly 15 million people, primarily in Latin America. Only two drugs are used for the treatment of this disease, nifurtimox and benznidazole. These drugs have limited efficacy and frequently induce adverse effects, limiting their usefulness. Consequently, new drugs must be found. In this study, we demonstrated the in vitro trypanocidal effects of a series of four gallic acid derivatives characterized by a gallate group linked to a triphenylphosphonium (TPP+) moiety (a delocalized cation) via a hydrocarbon chain of 8, 10, 11, or 12 atoms (TPP+-C8, TPP+-C10, TPP+-C11, and TPP+-C12, respectively). We analyzed parasite viability in isolated parasites (by MTT reduction and flow cytometry) and infected mammalian cells using T. cruzi Y strain trypomastigotes. Among the four derivatives, TPP+-C10 and TPP+-C12 were the most potent in both models, with EC50 values (in isolated parasites) of 1.0 ± 0.6 and 1.0 ± 0.7 μM, respectively, and were significantly more potent than nifurtimox (EC50 = 4.1 ± 0.6 μM). At 1 μM, TPP+-C10 and TPP+-C12 induced markers of cell death, such as phosphatidylserine exposure and propidium iodide permeabilization. In addition, at 1 μM, TPP+-C10 and TPP+-C12 significantly decreased the number of intracellular amastigotes (TPP+-C10: 24.3%, TPP+-C12: 19.0% of control measurements, as measured by DAPI staining) and the parasite’s DNA load (C10: 10%, C12: 13% of control measurements, as measured by qPCR). Based on the previous mode of action described for these compounds in cancer cells, we explored their mitochondrial effects in isolated trypomastigotes. TPP+-C10 and TPP+-C12 were the most potent compounds, significantly altering mitochondrial membrane potential at 1 μM (measured by JC-1 fluorescence) and inducing mitochondrial transition pore opening at 5 μM. Taken together, these results indicate that the TPP+-C10 and TPP+-C12 derivatives of gallic acid are promising trypanocidal agents with mitochondrial activity.  相似文献   

17.
1. Measurements were made of milk yield, mammary blood flow and arteriovenous differences of each plasma lipid fraction, and their specific radioactivities, during the infusion of [U-14C]stearate, [U-14C]oleate, [U-14C]palmitate and [1-14C]acetate into fed lactating goats. 2. Entry rates of fatty acids into the circulation were 4·2mg./min./kg. body wt. for acetate, and 0·18, 0·28 and 0·42mg./min./kg. for stearate, oleate and palmitate respectively. Acetate accounted for 23% of the total carbon dioxide produced by the whole animal, and contributed to the oxidative metabolism of the mammary gland to about the same extent. Corresponding values for each of the long-chain acids were less than 1%. 3. There were no significant arteriovenous differences of phospholipids, sterols or sterol esters, and their fatty acid composition showed no net changes during passage through the mammary gland. 4. There were large arteriovenous differences of plasma triglycerides, and their fatty acid composition showed marked changes across the gland. The proportions of palmitate and stearate fell, and that of oleate increased. 5. Arteriovenous differences of plasma free fatty acids (FFA) were small and variable, but a large fall in the specific radioactivity of each of the long-chain acids examined indicated substantial uptake of plasma FFA, accompanied by roughly equivalent FFA release from mammary tissue. The uptake of FFA was confirmed by the extensive transfer of radioactivity into milk. The FFA of milk were similar in composition and radioactivity to the milk triglyceride fatty acids, and quite unlike plasma FFA. 6. The formation of large amounts of oleic acid (18–21 mg./min.) from stearic acid was demonstrated. 7. During the terminal stages of the [14C]acetate infusion, milk triglyceride fatty acids of chain length C4–C14 showed specific radioactivities that were 75–90% of that of blood acetate, and that of palmitate was roughly one-quarter of this value. Oleate and stearate were unlabelled. 8. The results confirmed that milk fatty acids of chain length C4–C14 arise largely from blood acetate, and palmitate is derived partly from acetate and partly from plasma triglyceride, the latter fraction being almost the sole precursor of oleate and stearate.  相似文献   

18.
Fumarate hydratase (FH)-deficient kidney cancer undergoes metabolic remodeling, with changes in mitochondrial respiration, glucose, and glutamine metabolism. These changes represent multiple biochemical adaptations in glucose and fatty acid metabolism that supports malignant proliferation. However, the metabolic linkages between altered mitochondrial function, nucleotide biosynthesis and NADPH production required for proliferation and survival have not been elucidated. To characterize the alterations in glycolysis, the Krebs cycle and the pentose phosphate pathways (PPP) that either generate NADPH (oxidative) or do not (non-oxidative), we utilized [U-13C]-glucose, [U-13C,15N]-glutamine, and [1,2- 13C2]-glucose tracers with mass spectrometry and NMR detection to track these pathways, and measured the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) of growing cell lines. This metabolic reprogramming in the FH null cells was compared to cells in which FH has been restored. The FH null cells showed a substantial metabolic reorganization of their intracellular metabolic fluxes to fulfill their high ATP demand, as observed by a high rate of glucose uptake, increased glucose turnover via glycolysis, high production of glucose-derived lactate, and low entry of glucose carbon into the Krebs cycle. Despite the truncation of the Krebs cycle associated with inactivation of fumarate hydratase, there was a small but persistent level of mitochondrial respiration, which was coupled to ATP production from oxidation of glutamine-derived α–ketoglutarate through to fumarate. [1,2- 13C2]-glucose tracer experiments demonstrated that the oxidative branch of PPP initiated by glucose-6-phosphate dehydrogenase activity is preferentially utilized for ribose production (56-66%) that produces increased amounts of ribose necessary for growth and NADPH. Increased NADPH is required to drive reductive carboxylation of α-ketoglutarate and fatty acid synthesis for rapid proliferation and is essential for defense against increased oxidative stress. This increased NADPH producing PPP activity was shown to be a strong consistent feature in both fumarate hydratase deficient tumors and cell line models.  相似文献   

19.
Effect of ATP on the Calcium Efflux in Dialyzed Squid Giant Axons   总被引:12,自引:9,他引:3       下载免费PDF全文
Dialysis perfusion technique makes it possible to control the internal composition of squid giant axons. Calcium efflux has been studied in the presence and in the virtual absence (<5 µM) of ATP. The mean calcium efflux from axons dialyzed with 0.3 µM ionized calcium, [ATP]i > 1,000 µM, and bathed in artificial seawater (ASW) was 0.24 ± 0.02 pmol·cm-2·s-1 (P/CS) (n = 8) at 22°C. With [ATP]i < 5 µM the mean efflux was 0.11 ± 0.01 P/CS (n = 15). The curve relating calcium efflux to [ATP]i shows a constant residual calcium efflux in the range of 1–100 µM [ATP]i. An increase of the calcium efflux is observed when [ATP]i is >100 µM and saturates at [ATP]i > 1,000 µM. The magnitude of the ATP-dependent fraction of the calcium efflux varies with external concentrations of Na+, Ca++, and Mg++. These results suggest that internal ATP changes the affinity of the calcium transport system for external cations.  相似文献   

20.
Evidence for a homogeneous pool of acetyl-CoA in rat-liver mitochondria   总被引:2,自引:0,他引:2  
Rat-liver mitochondria oxidized [1-14C]palmitate or [U-14C]palmitate and unlabelled pyruvate in a medium containing fluorocitrate and L-carnitine. The oxidation products (acetyl-L-carnitine, ketone bodies and citrate) were separated by anion-exchange chromatography and their specific activities were determined. The distribution of radioactivity over the two halves of the ketone bodies was essayed. Significant differences between the specific activities of citrate, acetyl-L-carnitine and the carboxylhalf of the ketone bodies were not observed; this was consistently the case, even when pyruvate contributed for more than 80% to the acetyl-CoA pool. Our results argue against compartition of mitochondrial acetyl-CoA. Instead, they strongly suggest that the acetyl-CoA originating from the simultaneous oxidation of pyruvate and palmitate equilibrates before being distributed over the various pathways of further metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号