首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The (3'-->5') exoribonuclease RNase R interacts with the endoribonuclease RNase E in the degradosome of the cold-adapted bacterium Pseudomonas syringae Lz4W. We now present evidence that the RNase R is essential for growth of the organism at low temperature (4 degrees C). Mutants of P. syringae with inactivated rnr gene (encoding RNase R) are cold-sensitive and die upon incubation at 4 degrees C, a phenotype that can be complemented by expressing RNase R in trans. Overexpressing polyribonucleotide phosphorylase in the rnr mutant does not rescue the cold sensitivity. This is different from the situation in Escherichia coli, where rnr mutants show normal growth, but pnp (encoding polyribonucleotide phosphorylase) and rnr double mutants are nonviable. Interestingly, RNase R is not cold-inducible in P. syringae. Remarkably, however, rnr mutants of P. syringae at low temperature (4 degrees C) accumulate 16 and 5 S ribosomal RNA (rRNA) that contain untrimmed extra ribonucleotide residues at the 3' ends. This suggests a novel role for RNase R in the rRNA 3' end processing. Unprocessed 16 S rRNA accumulates in the polysome population, which correlates with the inefficient protein synthesis ability of mutant. An additional role of RNase R in the turnover of transfer-messenger RNA was identified from our observation that the rnr mutant accumulates transfer-messenger RNA fragments in the bacterium at 4 degrees C. Taken together our results establish that the processive RNase R is crucial for RNA metabolism at low temperature in the cold-adapted Antarctic P. syringae.  相似文献   

3.
The cold shock response of Escherichia coli is elicited by downshift of temperature from 37 degrees C to 15 degrees C and is characterized by induction of several cold shock proteins, including CsdA, during the acclimation phase. CsdA, a DEAD-box protein, has been proposed to participate in a variety of processes, such as ribosome biogenesis, mRNA decay, translation initiation, and gene regulation. It is not clear which of the functions of CsdA play a role in its essential cold shock function or whether all do, and so far no protein has been shown to complement its function in vivo. Our screening of an E. coli genomic library for an in vivo counterpart of CsdA that can compensate for its absence at low temperature revealed only one protein, RhlE, another DEAD-box RNA helicase. We also observed that although not detected in our genetic screening, two cold shock-inducible proteins, namely, CspA, an RNA chaperone, and RNase R, an exonuclease, can also complement the cold shock function of CsdA. Interestingly, the absence of CsdA and RNase R leads to increased sensitivity of the cells to even moderate temperature downshifts. The correlation between the helicase activity of CsdA and the stability of mRNAs of cold-inducible genes was shown using cspA mRNA, which was significantly stabilized in the DeltacsdA cells, an effect counteracted by overexpression of wild-type CsdA or RNase R but not by that of the helicase-deficient mutant of CsdA. These results suggest that the primary role of CsdA in cold acclimation of cells is in mRNA decay and that its helicase activity is pivotal for promoting degradation of mRNAs stabilized at low temperature.  相似文献   

4.
RNase R is an important exoribonuclease that participates in the degradation of structured RNAs in Escherichia coli. In earlier work, it was shown that RNase R levels increase dramatically under certain stress conditions, particularly during cold shock and stationary phase. However, the regulatory processes that lead to this elevation are not well understood. We show here that the increase in RNase R in stationary phase is unaffected by the global regulators, RpoS and (p)ppGpp, and that it occurs despite a major reduction in rnr message. Rather, we find that RNase R is a highly unstable protein in exponential phase, with a half-life of ∼10 min, and that the protein is stabilized in stationary phase, leading to its relative increase. RNase R is also stabilized during cold shock and by growth in minimal medium, two other conditions that lead to its elevation. These data demonstrate that RNase R is subject to regulation by a novel, posttranslational mechanism that may have important implications for our complete understanding of RNA metabolism.  相似文献   

5.
6.
RNase II and RNase R are the two E. coli exoribonucleases that belong to the RNase II super family of enzymes. They degrade RNA hydrolytically in the 3' to 5' direction in a processive and sequence independent manner. However, while RNase R is capable of degrading structured RNAs, the RNase II activity is impaired by dsRNAs. The final end-product of these two enzymes is also different, being 4 nt for RNase II and 2 nt for RNase R. RNase II and RNase R share structural properties, including 60% of amino acid sequence similarity and have a similar modular domain organization: two N-terminal cold shock domains (CSD1 and CSD2), one central RNB catalytic domain, and one C-terminal S1 domain. We have constructed hybrid proteins by swapping the domains between RNase II and RNase R to determine which are the responsible for the differences observed between RNase R and RNase II. The results obtained show that the S1 and RNB domains from RNase R in an RNase II context allow the degradation of double-stranded substrates and the appearance of the 2 nt long end-product. Moreover, the degradation of structured RNAs becomes tail-independent when the RNB domain from RNase R is no longer associated with the RNA binding domains (CSD and S1) of the genuine protein. Finally, we show that the RNase R C-terminal Lysine-rich region is involved in the degradation of double-stranded substrates in an RNase II context, probably by unwinding the substrate before it enters into the catalytic cavity.  相似文献   

7.
RNase R, an important exoribonuclease involved in degradation of structured RNA, is subject to a novel mechanism of regulation. The enzyme is extremely unstable in rapidly growing cells but becomes stabilized under conditions of stress, such as stationary phase or cold shock. RNase R instability results from acetylation which promotes binding of tmRNA-SmpB, two trans-translation factors, to its C-terminal region. Here, we examine how binding of tmRNA-SmpB leads to proteolysis of RNase R. We show that RNase R degradation is due to two proteases, HslUV and Lon. In their absence, RNase R is stable. We also show, using an in vitro system that accurately replicates the in vivo process, that tmRNA-SmpB is not essential, but it stimulates binding of the protease to the N-terminal region of RNase R and that it does so by a direct interaction between the protease and SmpB which stabilizes protease binding. Thus, a sequence of events, initiated by acetylation of a single Lys residue, results in proteolysis of RNase R in exponential phase cells. RNase R in stationary phase or in cold-shocked cells is not acetylated, and thereby remains stable. Such a regulatory mechanism, dependent on protein acetylation, has not been observed previously in bacterial cells.  相似文献   

8.
9.
10.
Exoribonucleases are vital in nearly all aspects of RNA metabolism, including RNA maturation, end-turnover, and degradation. RNase II and RNase R are paralogous members of the RNR superfamily of nonspecific, 3'→5', processive exoribonucleases. In Escherichia coli, RNase II plays a primary role in mRNA decay and has a preference for unstructured RNA. RNase R, in contrast, is capable of digesting structured RNA and plays a role in the degradation of both mRNA and stable RNA. Deinococcus radiodurans, a radiation-resistant bacterium, contains two RNR family members. The shorter of these, DrR63, includes a sequence signature typical of RNase R, but we show here that this enzyme is an RNase II-type exonuclease and cannot degrade structured RNA. We also report the crystal structure of this protein, now termed DrII. The DrII structure reveals a truncated RNA binding region in which the N-terminal cold shock domains, typical of most RNR family nucleases, are replaced by an unusual winged helix-turn-helix domain, where the "wing" is contributed by the C-terminal S1 domain. Consistent with its truncated RNA binding region, DrII is able to remove 3' overhangs from RNA molecules closer to duplexes than do other RNase II-type enzymes. DrII also displays distinct sensitivity to pyrimidine-rich regions of single-stranded RNA and is able to process tRNA precursors with adenosine-rich 3' extensions in vitro. These data indicate that DrII is the RNase II of D. radiodurans and that its structure and catalytic properties are distinct from those of other related enzymes.  相似文献   

11.
In Escherichia coli, the cold shock response is exerted upon a temperature change from 37°C to 15°C and is characterized by induction of several cold shock proteins, including polynucleotide phosphorylase (PNPase), during acclimation phase. In E. coli, PNPase is essential for growth at low temperatures; however, its exact role in this essential function has not been fully elucidated. PNPase is a 3′-to-5′ exoribonuclease and promotes the processive degradation of RNA. Our screening of an E. coli genomic library for an in vivo counterpart of PNPase that can compensate for its absence at low temperature revealed only one protein, another 3′-to-5′ exonuclease, RNase II. Here we show that the RNase PH domains 1 and 2 of PNPase are important for its cold shock function, suggesting that the RNase activity of PNPase is critical for its essential function at low temperature. We also show that its polymerization activity is dispensable in its cold shock function. Interestingly, the third 3′-to-5′ processing exoribonuclease, RNase R of E. coli, which is cold inducible, cannot complement the cold shock function of PNPase. We further show that this difference is due to the different targets of these enzymes and stabilization of some of the PNPase-sensitive mRNAs, like fis, in the Δpnp cells has consequences, such as accumulation of ribosomal subunits in the Δpnp cells, which may play a role in the cold sensitivity of this strain.  相似文献   

12.
13.
Escherichia coli RNase R, a 3' --> 5' exoribonuclease homologous to RNase II, was overexpressed and purified to near homogeneity in its native untagged form by a rapid procedure. The purified enzyme was free of nucleic acid. It migrated upon gel filtration chromatography as a monomer with an apparent molecular mass of approximately 95 kDa, in close agreement with its expected size based on the sequence of the rnr gene. RNase R was most active at pH 7.5-9.5 in the presence of 0.1-0.5 mm Mg(2+) and 50-500 mm KCl. The enzyme shares many catalytic properties with RNase II. Both enzymes are nonspecific processive ribonucleases that release 5'-nucleotide monophosphates and leave a short undigested oligonucleotide core. However, whereas RNase R shortens RNA processively to di- and trinucleotides, RNase II becomes more distributive when the length of the substrate reaches approximately 10 nucleotides, and it leaves an undigested core of 3-5 nucleotides. Both enzymes work on substrates with a 3'-phosphate group. RNase R and RNase II are most active on synthetic homopolymers such as poly(A), but their substrate specificities differ. RNase II is more active on poly(A), whereas RNase R is much more active on rRNAs. Neither RNase R nor RNase II can degrade a complete RNA-RNA or DNA-RNA hybrid or one with a 4-nucleotide 3'-RNA overhang. RNase R differs from RNase II in that it cannot digest DNA oligomers and is not inhibited by such molecules, suggesting that it does not bind DNA. Although the in vivo function of RNase R is not known, its ability to digest certain natural RNAs may explain why it is maintained in E. coli together with RNase II.  相似文献   

14.
Cells respond to adverse environmental conditions by synthesizing new proteins or elevating the levels of pre-existing ones that are needed to cope with the particular stress situation. We show here that Escherichia coli RNase R, a processive 3'-to5'-exoribonuclease, is dramatically increased in response to a variety of different stress conditions. Elevation of RNase R activity by as much as 10-fold was observed in response to entry into stationary phase, starvation, and cold shock, and a approximately 3-fold increase was seen during growth in minimal medium compared with rich medium. The elevation in RNase R activity was associated primarily with an increase in RNase R protein. RNase R was previously implicated in quality control of rRNA and tRNA and in the decay of mRNAs with extensive secondary structure. Its dramatic increase under multiple stress conditions suggests extensive remodeling of structured RNA in response to the altered environment.  相似文献   

15.
16.
17.
The production and removal of regulatory RNAs must be controlled to ensure proper physiological responses. SsrA RNA (tmRNA), a regulatory RNA conserved in all bacteria, is cell cycle regulated and is important for control of cell cycle progression in Caulobacter crescentus. We report that RNase R, a highly conserved 3' to 5' exoribonuclease, is required for the selective degradation of SsrA RNA in stalked cells. Purified RNase R degrades SsrA RNA in vitro, and is kinetically competent to account for all SsrA RNA turnover. SmpB, a tmRNA-binding protein, protects SsrA RNA from RNase R degradation in vitro, and the levels of SmpB protein during the cell cycle correlate with SsrA RNA stability. These results suggest that SmpB binding controls the timing of SsrA RNA degradation by RNase R. We propose a model for the regulated degradation of SsrA RNA in which RNase R degrades SsrA RNA from a non-tRNA-like 3' end, and SmpB specifically protects SsrA RNA from RNase R. This model explains the regulation of SsrA RNA in other bacteria, and suggests that a highly conserved regulatory mechanism controls SsrA activity.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号