首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
F Li  C Ma  Q Chen  T Liu  J Shen  J Tu  Y Xing  T Fu 《Journal of genetics》2012,91(2):163-170
Oryza sativa and Brassica napus-two important crops for food and oil, respectively-share high seed yield as a common breeding goal. As a model plant, O. sativa genomics have been intensively investigated and its agronomic traits have been advanced. In the present study, we used the available information on O. sativa to conduct comparative mapping between O. sativa and B. napus, with the aim of advancing research on seed-yield and yield-related traits in B. napus. Firstly, functional markers (from 55 differentially expressed genes between a hybrid and its parents) were used to detect B. napus genes that co-localized with yield-related traits in an F(2:3) population. Referring to publicly available sequences of 55 B. napus genes, 53 homologous O. sativa genes were subsequently detected by screening, and their chromosomal locations were determined using silico mapping. Comparative location of yield-related QTL between the two species showed that a total of 37 O. sativa and B. napus homologues were located in similar yield-related QTL between species. Our results indicate that homologous genes between O. sativa and B. napus may have consistent function and control similar traits, which may be helpful for agronomic gene characterization in B. napus based on what is known in O. sativa.  相似文献   

2.
An advanced backcross population between an accession of Oryza rufipogon (IRGC 105491) and the U.S. cultivar Jefferson (Oryza sativa ssp. japonica) was developed to identify quantitative trait loci (QTLs) for yield, yield components and morphological traits. The genetic linkage map generated for this population consisted of 153 SSR and RFLP markers with an average interval size of 10.3 cM. Thirteen traits were examined, nine of which were measured in multiple environments. Seventy-six QTLs above an experiment-wise significance threshold of P<0.01 (corresponding to an interval mapping LOD>3.6 or a composite interval mapping LOD>3.9) were identified. For the traits measured in multiple environments, 47% of the QTLs were detected in at least two environments. The O. rufipogon allele was favorable for 53% of the yield and yield component QTLs, including loci for yield, grains per panicle, panicle length, and grain weight. Morphological traits related to the domestication process and/or weedy characteristics, including plant height, shattering, tiller type and awns, were found clustered on chromosomes 1 and 4. Comparisons to previous studies involving wild x cultivated crosses revealed O. rufipogon alleles with stable effects in multiple genetic backgrounds and environments, several of which have not been detected in studies between Oryza sativa cultivars, indicating potentially novel alleles from O. rufipogon. Some O. rufipogon-derived QTLs, however, were in similar regions as previously reported QTLs from Oryza sativa cultivars, providing evidence for conservation of these QTLs across the Oryza genus. In addition, several QTLs for grain weight, plant height, and flowering time were localized to putative homeologous regions in maize where QTLs for these traits have been previously reported, supporting the hypothesis of functional conservation of QTLs across the grasses.  相似文献   

3.
Wild germplasm of domesticated crops is a source of genetic variation little utilized in breeding programs. Interspecific crosses can potentially uncover novel gene combinations that can be important for quantitative trait analysis. The combined use of wide crosses and genetic maps of chromosomal regions associated with quantitative traits can be used to broaden the genetic basis of rice breeding programs. Oryza glumaepatula is a diploid (AA genome) wild rice species native from South and Central America. A genetic map was constructed with 162 PCR-based markers (155 microsatellite and 7 STS markers) using a backcross population derived from the cross O. glumaepatula, accession RS-16 from the Brazilian Amazon Region x O. sativa BG-90-2, an elite rice inbred line. The map included 47 new SSR markers developed from an O. glumaepatula genomic library enriched for AG/TC sequences. All SSR markers were able to amplify the O. sativa genome, indicating a high degree of SSR flanking region conservation between O. glumaepatula and O. sativa species. The map covered 1500.4 cM, with an average of one marker every 10 cM. Despite some chromosomes being more densely mapped, the overall coverage was similar to other maps developed for rice. The advantage to construct a SSR-based map is to permit the combination of the speed of the PCR reaction, and the codominant nature of the SSR marker, facilitating the QTL analysis and marker assisted selection for rice breeding programs.  相似文献   

4.
To understand the genetic basis of floral traits associated with the mating system in rice, we analyzed pistil, stamen and glume traits using a recombinant inbred line population, derived from a cross between an Asian cultivated rice ( Oryza sativa L.), Pei-kuh, and a wild rice ( Oryza rufipogon Griff.), W1944. Quantitative trait loci (QTLs) affecting floral morphology were detected by composite interval mapping using a linkage map constructed using 147 markers, mostly RFLPs. A total of 7, 4, 14 and 6 QTLs were detected for traits related to pistil, stamen, and size and shape of the glume, respectively. Comparison of 31 QTLs affecting these organs revealed ten QTLs affecting the different organs in four adjacent regions on chromosomes 2, 4, 5 and 10, but most QTLs (68%) were located separately on the whole chromosomes. Although four QTLs for stigma breadth, anther length and thickness of lemma and palea explained more than 25% of the total phenotypic variance, most QTLs (87%) had smaller effects. These results suggest that quantitative variation observed for pistil, stamen and glume traits is controlled by several distinct genes with small effects.  相似文献   

5.
Li G  Hu W  Qin R  Jin H  Tan G  Zhu L  He G 《Genetica》2008,134(2):169-180
Wild rice is a valuable resource for the genetic improvement of cultivated rice (Oryza sativa L., AA genome). Molecular markers are important tools for monitoring gene introgression from wild rice into cultivated rice. In this study, Simple sequence repeat (SSR) markers were used to analyze interspecific hybrids of O. sativa-O. officinalis (CC genome), the backcrossing progenies and the parent plants. Results showed that most of the SSR primers (335 out of 396, 84.6%) developed in cultivated rice successfully amplified products from DNA samples of wild rice O. officinalis. The polymorphism ratio of SSR bands between O. sativa and O. officinalis was as high as 93.9%, indicating differences between the two species with respect to SSRs. When the SSR markers were applied in the interspecific hybrids, only a portion of SSR primers amplified O. officinalis-specific bands in the F(1) hybrid (52.5%), BC(1) (52.5%), and MAALs (37.0%); a number of the bands disappeared. Of the 124 SSR loci that detected officinalis-specific bands in MAAL plants, 96 (77.4%) showed synteny between the A and C-genomes, and 20 (16.1%) showed duplication in the C-genome. Sequencing analysis revealed that indels, substitution and duplication contribute to the diversity of SSR loci between the genomes of O. sativa and O. officinalis.  相似文献   

6.
Eight Saltol quantitative trait locus (QTL) linked simple sequence repeat (SSR) markers of rice (Oryza sativa L.) were used to study the polymorphism of this QTL in 142 diverse rice genotypes that comprised salt tolerant as well as sensitive genotypes. The SSR profiles of the eight markers generated 99 alleles including 20rare alleles and 16 null alleles. RM8094 showed the highest number (13) of alleles followed by RM3412 (12), RM562 (11), RM493 (9) and RM1287 (8) while as, RM10764 and RM10745 showed the lowest number (6) of alleles. Based on the highest number of alleles and PIC value (0.991), we identified RM8094 as suitable marker for discerning salt tolerant genotypes from the sensitive ones. Based upon the haplotype analysis using FL478 as a reference (salt tolerant genotypes containing Saltol QTL), we short listed 68 rice genotypes that may have at least one allele of FL478 haplotype. Further study may confirm that some of these genotypes might have Saltol QTL and can be used as alternative donors in salt tolerant rice breeding programmes.  相似文献   

7.
Improved root system architecture can enhance agronomic performance by increasing water and nitrogen (N) acquisition efficiency. However, little is known about interaction between root system architecture and agronomic performance under field environments. To gain a better understanding about the genetic basis of these relationships, we evaluated a set of chromosome segment substitution lines (CSSLs) derived from crosses between a tropical japonica rice cultivar ‘Curinga’ and a wild species Oryza rufipogon accession IRGC105491. Root system architectural traits were investigated using the CSSLs at 40 days old seedlings using the root basket method under hydroponic conditions, and agronomic performances were also tested under field conditions with different N treatments. Agronomic performances were computed as the ratio of a trait value under low to high N treatments, including grain yield and biomass yield as nitrogen-deficiency tolerance (NDT) traits. Root architecture and NDT trait QTLs were mapped using 238 SNP marker loci. A total of 13 QTLs for root system architectural, NDT and morpho-physiological traits were identified on chromosomes 1, 3, 4, 5, 7, 8, 9, 10 and 12. Interestingly, a QTL for deeper root number was identified the region of SNP markers between id1012330 and id1021697 on chromosome 1 under hydroponic conditions overlapped with a QTL for NDT trait of relative grain yield (qRGY1). These results suggest that deeper root trait is helpful to maintain grain yield under nitrogen-deficient conditions. The QTL associated root architecture could potentially be used in future rice-breeding efforts to increase agronomic performance under nitrogen-deficient conditions.  相似文献   

8.
Chlorophyll (Chl) content is an important agronomic trait directly affecting the photosynthetic rate. Using a high-density genetic map of 132 recombinant inbred lines (RILs) derived from the cross between 93-11 and PA64s, we detected the quantitative trait loci (QTLs) for Chl content of the top three leaves under two nitrogen (N) conditions at two developmental stages. A total of 32 main-effect QTLs located on chromosomes 1, 4, 5, 6, 7, 8, and 12 were identified, and these QTLs individually accounted for 6.0–20.8?% of the total phenotypic variation. A major QTL qFCC7 L affecting the Chl content under low N condition was identified, and its positive allele came from PA64s. This QTL might be associated with the ability to tolerate low-N stress in rice. The chromosomal segment substitution line (CSSL) with the corresponding segment from PA64s had a higher SPAD value and photosynthetic rate than 93-11 and showed a lower specific leaf area (SLA). We performed a fine-mapping using a BC4F2 population via marker-assisted backcross and finally mapped this QTL to a 124.5 kb interval on the long arm of chromosome 7. Candidate gene analysis showed that there were sequence variations and expression differences in the predicted candidate gene between the two parents. These results suggest that the QTL qFCC7 L may be useful for breeding the rice varieties with higher photosynthetic rate and grain yield.  相似文献   

9.
Drought stress is the major constraint to rice (Oryza sativa L.) production and yield stability in rainfed ecosystems. Identifying genomic regions contributing to drought resistance will help to develop rice cultivars suitable for rainfed regions through marker-assisted breeding. Quantitative trait loci (QTLs) linked to leaf epicuticular wax, physio-morphological and plant production traits under water stress and irrigated conditions were mapped in a doubled haploid (DH) line population from the cross CT9993-5-10-1-M/IR62266-42-6-2. The DH lines were subjected to water stress during anthesis. The DH lines showed significant variation for epicuticular wax (EW), physio-morphological and plant production traits under stress and irrigated conditions. A total of 19 QTLs were identified for the various traits under drought stress and irrigated conditions in the field, which individually explained 9.6%–65.6% of the phenotypic variation. A region EM15_10-ME8_4-R1394A-G2132 on chromosome 8 was identified for leaf EW and rate of water loss i.e., time taken to reach 70% RWC from excised leaves in rice lines subjected to drought stress. A large effect QTL (65.6%) was detected on chromosome 2 for harvest index under stress. QTLs identified for EW, rate of water loss from excised leaves and harvest index under stress in this study co-located with QTLs linked to shoot and root-related drought resistance traits in these rice lines and might be useful for rainfed rice improvement.  相似文献   

10.
This study was conducted to identify and map the quantitative trait locus (QTL) controlling Al tolerance in rice using molecular markers. A population of 171 F(6) recombinant inbred lines (RILs) derived from the cross of Oryza sativa (IR64), the Al susceptible parent, and Oryza rufipogon, the Al tolerant parent, was evaluated for Al tolerance using a nutrient solution with and without 40 ppm of active Al(+3). A genetic map, consisting of 151 molecular markers covering 1,755 cM with an average distance of 11.6 cM between loci, was constructed. Nine QTLs were dentified including one for root length under non-stress conditions (CRL), three for root length under Al stress (SRL) and five for relative root length (RRL). O. rufipogon contributed favorable alleles for each of the five QTLs for RRL, which is a primary parameter for Al tolerance, and individually they explained 9.0-24.9% of the phenotypic variation. Epistatic analysis revealed that CRL was conditioned by an epistatic effect, whereas SRL and RRL were controlled by additive effects. Comparative genetic analysis showed that QTLs for RRL, which mapped on chromosomes 1 and 9, appear to be consistent among different rice populations. Interestingly, a major QTL for RRL, which explained 24.9% of the phenotypic variation, was found on chromosome 3 of rice, which is conserved across cereal species. These results indicate the possibilities to use marker-assisted selection and pyramiding QTLs for enhancing Al tolerance in rice. Positional cloning of such QTLs introgressed from O. rufipogon will provide a better understanding of the Al tolerance mechanism in rice and the evolutionary genetics of plant adaptation to acid-soil conditions across cereal species.  相似文献   

11.
A BC2F2 population developed from an interspecific cross between Oryza sativa (cv IR64) and O. rufipogon (IRGC 105491) was used in an advanced backcross QTL analysis to identify and introduce agronomically useful genes from this wild relative into the cultivated gene pool. The objectives of this study were: (1) to identify putative yield and yield component QTLs that can be useful to improve the elite cultivar IR64; (2) to compare the QTLs within this study with previously reported QTLs in rice as the basis for identifying QTLs that are stable across different environments and genetic backgrounds; and (3) to compare the identified QTLs with previously reported QTLs from maize to examine the degree of QTL conservation across the grass family. Two hundred eighty-five families were evaluated in two field environments in Indonesia, with two replications each, for 12 agronomic traits. A total of 165 markers consisting of 131 SSRs and 34 RFLPs were used to construct the genetic linkage map. By employing interval mapping and composite interval mapping, 42 QTLs were identified. Despite its inferior performance, 33% of the QTL alleles originating from O. rufipogon had a beneficial effect for yield and yield components in the IR64 background. Twenty-two QTLs (53.4%) were located in similar regions as previously reported rice QTLs, suggesting the existence of stable QTLs across genetic backgrounds and environments. Twenty QTLs (47.6%) were exclusively detected in this study, uncovering potentially novel alleles from the wild, some of which might improve the performance of the tropical indica variety IR64. Additionally, several QTLs for plant height, grain weight, and flowering time detected in this study corresponded to homeologous regions in maize containing previously detected maize QTLs for these traits.  相似文献   

12.

Key message

A wild rice QTL qGL12.2 for grain length was fine mapped to an 82-kb interval in chromosome 12 containing six candidate genes and none was reported previously.

Abstract

Grain length is an important trait for yield and commercial value in rice. Wild rice seeds have a very slender shape and have many desirable genes that have been lost in cultivated rice during domestication. In this study, we identified a quantitative trait locus, qGL12.2, which controls grain length in wild rice. First, a wild rice chromosome segment substitution line, CSSL41, was selected that has longer glume and grains than does the Oryza sativa indica cultivar, 9311. Next, an F2 population was constructed from a cross between CSSL41 and 9311. Using the next-generation sequencing combined with bulked-segregant analysis and F3 recombinants analysis, qGL12.2 was finally fine mapped to an 82-kb interval in chromosome 12. Six candidate genes were found, and no reported grain length genes were found in this interval. Using scanning electron microscopy, we found that CSSL41 cells are significantly longer than those of 9311, but there is no difference in cell widths. These data suggest that qGL12.2 is a novel gene that controls grain cell length in wild rice. Our study provides a new genetic resource for rice breeding and a starting point for functional characterization of the wild rice GL gene.
  相似文献   

13.
Increasing the rice productivity from the current 10 to 12 tons/ha to meet the demand of estimated 8.8 billion people in 2035 is posing a major challenge. Wild relatives of rice contain some novel genes which can help in improving rice yield. Spikelet per panicle (SPP) is a valuable trait for determining yield potential in rice. In this study, a major QTL for increasing SPP has been identified, mapped, and transferred from African wild rice O. longistaminata to O. sativa (L.). The QTL was mapped on the long arm of chromosome 2 in a 167.1 kb region flanked by SSR markers RM13743 and RM13750, which are 1.0 cM apart, and is designated as qSPP2.2. The QTL explained up to 30% of phenotypic variance in different generations/seasons and showed positive additive effect of allele contributed by O. longistaminata. In addition, O. longistaminata allele in qSPP2.2 contributed to increase in grains per panicle, but decrease in the tillers per plant. The 167.1 kb region contains 23 predicted genes. Based on the functional annotation, three genes, LOC_Os02g44860, LOC_Os02g44990, and LOC_Os02g45010, were selected as putative candidates for characterization. Sequence analysis of the three genes revealed functional variations between the parental lines for LOC_Os02g44990 and a variation in 5′UTR for LOC_Os02g45010 which will help further to identify putative candidate gene(s). This is the first yield component QTL to be identified, mapped, and transferred from O. longistaminata.  相似文献   

14.
Wild rice genotypes are rich in genetic diversity. This has potential to improve agronomic rice by allele mining for superior traits. Late embryogenesis abundant (LEA) proteins are often associated with desiccation tolerance and stress signalling. In the present study, a group 3 LEA gene, Wsi18 from the wild rice Oryza nivara was expressed under its own inducible promoter element in stress susceptible cultivated indica rice (cv. IR20). The resulting transgenic plants cultivated in a greenhouse showed enhanced tolerance to soil water deficit. Transgenic plants had higher grain yield, plant survival rate, and shoot relative water content compared to wild type (WT) IR20. Cell membrane stability index, proline and soluble sugar content were also greater in transgenic than WT plants under water stress. These results demonstrate the potential for improving SWS tolerance in agronomically important rice cultivar by incorporating Wsi18 gene from a wild rice O. nivara.  相似文献   

15.
The objective of this study was to identify quantitative trait loci (QTLs) associated with grain quality in rice. Two hundred eighty-five BC2F2 families developed from an interspecific cross between cv IR64 and Oryza rufipogon (IRGC 105491) were evaluated for 14 seed quality traits. A total of 165 markers consisting of 131 single sequence repeats and 34 restriction fragment length polymorphism markers were used to create a genetic linkage map spanning the 12 rice chromosomes. Twenty-three independent QTLs were identified using single point analysis, interval mapping, and composite interval mapping. These loci consisted of one QTL for filled rough/total rough rice ratio, two for grain density, one for percentage of de-husked rice grains, two for percentage of green rice grains, three for percentage of damaged-yellow rice grains, two for percentage of red rice grains, one for milled rice recovery, three for head rice recovery, four for broken rice grains, two for crushed rice grains, one for amylose content, and one for gel consistency. For most of the QTLs identified in this study, the O. rufipogon-derived allele contributed an undesirable effect. For amylose content and gel consistency, the O. rufipogon allele may be useful in an IR64 background, depending on the cultural preferences of the consumer. Careful selection against the regions associated with negative effects will be required to avoid unwanted grain quality characteristics during the development of improved varieties for yield and yield components using introgressions from O. rufipogon.Communicated by D. Mackill  相似文献   

16.
An advanced backcross QTL study was performed in pepper using a cross between the cultivated species Capsicum annuum cv. Maor and the wild C. frutescens BG 2816 accession. A genetic map from this cross was constructed, based on 248 BC(2) plants and 92 restriction fragment length polymorphism (RFLP) markers distributed throughout the genome. Ten yield-related traits were analyzed in the BC(2) and BC(2)S(1) generations, and a total of 58 quantitative trait loci (QTLs) were detected; the number of QTLs per trait ranged from two to ten. Most of the QTLs were found in 11 clusters, in which similar QTL positions were identified for multiple traits. Unlike the high percentage of favorable QTL alleles discovered in wild species of tomato and rice, only a few such QTL alleles were detected in BG 2816. For six QTLs (10%), alleles with effects opposite to those expected from the phenotype were detected in the wild species. The use of common RFLP markers in the pepper and tomato maps enabled possible orthologous QTLs in the two species to be determined. The degree of putative QTL orthology for the two main fruit morphology traits-weight and shape-varied considerably. While all eight QTLs identified for fruit weight in this study could be orthologous to tomato fruit weight QTLs, only one out of six fruit shape QTLs found in this study could be orthologous to tomato fruit shape QTLs.  相似文献   

17.
Drought stress is a major limitation to rice (Oryza sativa L.) yields and its stability, especially in rainfed conditions. Developing rice cultivars with inherent capacity to withstand drought stress would improve rainfed rice production. Mapping quantitative trait loci (QTLs) linked to drought resistance traits will help to develop rice cultivars suitable for water-limited environments through molecular marker-assisted selection (MAS) strategy. However, QTL mapping is usually carried out by genotyping large number of progenies, which is labour-intensive, time-consuming and cost-ineffective. Bulk segregant analysis (BSA) serves as an affordable strategy for mapping large effect QTLs by genotyping only the extreme phenotypes instead of the entire mapping population. We have previously mapped a QTL linked to leaf rolling and leaf drying in recombinant inbred (RI) lines derived from two locally adapted indica rice ecotypes viz., IR20/Nootripathu using BSA. Fine mapping the QTL will facilitate its application in MAS. BSA was done by bulking DNA of 10 drought-resistant and 12 drought-sensitive RI lines. Out of 343 rice microsatellites markers genotyped, RM8085 co-segregated among the RI lines constituting the respective bulks. RM8085 was mapped in the middle of the QTL region on chromosome 1 previously identified in these RI lines thus reducing the QTL interval from 7.9 to 3.8 cM. Further, the study showed that the region, RM212–RM302–RM8085–RM3825 on chromosome 1, harbours large effect QTLs for drought-resistance traits across several genetic backgrounds in rice. Thus, the QTL may be useful for drought resistance improvement in rice through MAS and map-based cloning.  相似文献   

18.
Panicle erectness (PE) is one of the most important traits for high-yielding japonica cultivars. Although several cultivars with PE trait have been developed and released for commercial production in China, there is little information on the inheritance of PE traits in rice. In the present study, 69 widely cultivated japonica cultivars and a double haploid (DH) population derived from a cross between a PE cultivar (Wuyunjing 8) and a drooping panicle cultivar (Nongken 57) were utilized to elucidate the mechanisms of PE formation and to map PE associated genes. Our data suggested that panicle length (PL) and plant height (PH) significantly affected panicle curvature (PC), with shorter PL and PH resulting in smaller PC and consequently more erect. A putative major gene was identified on chromosome 9 by molecular markers and bulk segregant analysis in DH population. In order to finely map the major gene, all simple sequence repeats (SSR) markers on chromosome 9 as well as 100 newly developed sequence-tagged site (STS) markers were used to construct a linkage group for quantitative trait locus (QTL) mapping. A major QTL, qPE9-1, between STS marker H90 and SSR marker RM5652, was detected, and accounted for 41.72% of PC variation with pleiotropic effect on PH and PL. another QTL, qPE9-2, was also found to be adjacent to qPE9-1. In addition, we found that H90, the nearest marker to qPE9-1, used for genotyping 38 cultivars with extremely erect and drooping panicles, segregated in agreement with PC, suggesting the H90 product was possibly part of the qPE9-1 gene or closely related to it. These data demonstrated that H90 could be used for marker-aided selection for the PE trait in breeding and in the cloning of qPE9-1.  相似文献   

19.
20.
Traditional basmati rice varieties are very low yielding due to their poor harvest index, tendency to lodging and increasing susceptibility to foliar diseases; hence there is a need to develop new varieties combining the grain quality attributes of basmati with high yield potential to fill the demand gap. Genetic control of basmati grain and cooking quality traits is quite complex, but breeding work can be greatly facilitated by use of molecular markers tightly linked to these traits. A set of 209 recombinant inbred lines (RILs) developed from a cross between basmati quality variety Pusa 1121 and a contrasting quality breeding line Pusa 1342, were used to map the quantitative trait loci (QTLs) for seven important quality traits namely grain length (GL), grain breadth (GB), grain length to breadth ratio (LBR), cooked kernel elongation ratio (ELR), amylose content (AC), alkali spreading value (ASV) and aroma. A framework molecular linkage map was constructed using 110 polymorphic simple sequence repeat (SSR) markers distributed over the 12 rice chromosomes. A number of QTLs, including three for GL, two for GB, two for LBR, three for aroma and one each for ELR, AC and ASV were mapped on seven different chromosomes. While location of majority of these QTLs was consistent with the previous reports, one QTL for GL on chromosomes 1, and one QTL each for ELR and aroma on chromosomes 11 and 3, respectively, are being reported here for the first time. Contrary to the earlier reports of monogenic recessive inheritance, the aroma in Pusa 1121 is controlled by at least three genes located on chromosomes 3, 4 and 8, and similar to the reported association of badh2 gene with aroma QTL on chromosome 8, we identified location of badh1 gene in the aroma QTL interval on chromosome 4. A discontinuous 5 + 3 bp deletion in the seventh exon of badh2 gene, though present in all the RILs with high aroma, was not sufficient to impart this trait to the rice grains as many of the RILs possessing this deletion showed only mild or no aroma expression. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号