首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carassius RFamide (C-RFa) is a novel peptide found in the brain of the Japanese crucian carp. It has been demonstrated that mRNA of C-RFa is present in the telencephalon, optic tectum, medulla oblongata, and proximal half of the eyeball in abundance. Immunohistochemical methods were employed to elucidate the distribution of the peptide in the brain of the goldfish (Carassius auratus) in detail. C-RFaimmunoreactive perikarya were observed in the olfactory bulb, the area ventralis telencephali pars dorsalis and lateralis, nucleus preopticus, nucleus preopticus periventricularis, nucleus lateralis tuberis pars posterioris, nucleus posterioris periventricularis, nucleus ventromedialis thalami, nucleus posterioris thalami, nucleus anterior tuberis, the oculomotor nucleus, nucleus reticularis superior and inferior, facial lobe, and vagal lobe. C-RFa immunoreactive fibers and nerve endings were present in the olfactory bulb, olfactory tract, area dorsalis telencephali pars centralis and medialis, area ventralis telencephali, midbrain tegmentum, diencephalon, medulla oblongata and pituitary. However, in the optic tectum the immunopositive perikarya and fibers were less abundant. Based on these results, some possible functions of C-RFa in the nervous system were discussed.  相似文献   

2.
Summary A light microscopic immunocytochemical study of the brain of frogs with hypothalamic lesions was performed in order to obtain evidence concerning the origin of somatostatin fibers in the median eminence and neural lobe of the hypophysis. The results indicate that the somatostatin fibers of the neural lobe originate from somatostatin perikarya located in the prechiasmatic part of the hypothalamus and possibly also in the telencephalon. The somatostatin neurons of the pars ventralis tuberis cinerei do not send axons to the neural lobe. The frog median eminence contains axon terminals of somatostatin neurons located in the pars ventralis of the tuber cinereum. Many other somatostatin fibers of the frog median eminence originate from somatostatin neurons located outside the tuber cinereum. Most of these neurons probably lie in the preoptic hypothalamic region.This investigation was supported by a grant from the Belgian Nationaal Fonds voor Geneeskundig Wetenschappelijk Onderzoek  相似文献   

3.
Summary The localization of vasoactive intestinal polypeptide (VIP) in the hypothalamus of the quail has been studied by means of light- and electron-microscopic immunohistochemistry. Numerous VIP-immunoreactive perikarya are distributed in the caudal portion of the nucleus infundibularis (n. tuberis) and nucleus mamillaris lateralis, and sparse in the preoptic area, nucleus supraopticus and nucleus paraventricularis. Dense localization of immunoreactive-VIP fibers is observed in the external layer of the median eminence, in close contact with the primary portal capillaries. The main origins of these fiber terminals are VIP-immunoreactive perikarya of the nucleus infundibularis. These neurons are spindle or bipolar and extend one process to the ventricular surface and another to the external layer of median eminence. They are CSF-contacting neurons and apparently constitute the tubero-hypophysial tract that links the third ventricle and the hypophysial portal circulation. VIP-reactive neurons in the nucleus mamillaris lateralis also project axons to the external layer of the median eminence, constituting the posterior bundle of the tuberohypophysial tract. Numerous VIP-immunoreactive perikarya occur also in the nucleus accumbens/pars posterior close to the lateral ventricle. They are also CSF-contacting neurons extending a process to the lateral ventricle. There are moderate distributions of VIP-reactive fibers in the area ventralis and in the area septalis.Ultrastructurally, the immunoreactive products against VIP are found in the elementary granules, 75–115 nm in diameter, within the nerve fibers in the median eminence.This investigation was supported by Scientific Research Grants No. 00556196, No. 56360027 and No. 56760183 from the Ministry of Education of Japan to Professor Mikami and Mr. Yamada  相似文献   

4.
Summary Immunoreactive neuropeptide Y and dynorphin have been localized in the brain and pituitary gland of the platyfish, Xiphophorus maculatus, at different ages and stages of development from birth to sexual maturity. Immunoreactive neuropeptide Y was found in perikarya and tracts of the nucleus olfactoretinalis, telencephalon, ventral tegmentum and in the neurohypophysis and in the three regions of the adenohypophysis. Immunoreactive dynorphin was found in nerve tracts in the olfactory bulb and in cells of the pars intermedia and the rostral pars distalis of the pituitary gland.  相似文献   

5.
Summary The distribution of immunoreactive thyrotropin-releasing hormone (TRH) in the central nervous system of the domestic mallard was studied by means of the peroxidase-antiperoxidase technique. After colchicine pretreatment, the highest number of TRH-immunoreactive perikarya was found in the parvocellular subdivision of the paraventricular nucleus and in the preoptic region; a smaller number of immunostained perikarya was observed in the lateral hypothalamic area and in the posterior medial hypothalamic nucleus. TRH-immunoreactive nerve fibers were detected throughout the hypothalamus, forming a dense network in the periventricular area, paraventricular nucleus, preoptic-suprachiasmatic region, and baso-lateral hypothalamic area. TRH-containing nerve fibers and terminals occurred in the organon vasculosum of the lamina terminalis and in the external zone of the median eminence in juxtaposition with hypophyseal portal vessels. Scattered fibers were also seen in the internal zone of the median eminence and in the rostral portion of the neural lobe. Numerous TRH-immunoreactive fibers were detected in extra-hypothalamic brain regions: the highest number of immunoreactive nerve fibers was found in the lateral septum, nucleus accumbens, olfactory tubercle, and parolfactory lobe. Moderate numbers of fibers were located in the basal forebrain, dorsomedial thalamic nuclei, hippocampus, interpeduncular nucleus, and the central gray of the mesencephalon. The present findings suggest that TRH may be involved in hypophysiotropic regulatory mechanisms and, in addition, may also act as neuromodulator or neurotransmitter in other regions of the avian brain.  相似文献   

6.
The distribution of corticotropin-releasing hormone in the brain of the snake Bothrops jararaca was studied immunohistochemically. Immunoreactive neurons were detected in telencephalic, diencephalic and mesencephalic areas such as dorsal cortex, subfornical organ, paraventricular nucleus, recessus infundibular nucleus, nucleus of the oculomotor nerve and nucleus of the trigeminal nerve. Immunoreactive fibres ran along the hypothalamo-hypophysial tract to end in the outer layer of the median eminence and the neural lobe of the hypophysis. In general, immunoreactive fibres occurred in the same places of immunoreactive neurons. In addition, immunoreactive fibres were observed in the septum, amygdala, lamina terminalis, supraoptic nucleus, nucleus of the paraventricular organ, ventromedial hypothalamic nucleus and interpeduncular nucleus. These results indicate that, as for other vertebrates, corticotropin-releasing hormone in B. jararaca brain, besides being a releasing hormone, may also act as a central neurotransmitter and/or neuromodulator.  相似文献   

7.
We have investigated the localization of atrial natriuretic factor (ANF)-like immunoreactivity in the central nervous system of the cartilaginous fish, Scyliorhinus canicula, using the indirect immunofluorescence technique. Immunoreactive perikarya and fibers were observed in two regions of the telencephalon, the area superficialis basalis and the area periventricularis ventrolateralis. In the diencephalon, the hypothalamus exhibited a moderate number of ANF-containing neurons and fibers located in the preoptic and periventricular nuclei and in the nucleus lateralis tuberis. The most important group of ANF-immunoreactive cells was observed in the nucleus tuberculi posterioris of the diencephalon. In contrast, the mesencephalon showed only a few ANF-positive nerve processes located in the tegmentum mesencephali. Numerous fine fibers and nerve terminals were found in the dorsal area of the neurointermediate lobe of the pituitary. These results provide the first evidence for the presence of ANF-related peptides in the brain of a cartilaginous fish. The widespread distribution of ANF-positive cells and fibers in the brain and pituitary suggests that this peptide may act both as a neurotransmitter and (or) a neurohormone in fish.  相似文献   

8.
Summary An antiserum to growth hormone-releasing factor (GRF) 1-44 was applied on brain and pituitary sections of nine teleost species. Immunoreactive (ir) perikarya were demonstrated in parvo- and magnocellular portions of the preoptic nucleus (PON) and occasionally in the nucleus lateralis tuberis. The two tracts originating in the PON ran ventro-laterally toward the optic chiasm and then caudally in the basal hypothalamus. In the pars distalis (PD) of the eel, carp, goldfish and salmonids, GRF-ir fibers did not enter the rostral PD and few fibers passed close to somatotropes. In.Myoxocephalus andMugil, a variable number of ir-fibers passed close to cells of the rostral and proximal PD. In the neurointermediate lobe, GRF-ir fibers were located exclusively in the neural tissue of the eel and trout. In goldfish, carp andMyoxocephalus, GRF-ir fibers entered the intermediate lobe. This antiserum also labeled corticotrops and, to a lesser extent, melanotrops in the pituitary of cyprinids. A variable number of perikarya contained both GRF and vasotocin in the PON of the eel. In all teleost species studied so far, the distribution patterns of GRF are different, and the function of the various adenohypophysial cell types appears to be differently modulated, according to the variable distribution of GRF in the pituitary.  相似文献   

9.
Seki  T.  Nakai  Y.  Shioda  S.  Mitsuma  T.  Kikuyama  S. 《Cell and tissue research》1983,233(3):507-516
The distribution of immunoreactive thyrotropin-releasing hormone (TRH) in the forebrain and hypophysis of Rana catesbeiana was studied by means of specific radioimmunoassay and immunohistochemistry based on peroxidase-antiperoxidase (PAP) techniques. A relatively high concentration of immunoassayable TRH is present in the hypothalamus. Immunoreactive TRH cell bodies are found in the anterior part of the preoptic nucleus, the dorsal infundibular nucleus, the nucleus of diagonal band of Broca, and the medial part of the amygdala. Immunoreactive nerve terminals are observed in the neurohypophysis and the external layer of the median eminence, where the terminals are in close contact with the capillary loops of the hypophyseal portal vessels. The possible role of TRH in the frog brain is discussed.  相似文献   

10.
The development of the hypothalamic melanin-concentrating hormone (MCH) system of the teleost Sparus auratus has been studied by immunocytochemistry using an anti-salmon MCH serum. Immunoreactive perikarya and fibers are found in embryos, larvae, and juvenile specimens. In juveniles, most labeled neurons are present in the nucleus lateralis tuberis; some are dispersed in the nucleus recessus lateralis and nucleus periventricularis posterior. From the nucleus lateralis tuberis, MCH neurons project a conspicuous tract of fibers to the ventral hypothalamus; this penetrates the pituitary stalk and reaches the neurohypophysis. Most fibers end close to the cells of the pars intermedia, and some reach the adenohypophysial rostral pars distalis. Immunoreactive fibers can also be seen in extrahypophysial localizations, such as the preoptic region and the nucleus sacci vasculosi. In embryos, MCH-immunoreactive neurons first appear at 36 h post-fertilization in the ventrolateral margin of the developing hypothalamus. In larvae, at 4 days post-hatching, perikarya can be observed in the ventrolateral border of the hypothalamus and in the mid-hypothalamus, near the ventricle. At 26 days post-hatching, MCH perikarya are restricted to the nucleus lateralis tuberis. The neurohypophysis possesses MCH-immunoreactive fibers from the second day post-hatching. The results indicate that MCH plays a role in larval development with respect to skin melanophores and cells that secrete melanocyte-stimulating hormone. Received: 4 April 1995 / Accepted: 17 July 1995  相似文献   

11.
Summary The distribution of somatostatin (SRIF) — and corticotropin-releasing factor (CRF)-like — immunoreactive material was studied in the brain of four amphibian species (Ambystoma mexicanum, Pleurodeles waltlii, Xenopus laevis, Rana ridibunda) by use of immunocytochemistry. A wide network of SRIF-immunoreactive fibers and numerous perikarya were observed in all amphibians examined, with a dense accumulation of nerve endings in the external layer of the median eminence (ELME). In the representatives of the four amphibian species the CRF-like system was more circumscribed. Immunoreactive perikarya were present in the preoptic area, mainly in a ventrobasal position, and in the interpeduncular nucleus. The tract running along the ventral part of the tuber cinereum ends in the ELME facing the rostroventral lobe of the pars distalis that contains corticotrophs. CRF fibers were scarce or absent in the neural lobe. In all species studied in the present work, CRF fibers end in the area of the ELME close to the pituitary lobe containing corticotrophs. This correlation is similar to that reported for the Japanese quail and several teleosts.This work was supported by a grant from the Belgian Nationaal Fonds voor Geneeskundig Wetenschappelijk Onderzoek and the CNRS  相似文献   

12.
Summary The occurrence and localization of immunoreactive corticotropin-releasing factor (CRF) in the brain and pituitary of the elasmobranch fish Scyliorhinus canicula, were studied by means of specific radioimmunoassay and immunohistochemistry using the indirect immunofluorescence method. Brain and pituitary extracts showed a good cross-reactivity with the ovine CRF antiserum, but serial dilutions of tissue samples did not completely parallel the standard curve. Relatively high concentrations of CRF-like material were found within the pituitary, diencephalon, and telencephalon. CRF-like immunoreactive perikarya were observed in the preoptic nucleus and in the nucleus lateralis tuberis. Numerous immunoreactive cells appeared to be of the CSF-contacting type. CRF-like immunopositive fibers were seen to run through the hypothalamus within the ventro-medial floor of the infundibular region. A dense plexus of immunoreactive nerve endings terminated in the median eminence and the neurointermediate lobe of the pituitary. These results indicate that a neurosecretory system containing CRF-like immunoreactivity exists in the brain of elasmobranchs, a group of vertebrates which has diverged early from the evolutionary line leading to mammals. In addition, our data support the notion that a CRF-like molecule is involved in the regulation of corticotropic and melanotropic cell activity in this primitive species of fish.  相似文献   

13.
We have investigated the localization of atrial natriuretic factor (ANF)-like immunoreactivity in the central nervous system of the cartilaginous fish, Scyliorhinus canicula, using the indirect immunofluorescence technique. Immunoreactive perikarya and fibers were observed in two regions of the telencephalon, the area superficialis basalis and the area periventricularis ventrolateralis. In the diencephalon, the hypothalamus exhibited a moderate number of ANF-containing neurons and fibers located in the preoptic and periventricular nuclei and in the nucleus lateralis tuberis. The most important group of ANF-immunoreactive cells was observed in the nucleus tuberculi posterioris of the diencephalon. In contrast, the mesencephalon showed only a few ANF-positive nerve processes located in the tegmentum mesencephali. Numerous fine fibers and nerve terminals were found in the dorsal area of the neurointermediate lobe of the pituitary. These results provide the first evidence for the presence of ANF-related peptides in the brain of a cartilaginous fish. The widespread distribution of ANF-positive cells and fibers in the brain and pituitary suggests that this peptide may act both as a neurotransmitter and (or) a neurohormone in fish.  相似文献   

14.
Summary The distribution of the molluscan cardioexcitatory tetrapeptide FMRFamide (Phe-Met-Arg-Phe-NH2) in the brain of the cloudy dogfish, Scyliorhinus torazame, was examined by immunocytochemistry. FMRFamide-like immunoreactivity was demonstrated to occur extensively in various regions of the dogfish brain, except for the corpus cerebelli. Immunoreactive neuronal perikarya were located in the ganglion of the nervus terminalis, the preoptic area, and the hypothalamic periventricular gray matter consisting of the nucleus medius hypothalamicus, the nucleus lateralis tuberis, and the nucleus lobi lateralis. some of the immunoreactive cells in the hypothalamus were identified as cerebrospinal fluid-contacting neurons. The bulk of the immunostained fibers in the nervus terminalis penetrated into the midventral portion of the telencephalon and ran dorsocaudally toward the basal telencephalon and hypothalamus, showing radial projections or ramifications. The labeled fibers were abundant in the midbasal part of the telencephalon and in the hypothalamus, where some fibers were found in loose networks around the cell bodies of the nucleus septi and hypothalamic periventricular nuclei. The fibers demonstrated in the hypothalamus terminated around the vascular wall of the primary capillary plexus of the median eminence or penetrated deeply into the pars intermedia of the hypophysis. These results suggest that, in the dogfish, an FMRFamide-like substance participates in the regulation of adenohypophysial function. This molecule may have a role as a neurotransmitter and/or neuromodulator in the central nervous system.  相似文献   

15.
Summary Using a specific antiserum raised against synthetic neuropeptide Y, we examined the localization of immunoreactivity in the brain and hypophysis of the cloudy dogfish, Scyliorhinus torazame, by the peroxidase-antiperoxidase method. Immunoreactive perikarya were demonstrated in the ganglion of the nervus terminalis, the dorsocaudal portions of the pallium dorsale, the basal telencephalon, and the nucleus lateralis tuberis and the nucleus lobi lateralis in the hypothalamus. Labeled perikarya were also found in the tegmentum mesencephali, the corpus cerebelli, and the medulla oblongata. Some of the immunoreactive neurons in the hypothalamus were of the CSF-contacting type. The bulk of the labeled fibers in the nervus terminalis ran toward the basal telencephalon, showing radial projections and ramifications. Large numbers of these fibers coursed into the nucleus septi caudoventralis and the nucleus interstitialis commissurae anterioris, where they became varicose and occasionally formed fine networks or invested immunonegative perikarya. In the diencephalon, immunoreactive fibers were observed throughout the hypothalamus, e.g., in the pars neurointermedia of the hypophysis, the subependymal layer of the lobus inferior hypothalami, and in the neuropil of the posterior (mammillary) recess organ. Labeled fibers were scattered throughout the rest of the brain stem and were also seen in the granular layer of the cerebellum. These results suggest that, in the dogfish brain, neuropeptide Y or a related substance is involved in a variety of physiological processes in the brain, including the neuroendocrine control of the hypophysis.  相似文献   

16.
The distribution of delta sleep-inducing peptide (DSIP) in the brain and pituitary of the cartilaginous fish Scyliorhinus canicula was investigated using the indirect immunofluorescence technique. Delta sleep-inducing peptide-like immunoreactive cell bodies were mainly observed in the nucleus lateralis tuberis of the hypothalamus. Immunolabeled perikarya were also distributed in the nucleus lobi lateralis hypothalami and in the dorso-lateral wall of the recessus posterioris. Most of these cells, located in the subependymal layers of the infundibulum and lateral lobes, had the typical aspect of cerebrospinal fluid-contacting elements. The DSIP-like immunoreactive fibers were localized in the basal telencephalon, within the regions of the nucleus interstitialis commissurae anterioris and the nucleus entopeduncularis. A dense network of DSIP-positive fibers was seen throughout the midcaudal hypothalamus, the lateral lobes, and the posterior lobe. In the pituitary, numerous DSIP-like immunoreactive cells were detected in the median lobe of the pars distalis. In particular, a high concentration of cells was seen in the dorsal wall of the median lobe, an area which is known to contain melanin-concentrating hormone (MCH)-producing cells. Comparison of the distribution of DSIP- and MCH-like immunoreactive cells revealed that the two neuropeptides are stored in the same cells of the median lobe of the pituitary. These findings provide the first evidence for the presence of a DSIP-related peptide in fish. The distribution of the immunoreactive material supports the view that DSIP may act as a neuromodulator and/or a hypophysiotropic factor. Moreover, the presence of DSIP-like immunoreactive cells in the pars distalis suggests that this peptide may exert autocrine or paracrine effect in the pituitary.  相似文献   

17.
N S Krishna  N K Subhedar 《Peptides》1992,13(1):183-191
The anatomical distribution of FMRFamide-like immunoreactivity in the forebrain and pituitary of the catfish, Clarias batrachus, was investigated. Immunoreactive cells were observed in the ganglion cells of the nervus terminalis (NT) and in the medial olfactory tracts. In the preoptic area, FMRFamide-containing perikarya were restricted to the lateral preoptic area, paraventricular subdivision of the nucleus preopticus, nucleus suprachiasmaticus and nucleus preopticus periventricularis posterior. In the postoptic area, some cells of the nucleus postopticus lateralis and nucleus of the horizontal commissure showed moderate immunoreactivity. In the tuberal area, immunoreactivity was observed in few cells of the nucleus hypothalamicus ventralis and nucleus arcuatus hypothalamicus (NAH). Nucleus ventromedialis thalami was the only thalamic nucleus with FMRFamide immunoreactivity. Immunoreactive processes were traceable from the NT through the medial as well as lateral olfactory tracts into the telencephalon and the area ventralis telencephali pars supracommissuralis (Vs). Further caudally, the immunoreactive fibers could be traced into discrete areas, including habenular and posterior commissures, neurohypophysis and pituitary; isolated fibers were also observed in the pineal stalk. A loose network of immunoreactive processes was observed in the olfactory bulbs and the entire telencephalon, with higher densities in some areas, including Vs. A dense plexus of immunoreactive fibers was seen in the pre- and postoptic areas and around the paraventricular organ, while relatively few were observed in the thalamus. A high concentration of fiber terminals was found in the caudal tuberal area.  相似文献   

18.
GnRH-associated peptide (GAP)-like immunonreactive elements located in the human hypothalamus were investigated by PAP immunocytochemistry using specific antiserum against [pro-GnRH (14-69) OH]. Immunoreactive neuronal perikarya were distributed in the MPOA, PVN and infundibular nucleus, with the largest numbers of GAP-like immunoreactive perikarya found in the infundibular nucleus. We also detected the coexistence of GAP-like and GnRH-like immunoreactivities in the same neuronal perikarya in the MPOA by using a double immunolabelling procedure. In addition to the above regions immunoreactive neuronal perikarya were present in the region dorsal to the medial mammillary nucleus. GAP-like immunoreactive fibers were distributed in same areas that immunoreactive perikarya were observed. Many immunoreactive terminals were found adjacent to capillaries in the infundibulum. Immunoreactive dots, presumably terminals, were observed in the posterior pituitary and these were particularly evident along the margin adjacent to the anterior pituitary. The distribution pattern and density of GAP-like immunoreactive neuronal elements are compared with those of other mammalian species. We also compared GAP-like immunoreactive elements with that of GnRH as has been previously observed in the human hypothalamus.  相似文献   

19.
Summary GnRH-associated peptide (GAP)-like immunoreactive elements located in the human hypothalamus were investigated by PAP immunocytochemistry using specific antiserum against [pro-GnRH (14–69) OH]. Immunoreactive neuronal perikarya were distributed in the MPOA, PVN and infundibular nucleus, with the largest numbers of GAP-like immunoreactive perikarya found in the infundibular nucleus. We also detected the coexistence of GAP-like and GnRH-like immunoreactivities in the same neuronal perikarya in the MPOA by using a double immunolabelling procedure. In addition to the above regions immunoreactive neuronal perikarya were present in the region dorsal to the medial mammillary nucleus. GAP-like immunoreactive fibers were distributed in same areas that immunoreactive perikarya were observed. Many immunoreactive terminals were found adjacent to capillaries in the infundibulum. Immunoreactive dots, presumably terminals, were observed in the posterior pituitary and these were particularly evident along the margin adjacent to the anterior pituitary. The distribution pattern and density of GAP-like immunoreactive neuronal elements are compared with those of other mammalian species. We also compared GAP-like immunoreactive elements with that of GnRH as has been previously observed in the human hypothalamus.  相似文献   

20.
The distribution of VIP-like perikarya and fibers was determined throughout the chick brain. The most rostral immunoreactive perikarya were found to be cerebrospinal fluid-contacting neurons in the pars medialis of the lateral septal organ. Additional data were presented supporting the idea that the lateral septal organ is another circumventricular organ within the brain of birds (Kuenzel and van Tienhoven 1982). A large group of immunoreactive perikarya was found in the lateral hypothalamic area and appeared continuous with immunoreactive neurons in the anterior medial and ventromedial hypothalamic nuclei (n). A few perikarya were located in the paraventricular hypothalamic n. A number of immunoreactive neurons were found within and about the infundibular and inferior hypothalamic n., none however was immunoreactive cerebrospinal fluid-contacting neurons. Immunoreactive perikarya were found predominantly in laminae 10–11 of the stratum griseum et fibrosum superficiale. A few scattered perikarya were found ventromedial to the n. tegmenti pedunculo-pontinus pars compacta and locus ceruleus. Some of the immunoreactivity was unusual, being very homogeneous within the cell body with little evidence of the material in the axon or dendrites. Perikarya were found in the central gray, n. intercollicularis, and area ventralis of Tsai. The most caudal structure showing immunoreactive neurons was the n. reticularis paragigantocellularis lateralis. Brain areas containing the most abundant immunoreactive fibers, listed from the rostral-most location, were found in the ventromedial region of the lobus parolfactorius and the lateral septal n. Continuing caudally, there were immunoreactive fibers within the periventricular hypothalamic n.; some of the fibers were found to travel for some distance parallel to the third ventricle. Dense immunoreactive fibers were found in the tractus cortico-habenularis et cortico-septalis, medial habenular n. and posterior and dorsal n. of the archistriatum. A number of areas had what appeared to be baskets of immunoreactive fibers (perhaps immunoreactive terminals) surrounding non-reactive perikarya. Brain areas containing terminals included the piriform cortex, area ventralis of Tsai, interpeduncular n., and specific regions of the stratum griseum et fibrosum superficiale. A very dense immunoreactivity occurred within the external zone of the median eminence, the dorsolateral parabrachial n., and n. tractus solitarii. Vasoactive intestinal polypeptide appears to be a useful peptide for defining the neuroanatomical constituents of the visceral forebrain in birds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号