首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In humans, nonexercise activity thermogenesis (NEAT) increases with positive energy balance. The mediator of the interaction between positive energy balance and physical activity is unknown. In this study, we address the hypothesis that orexin A acts in the hypothalamic paraventricular nucleus (PVN) to increase nonfeeding-associated physical activity. PVN-cannulated rats were injected with either orexin A or vehicle during the light and dark cycle. Spontaneous physical activity (SPA) was measured using arrays of infrared activity sensors and night vision videotaped recording (VTR). O(2) consumption and CO(2) production were measured by indirect calorimetry. Feeding behavior was assessed by VTR. Regardless of the time point of injection, orexin A (1 nmol) was associated with dramatic increases in SPA for 2 h after injection (orexin A: 6.27 +/- 1.95 x 10(3) beam break count, n = 24; vehicle: 1.85 +/- 1.13 x 10(3), n = 38). This increase in SPA was accompanied by compatible increase in O(2) consumption. Duration of feeding was increased only when orexin A was injected in the early light phase and accounted for only 3.5 +/- 2.5% of the increased physical activity. In a dose-response experiment, increases in SPA were correlated with dose of orexin A linearly up to 2 nmol. PVN injections of orexin receptor antagonist SB-334867 were associated with decreases in SPA and attenuated the effects of PVN-injected orexin A. Thus orexin A can act in PVN to increase nonfeeding-associated physical activity, suggesting that this neuropeptide might be a mediator of NEAT.  相似文献   

2.
Selectively-bred obesity-resistant [diet resistant (DR)] rats weigh less than obesity-prone [diet-induced obese (DIO)] rats, despite comparable daily caloric intake, suggesting phenotypic energy expenditure differences. Human data suggest that obesity is maintained by reduced ambulatory or spontaneous physical activity (SPA). The neuropeptide orexin A robustly stimulates SPA. We hypothesized that DR rats have greater: 1) basal SPA, 2) orexin A-induced SPA, and 3) preproorexin, orexin 1 and 2 receptor (OX1R and OX2R) mRNA, compared with DIO rats. A group of age-matched out-bred Sprague-Dawley rats were used as additional controls for the behavioral studies. DIO, DR, and Sprague-Dawley rats with dorsal-rostral lateral hypothalamic (rLHa) cannulas were injected with orexin A (0, 31.25, 62.5, 125, 250, and 500 pmol/0.5 microl). SPA and food intake were measured for 2 h after injection. Preproorexin, OX1R and OX2R mRNA in the rLHa, and whole hypothalamus were measured by real-time RT-PCR. Orexin A significantly stimulated feeding in all rats. Orexin A-induced SPA was significantly greater in DR and Sprague-Dawley rats than in DIO rats. Two-mo-old DR rats had significantly greater rLHa OX1R and OX2R mRNA than DIO rats but comparable preproorexin levels. Eight-mo-old DR rats had elevated OX1R and OX2R mRNA compared with DIO rats, although this increase was significant for OX2R only at this age. Thus DR rats show elevated basal and orexin A-induced SPA associated with increased OX1R and OX2R gene expression, suggesting that differences in orexin A signaling through OX1R and OX2R may mediate DIO and DR phenotypes.  相似文献   

3.
Feeding and locomotor activities of the Japanese catfish Plotosus japonicus under solitary condition were recorded to identify mechanisms controlling these behaviours. In the absence of food, the catfish showed nocturnal locomotor activity, but no feeding activity. Under ad libitum food conditions, both feeding and locomotor activities occurred during the dark period and were synchronized with light/dark (LD) cycles. Feeding activity lasted for 11–24 days when food was stopped after ad libitum food availability. Restricted food during the light phase produced both food-anticipatory and light-entrainable feeding activity. Furthermore, this condition produced weak food-anticipatory and light-entrainable locomotor activity. Under the light/light (LL) condition, restricted food produced food-anticipatory feeding and locomotor activities, suggesting that a food-entrainable oscillator controls both feeding and locomotor activities. However, under the LL condition, light-entrainable feeding and locomotor activities were not observed, suggesting that a light-entrainable oscillator controls both feeding and locomotor activities. During a restricted food schedule, LD cycle shifts resulted in disrupted synchronization of feeding activity onset in three of the four fish, but one fish showed synchronized feeding activity. These results suggest that the food- and the light-entrainable oscillator may control feeding and locomotor activities, respectively.  相似文献   

4.
Mechanisms regulating spontaneous physical activity remain poorly characterized despite evidence of influential genetic and acquired factors. We evaluated ambulatory activity and wheel running in leptin-deficient ob/ob mice and in wild-type mice rendered hypoleptinemic by fasting in both the presence and absence of subcutaneous leptin administration. In ob/ob mice, leptin treatment to plasma levels characteristic of wild-type mice acutely increased both ambulatory activity (by 4,000 ± 200 beam breaks/dark cycle, P < 0.05) and total energy expenditure (TEE; by 0.11 ± 0.01 kcal/h during the dark cycle, P < 0.05) in a dose-dependent manner and acutely increased wheel running (+350%, P < 0.05). Fasting potently increased ambulatory activity and wheel running in wild-type mice (AA: +25%, P < 0.05; wheel running: +80%, P < 0.05), and the effect of fasting was more pronounced in ob/ob mice (AA: +400%, P < 0.05; wheel running: +1,600%, P < 0.05). However, unlike what occurred in ad libitum-fed ob/ob mice, physiological leptin replacement attenuated or prevented fasting-induced increases of ambulatory activity and wheel running in both wild-type and ob/ob mice. Thus, plasma leptin is a physiological regulator of spontaneous physical activity, but the nature of leptin's effect on activity is dependent on food availability.  相似文献   

5.
The lateral hypothalamus (LH) has a critical role in the control of feeding and drinking. Melanin-concentrating hormone (MCH) is an orexigenic peptidergic neurotransmitter produced primarily in the LH, and agouti-related protein (AgRP) is an orexigenic peptidergic neurotransmitter produced exclusively in the arcuate (ARC), an area that innervates the LH. We assessed drinking and eating after third ventricular (i3vt) administration of MCH and AgRP. MCH (2.5, 5, and 10 micro g i3vt) significantly increased food as well as water intake over 4 h when administered during either the light or the dark portion of the day-night cycle. When MCH (5 micro g) was administered to rats with access to water but no food, they drank significantly more water than when given the vehicle. AgRP (7 micro g i3vt), on the other hand, increased water intake but only in proportion to food intake during the dark and the light, and water intake was not increased after i3vt AgRP in the absence of food. Hence, in contrast to AgRP, MCH elicits increased water intake independent of food intake. These results are consistent with historical data linking activity of the LH with water as well as food intake.  相似文献   

6.
É Szentirmai 《PloS one》2012,7(7):e41172
Ghrelin is a brain-gut peptide hormone widely known for its orexigenic and growth hormone-releasing activities. Findings from our and other laboratories indicate a role of ghrelin in sleep regulation. The effects of exogenous ghrelin on sleep-wake activity in mice are, however, unknown. The aim of the present study was to determine the sleep-modulating effects of ghrelin after central and systemic administrations in mice. Sleep-wake activity after intracerebroventricular (i.c.v.) administration of 0.2, 1 and 5 μg ghrelin and intraperitoneal injections of 40, 100, and 400 μg/kg ghrelin prior to light onset were determined in C57BL/6 mice. In addition, body temperature, motor activity and 1-hour food intake was measured after the systemic injections. Sleep effects of systemic ghrelin (40 and 400 μg/kg) injected before dark onset were also determined. I.c.v. injection of ghrelin increased wakefulness and suppressed non-rapid-eye-movement sleep and electroencephalographic slow-wave activity in the first hour after injections. Rapid-eye-movement sleep was decreased for 2-4 hours after each dose of ghrelin. Sytemic administration of ghrelin did not induce changes in sleep-wake activity in mice at dark or light onset. Motor activity and body temperature remained unaltered and food intake was significantly increased after systemic injections of ghrelin given prior the light period. These findings indicate that the activation of central, but not peripheral, ghrelin-sensitive mechanisms elicits arousal in mice. The results are consistent with the hypothesis that the activation of the hypothalamic neuronal circuit formed by ghrelin, orexin, and neuropeptide Y neurons triggers behavioral sequence characterized by increased wakefulness, motor activity and feeding in nocturnal rodents.  相似文献   

7.
Djungarian hamsters (Phodopus sungorus) exhibit pronounced winter acclimatization with changes in body mass, gonads, fur, and thermogenic capacity induced by decreasing daylength. To determine whether the annual activity pattern reflects the crucial role of the photoperiod for the hamsters' seasonality, animals with and without access to a running wheel (RW) were exposed to natural lighting conditions (~52°N) and ambient temperatures. Registration of locomotion in hamsters with a RW revealed a clear activity pattern closely related to dusk and dawn throughout the year. In contrast, animals without RW access showed a less stable phase relationship between the activity and the day‐night cycle in autumn and winter. During these seasons, the activity phase either exceeded the dark phase or even became indistinguishable from the rest phase. This correlated not only with increased locomotion during the light phase but also over the whole 24 h period, especially in autumn. In RW hamsters, a similar but attenuated trend was found that possibly reflects foraging due to increased food hoarding before winter. The more stable correlation between activity time and night length in RW hamsters might be explained by a suppressing effect of light on wheel‐running behavior (negative masking) and/or a stabilizing effect of running exercise on rhythmicity. In a further experiment, the phase‐reference points lights‐off and lights‐on within artificial light‐dark (LD) cycles were compared to sunset and sunrise in an intermediate ratio of light and dark and in long days. With respect to the defined phase‐reference points of the zeitgeber, the phase relation between activity and the LD cycle was similar in natural and corresponding artificial lighting conditions, and dependent on the LD ratio.  相似文献   

8.
The present study investigates the possible circadian dependence of leptin effects on food intake, locomotor activity, glycemia and plasma cortisol levels in goldfish (Carassius auratus). Fish were maintained under 12L:12D photoperiod and subjected to two different feeding schedules, one group fed during photophase (10:00) and the other one during scotophase (22:00). Leptin or saline were intraperitoneally injected at two different times (10:00 or 22:00), coincident or not with the meal time. To eliminate the entraining effect of the light/dark cycle, goldfish maintained under 24 h light (LL) were fed and leptin-injected at 10:00. A reduction in food intake and locomotor activity and an increase in glycemia were found in goldfish fed and leptin-injected at 10:00. No significant changes in circulating cortisol were observed. Those effects were not observed when leptin was administered during the scotophase, regardless the feeding schedule; neither in fish maintained under LL, suggesting that a day/night cycle would be necessary to observe the actions of leptin administered during the photophase. Changes in locomotor activity and glycemia were only observed in goldfish when leptin was injected at daytime, coincident with the feeding schedule, suggesting that these leptin actions could be dependent on the feeding time as zeitgeber. In view of these results it appears that the circadian dependence of leptin actions in goldfish can be determined by the combination of both zeitgebers, light/dark cycle and food. Our results point out the relevance of the administration time when investigating regulatory functions of hormones.  相似文献   

9.
Kodama T  Kimura M 《Peptides》2002,23(9):1673-1681
Although orexin was found to promote food intake, recent reports proposed its involvement in the regulation of vigilance. To study the mechanism of how orexin affects arousal, we analyzed glutamate (GLU) release from the locus coeruleus (LC) in rats after systemic injection of orexin-A. Baseline levels of orexin-A in the LC were significantly higher during the dark period than the light period. Intravenous administration of orexin-A increased GLU levels as well as orexin in the LC, simultaneously promoting wakefulness. These results suggest that increases in GLU release may reflect the arousal-inducing effects of orexin.  相似文献   

10.
This study investigated the functional linkage between food availability and activity behavior in the Palaearctic Indian night migratory blackheaded bunting (Emberiza melanocephala) subjected to artificial light-dark (LD) cycles. Two experiments were performed on photosensitive birds. In the first one, birds were exposed to short days (LD 10/14; Experiment 1A), long days (LD 13/11; Experiment 1B), or increasing daylengths (8 to 13?h light/d; Experiment 1C) and presented with food either for the whole or a restricted duration of the light period. In Experiments 1A and 1B, illumination of the light and dark periods or of the dark period, alone, was changed to assess the influence of the light environment on direct and circadian responses to food cycles. In the second experiment, birds were exposed to LD 12/12 or LD 8/16 with food availability overlapping with the light (light and food presence in phase) or dark period (light and food presence in antiphase). Also, birds were subjected to constant dim light (LL(dim)) to examine the phase of the activity rhythms under synchronizing influence of the food cycles. Similarly, the presentation of food ad libitum (free food; FF) during an experiment examined the effects of the food-restriction regimes on activity rhythms. A continuous measurement of the activity-rest pattern was done to examine both the circadian and direct effects of the food and LD cycles. Measurement of activity at night enabled assessment of the migratory phenotype, premigratory restlessness, or Zugunruhe. The results show that (i) light masked the food effects if they were present together; (ii) birds had a higher anticipatory activity and food intake during restricted feeding conditions; and (iii) food at night alone reduced both the duration and amount of Zugunruhe as compared to food during the day alone. This suggests that food affects both the daily activity and seasonal Zugunruhe, and food cycles act as a synchronizer of circadian rhythms in the absence of dominant natural environmental synchronizers, such as the light-dark cycle.  相似文献   

11.
In most proestrous hamsters, novel wheel exposure phase advances activity rhythms and blocks the preovulatory LH surge, which occurs 2 h earlier the next day. Because wheel immobilization does not prevent these effects we hypothesized that arousal alone blocks and phase advances the LH surge. Ovariectomized (ovx) hamsters received a jugular vein cannula and estradiol benzoate (EB) or vehicle was injected sc. The next day (Day 1), at zeitgeber time (ZT) 4–5 (ZT 12 = lights off), after obtaining a blood sample, each hamster was exposed to constant darkness (DD), and either remained in her home cage or was transferred to a new cage and exposed to a running wheel or a 2-hour arousal paradigm. Blood samples were obtained in dim red light and activity was recorded hourly until ~ ZT 10–11 on Days 1 and 2. For the next 1–2 weeks, activity was monitored in DD. Plasma LH and corticosterone were assessed by RIA. Novel wheel exposure or arousal at ZT 4 greatly attenuated the Day 1 LH surge in ovx + EB hamsters, and phase advanced the Day 2 LH surge by about 2 h. In proestrous hamsters, novel wheel exposure led to a prolonged (> 2 h) increase in corticosterone levels only when LH surges were blocked. Phase advances in activity rhythms were enhanced by estradiol and arousal. The results suggest that estradiol modulates the effectiveness of non-photic stimuli. The role of the increased activity of the hypothalamic–pituitary–adrenal axis associated with novel wheel-induced attenuation of LH surges in ovx + EB hamsters remains to be determined.  相似文献   

12.
It is well established that in the absence of photic cues, the circadian rhythms of rodents can be readily phase-shifted and entrained by various nonphotic stimuli that induce increased levels of locomotor activity (i.e., benzodiazepines, a new running wheel, and limited food access). In the presence of an entraining light-dark (LD) cycle, however, the entraining effects of nonphotic stimuli on (parts of) the circadian oscillator are far less clear. Yet, an interesting finding is that appropriately timed exercise after a phase shift can accelerate the entrainment of circadian rhythms to the new LD cycle in both rodents and humans. The present study investigated whether restricted daytime feeding (RF) (1) induces a phase shift of the melatonin rhythm under entrained LD conditions and (2) accelerates resynchronization of circadian rhythms after an 8-h phase advance. Animals were adapted to RF with 2-h food access at the projected time of the new dark onset. Before and at several time points after the 8-h phase advance, nocturnal melatonin profiles were measured in RF animals and animals on ad libitum feeding (AL). In LD-entrained conditions, RF did not cause any significant changes in the nocturnal melatonin profile as compared to AL. Unexpectedly, after the 8-h phase advance, RF animals resynchronized more slowly to the new LD cycle than AL animals. These results indicate that prior entrainment to a nonphotic stimulus such as RF may "phase lock" the circadian oscillator and in that way hinder resynchronization after a phase shift.  相似文献   

13.
Activity-based anorexia occurs when food availability is restricted to 1 h of the day and a wheel is freely available to the rest of the time. Under such conditions rats run excessively and stop eating even during periods in which food is available. A defining characteristic of the excessive activity is that there is a peak of running in the anticipation of food availability. The present study was designed to test whether the occurrence of the food period at different times of the light phase of the light-dark cycle (from 08:00 to 20:00 h) could impede or postpone the normal development of activity anorexia. We compared the effect of presenting the food at a fixed time of the light period with presenting it on a variable schedule. Far from impeding or postponing the development of activity-based anorexia, presenting food at irregular times resulted in a pronounced body-weight loss, a low food intake and an increase in locomotor activity. Animals ran excessively, with a peak at the start of the dark period, and again when lights were turned on in the experimental room (running in the anticipation of food). Both fixed and variable schedules of food availability resulted in the development of activity-based anorexia in rats.  相似文献   

14.
CCK acts peripherally as a satiating peptide released during meals in response to lipid feeding and centrally functions in the modulation of feeding, exploratory, and memory activities. The present study determined metabolic parameters, food intake, anxiety-like behaviors, and cognitive function in mice lacking the CCK gene. We studied intestinal fat absorption, body composition, and food intake of CCK knockout (CCK-KO) mice by using the noninvasive measurement of intestinal fat absorption along with quantitative magnetic resonance (QMR) imaging and the DietMax system, respectively. Additionally, exploratory and memory capacities were assessed by monitoring running wheel activity and conducting elevated plus-maze and Morris water-maze tests with these mice. Compared with wild-type (WT) littermate controls, CCK-KO mice had normal food intake, fat absorption, body weight, and body mass. CCK-KO mice ate more food than control animals during the light period and less food during the dark period. Energy expenditure was unchanged between the genotypes; however, CCK-KO mice displayed greater fatty acid oxidation. CCK-KO mice were as active as WT animals in the running wheel test. CCK-KO mice spent more time in the closed arms of an elevated plus-maze, indicative of increased anxiety. Additionally, CCK-KO mice exhibited attenuated performance in a passive avoidance task and impaired spatial memory in the Morris water maze test. We conclude that CCK is involved in metabolic rate and is important for memory and exploration. CCK is intimately involved in multiple processes related to cognitive function and food intake regulation.  相似文献   

15.
Rats anticipate a fixed daily feeding time by entrainment of a component of their multioscillatory circadian system. The range of stimuli capable of entraining this component is little studied. Previous studies suggest that restricted water access is not an effective entrainment stimulus, as measured by general locomotion. The present study re-examined the issue, using two other measures of activity: wheel running and activity at a food-water delivery bin. Rats restricted to 1 hr of water each day in the middle of the light and to food in the 12-hr dark period showed no anticipation of this event in the wheel-running measure, but some rats did show anticipation in the delivery bin activity measure. Rats (bin activity measure only) restricted to 1 hr of water and 1 hr of food separated by intervals of 7, 10, or 12 hr, in either the light or the dark, showed consistent anticipation of food access time but little or no anticipation of water access time. Water access time also did not sustain food anticipatory rhythms in animals whose food-water schedules were reversed. However, deprivation of water or of both food and water for 72 or 90 hr was usually associated with specific increases in bin activity at both the usual feeding and drinking times. Water access, like food, appears to provide cues capable of entraining an anticipatory circadian mechanism. Differences in the type and amount of anticipatory activity preceding these events may reflect differences in the strengths of the two entrainment cues and/or in the activity levels or specific behavioral strategies promoted by hunger and thirst.  相似文献   

16.
Periodic food availability can act as a potent zeitgeber capable of synchronizing many biological rhythms in fishes, including locomotor activity rhythms. In the present paper we investigated entrainment of locomotor rhythms to scheduled feeding under different light and feeding regimes. In experiment 1, fish were exposed to a 12:12?h light/dark cycle and fed one single daily meal in the middle of the light phase. In experiment 2, we tested the effect of random versus scheduled feeding on the daily distribution of activity. During random feeding, meals were randomly scheduled with intervals ranging from 12 to 36?h, while scheduled feeding consisted of one single daily meal set in the middle of the light or dark phase. Finally, in experiment 3, we studied the synchronization of activity rhythms to feeding under constant darkness (DD) and after shifting the feeding cycle by either advancing or delaying the feeding cycle by 9?h. The results revealed that goldfish synchronized to feeding, overcame light entrainment and significantly changed their daily distribution of activity according to their feeding schedule. In addition, the daily activity pattern modulated by feeding differed between layers: a peak of activity being noticeable directly after feeding at the bottom, while an anticipatory behaviour was obvious at the surface of the tank. Under DD and no food, free-running rhythms averaging 25.5?± 1.9?h (mean?±?SD) were detected. In conclusion, some properties of feeding entrainment (e.g. anticipation of the feeding time, free-running rhythms following termination of periodic feeding, and the stability of ø after shifting the feeding cycle) suggested that goldfish have (a) separate but tightly coupled light- and food-entrainable oscillators, or (b) a single oscillator that is entrainable by both light and food (one synchronizer being eventually stronger than the other).  相似文献   

17.
Inhibition of wheel running by light (masking) was investigated in Syrian hamsters with suprachiasmatic nucleus or sham lesions. Approximately 90% of the wheel revolutions made by hamsters with complete suprachiasmatic nucleus lesions, as judged by histology and power spectrum analysis of their wheel running, occurred during the dark phases of an ultradian light-dark cycle (3.5 h light, 3.5 h dark). This was demonstrated for two illumination levels (380 lx and 6 lx). Similar results were obtained with sham-operated animals. In further tests, the hamsters with lesions also retained a strong preference for the dark side of a box divided into dark and light sides. These results demonstrate that the suprachiasmatic nucleus is not necessary for masking by light or the preference for a dark over a light compartment. Evidently the direct effects of light can substitute for the endogenous control by the suprachiasmatic nucleus to maintain appropriate behaviour in time and space. Accepted: 30 January 1999  相似文献   

18.
Circadian rhythms in Syrian hamsters can be phase advanced by activity or arousal stimulated during the daily rest phase ("subjective day"). A widely used method for stimulating activity is confinement to a novel wheel. Some hamsters decline to run, and some procedures may reduce the probability of running. The authors evaluated food deprivation (FD) as a method to promote running. Given evidence that perturbations of cell metabolism or glucose availability may affect circadian clock function in some tissues or species, they also assessed the effects of FD on free-running circadian phase, resetting responses to photic and nonphotic stimuli and plasma glucose. In constant light, a 27-h fast significantly increased running in a novel wheel and marginally increased the average size of resulting phase shifts. FD, without novel wheel confinement, was associated with some very large phase shifts or disruption of rhythmicity in hamsters that spontaneously ran in their home wheels during the subjective day. Hamsters that ran only during the usual active phase (subjective night) or that were prevented from running did not exhibit phase shifts, despite refeeding in the mid-subjective day. Using an Aschoff Type II design for measuring shifts, a 27-h fast significantly increased the number of hamsters that ran continuously when confined to a novel wheel but did not affect the dose-response relation between the amount of running and the size of the resulting shift. A day of fasting also did not affect the size of phase delay or advance shifts to 30-min light pulses in the subjective night. Plasma glucose was markedly reduced by wheel running in combination with fasting but was increased by running in nonfasted hamsters. These results establish FD as a useful tool for stimulating activity in home cage or novel wheels and indicate that in Syrian hamsters, significant alterations in glucose availability, associated with running, fasting, and refeeding, have surprisingly little effect on circadian pacemaker function.  相似文献   

19.
Vasopressin-containing, Long-Evans (LE) rats and vasopressin-deficient, Brattleboro (DI) rats were monitored for activity and core body temperature via telemetry. Rats were exposed to a 12-12 light-dark cycle and allowed to habituate with ad lib access to food and water. The habituation period was followed by an experimental period of 23 h of food-restriction stress in which a 1-h feeding period was provided during the light cycle. Although both strains of animals showed nocturnal activity and temperature rhythms during the habituation period, DI rats were more active than LE rats. The DI rats also had a lower body temperature in the dark. During the experimental period, both strains exhibited a phase shift of activity and body temperature correlating with the presentation of food. The DI rats developed a diurnal shift more rapidly than LE rats. The DI animals showed a dramatic increase in activity during the light phase and a marked decrease in body temperature during the dark phase. The LE animals showed a significant attenuation of activity, but maintained both nocturnal and diurnal temperature peaks throughout the food-restricted condition.  相似文献   

20.
Ghrelin, a gut-brain peptide, is best known for its role in the stimulation of feeding and growth hormone release. In the brain, orexin, neuropeptide Y (NPY), and ghrelin are parts of a food intake regulatory circuit. Orexin and NPY are also implicated in maintaining wakefulness. Previous experiments in our laboratory revealed that intracerebroventricular injections of ghrelin induce wakefulness in rats. To further elucidate the possible role of ghrelin in the regulation of arousal, we studied the effects of microinjections of ghrelin into hypothalamic sites, which are implicated in the regulation of feeding and sleep, such as the lateral hypothalamus (LH), medial preoptic area (MPA), and paraventricular nucleus (PVN) on sleep in rats. Sleep responses, motor activity, and food intake after central administration of 0.04, 0.2, or 1 mug (12, 60, or 300 pmol) ghrelin were recorded. Microinjections of ghrelin into the LH had strong wakefulness-promoting effects lasting for 2 h. Wakefulness was also stimulated by ghrelin injection into the MPA and PVN; the effects were confined to the first hour after the injection. Ghrelin's non-rapid-eye-movement sleep-suppressive effect was accompanied by attenuation in the electroencephalographic (EEG) slow-wave activity and changes in the EEG power spectrum. Food consumption was significantly stimulated after microinjections of ghrelin into each hypothalamic site. Together, these results are consistent with the hypothesis that forebrain ghrelinergic mechanisms play a role in the regulation of vigilance, possibly through activating the components of the food intake- and arousal-promoting network formed by orexin and NPY.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号