首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Background

Growth and meat production traits are significant economic traits in sheep. The aim of the study is to identify candidate genes affecting growth and meat production traits at genome level with high throughput single nucleotide polymorphisms (SNP) genotyping technologies.

Methodology and Results

Using Illumina OvineSNP50 BeadChip, we performed a GWA study in 329 purebred sheep for 11 growth and meat production traits (birth weight, weaning weight, 6-month weight, eye muscle area, fat thickness, pre-weaning gain, post-weaning gain, daily weight gain, height at withers, chest girth, and shin circumference). After quality control, 319 sheep and 48,198 SNPs were analyzed by TASSEL program in a mixed linear model (MLM). 36 significant SNPs were identified for 7 traits, and 10 of them reached genome-wise significance level for post-weaning gain. Gene annotation was implemented with the latest sheep genome Ovis_aries_v3.1 (released October 2012). More than one-third SNPs (14 out of 36) were located within ovine genes, others were located close to ovine genes (878bp-398,165bp apart). The strongest new finding is 5 genes were thought to be the most crucial candidate genes associated with post-weaning gain: s58995.1 was located within the ovine genes MEF2B and RFXANK, OAR3_84073899.1, OAR3_115712045.1 and OAR9_91721507.1 were located within CAMKMT, TRHDE, and RIPK2 respectively. GRM1, POL, MBD5, UBR2, RPL7 and SMC2 were thought to be the important candidate genes affecting post-weaning gain too. Additionally, 25 genes at chromosome-wise significance level were also forecasted to be the promising genes that influencing sheep growth and meat production traits.

Conclusions

The results will contribute to the similar studies and facilitate the potential utilization of genes involved in growth and meat production traits in sheep in future.  相似文献   

3.
4.

Background

Previous genome-wide association analyses identified QTL regions in the X chromosome for percentage of normal sperm and scrotal circumference in Brahman and Tropical Composite cattle. These traits are important to be studied because they are indicators of male fertility and are correlated with female sexual precocity and reproductive longevity. The aim was to investigate candidate genes in these regions and to identify putative causative mutations that influence these traits. In addition, we tested the identified mutations for female fertility and growth traits.

Results

Using a combination of bioinformatics and molecular assay technology, twelve non-synonymous SNPs in eleven genes were genotyped in a cattle population. Three and nine SNPs explained more than 1% of the additive genetic variance for percentage of normal sperm and scrotal circumference, respectively. The SNPs that had a major influence in percentage of normal sperm were mapped to LOC100138021 and TAF7L genes; and in TEX11 and AR genes for scrotal circumference. One SNP in TEX11 was explained ~13% of the additive genetic variance for scrotal circumference at 12 months. The tested SNP were also associated with weight measurements, but not with female fertility traits.

Conclusions

The strong association of SNPs located in X chromosome genes with male fertility traits validates the QTL. The implicated genes became good candidates to be used for genetic evaluation, without detrimentally influencing female fertility traits.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1595-0) contains supplementary material, which is available to authorized users.  相似文献   

5.

Background

Residual feed intake (RFI), a measure of feed efficiency, is the difference between observed feed intake and the expected feed requirement predicted from growth and maintenance. Pigs with low RFI have reduced feed costs without compromising their growth. Identification of genes or genetic markers associated with RFI will be useful for marker-assisted selection at an early age of animals with improved feed efficiency.

Methodology/Principal findings

Whole genome association studies (WGAS) for RFI, average daily feed intake (ADFI), average daily gain (ADG), back fat (BF) and loin muscle area (LMA) were performed on 1,400 pigs from the divergently selected ISU-RFI lines, using the Illumina PorcineSNP60 BeadChip. Various statistical methods were applied to find SNPs and genomic regions associated with the traits, including a Bayesian approach using GenSel software, and frequentist approaches such as allele frequency differences between lines, single SNP and haplotype analyses using PLINK software. Single SNP and haplotype analyses showed no significant associations (except for LMA) after genomic control and FDR. Bayesian analyses found at least 2 associations for each trait at a false positive probability of 0.5. At generation 8, the RFI selection lines mainly differed in allele frequencies for SNPs near (<0.05 Mb) genes that regulate insulin release and leptin functions. The Bayesian approach identified associations of genomic regions containing insulin release genes (e.g., GLP1R, CDKAL, SGMS1) with RFI and ADFI, of regions with energy homeostasis (e.g., MC4R, PGM1, GPR81) and muscle growth related genes (e.g., TGFB1) with ADG, and of fat metabolism genes (e.g., ACOXL, AEBP1) with BF. Specifically, a very highly significantly associated QTL for LMA on SSC7 with skeletal myogenesis genes (e.g., KLHL31) was identified for subsequent fine mapping.

Conclusions/significance

Important genomic regions associated with RFI related traits were identified for future validation studies prior to their incorporation in marker-assisted selection programs.  相似文献   

6.

Background

Crop improvement always involves selection of specific alleles at genes controlling traits of agronomic importance, likely resulting in detectable signatures of selection within the genome of modern soybean (Glycine max L. Merr.). The identification of these signatures of selection is meaningful from the perspective of evolutionary biology and for uncovering the genetic architecture of agronomic traits.

Results

To this end, two populations of soybean, consisting of 342 landraces and 1062 improved lines, were genotyped with the SoySNP50K Illumina BeadChip containing 52,041 single nucleotide polymorphisms (SNPs), and systematically phenotyped for 9 agronomic traits. A cross-population composite likelihood ratio (XP-CLR) method was used to screen the signals of selective sweeps. A total of 125 candidate selection regions were identified, many of which harbored genes potentially involved in crop improvement. To further investigate whether these candidate regions were in fact enriched for genes affected by selection, genome-wide association studies (GWAS) were conducted on 7 selection traits targeted in soybean breeding (grain yield, plant height, lodging, maturity date, seed coat color, seed protein and oil content) and 2 non-selection traits (pubescence and flower color). Major genomic regions associated with selection traits overlapped with candidate selection regions, whereas no overlap of this kind occurred for the non-selection traits, suggesting that the selection sweeps identified are associated with traits of agronomic importance. Multiple novel loci and refined map locations of known loci related to these traits were also identified.

Conclusions

These findings illustrate that comparative genomic analyses, especially when combined with GWAS, are a promising approach to dissect the genetic architecture of complex traits.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1872-y) contains supplementary material, which is available to authorized users.  相似文献   

7.

Background

Animal domestication involved drastic phenotypic changes driven by strong artificial selection and also resulted in new populations of breeds, established by humans. This study aims to identify genes that show evidence of recent artificial selection during pig domestication.

Results

Whole-genome resequencing of 30 individual pigs from domesticated breeds, Landrace and Yorkshire, and 10 Asian wild boars at ~16-fold coverage was performed resulting in over 4.3 million SNPs for 19,990 genes. We constructed a comprehensive genome map of directional selection by detecting selective sweeps using an FST-based approach that detects directional selection in lineages leading to the domesticated breeds and using a haplotype-based test that detects ongoing selective sweeps within the breeds. We show that candidate genes under selection are significantly enriched for loci implicated in quantitative traits important to pig reproduction and production. The candidate gene with the strongest signals of directional selection belongs to group III of the metabolomics glutamate receptors, known to affect brain functions associated with eating behavior, suggesting that loci under strong selection include loci involved in behaviorial traits in domesticated pigs including tameness.

Conclusions

We show that a significant proportion of selection signatures coincide with loci that were previously inferred to affect phenotypic variation in pigs. We further identify functional enrichment related to behavior, such as signal transduction and neuronal activities, for those targets of selection during domestication in pigs.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1330-x) contains supplementary material, which is available to authorized users.  相似文献   

8.

Background

Genome-wide association (GWA) is gaining popularity as a means to study the architecture of complex quantitative traits, partially due to the improvement of high-throughput low-cost genotyping and phenotyping technologies. Glucosinolate (GSL) secondary metabolites within Arabidopsis spp. can serve as a model system to understand the genomic architecture of adaptive quantitative traits. GSL are key anti-herbivory defenses that impart adaptive advantages within field trials. While little is known about how variation in the external or internal environment of an organism may influence the efficiency of GWA, GSL variation is known to be highly dependent upon the external stresses and developmental processes of the plant lending it to be an excellent model for studying conditional GWA.

Methodology/Principal Findings

To understand how development and environment can influence GWA, we conducted a study using 96 Arabidopsis thaliana accessions, >40 GSL phenotypes across three conditions (one developmental comparison and one environmental comparison) and ∼230,000 SNPs. Developmental stage had dramatic effects on the outcome of GWA, with each stage identifying different loci associated with GSL traits. Further, while the molecular bases of numerous quantitative trait loci (QTL) controlling GSL traits have been identified, there is currently no estimate of how many additional genes may control natural variation in these traits. We developed a novel co-expression network approach to prioritize the thousands of GWA candidates and successfully validated a large number of these genes as influencing GSL accumulation within A. thaliana using single gene isogenic lines.

Conclusions/Significance

Together, these results suggest that complex traits imparting environmentally contingent adaptive advantages are likely influenced by up to thousands of loci that are sensitive to fluctuations in the environment or developmental state of the organism. Additionally, while GWA is highly conditional upon genetics, the use of additional genomic information can rapidly identify causal loci en masse.  相似文献   

9.
Dong C  Qian Z  Jia P  Wang Y  Huang W  Li Y 《PloS one》2007,2(12):e1262

Background

The high-throughput genotyping chips have contributed greatly to genome-wide association (GWA) studies to identify novel disease susceptibility single nucleotide polymorphisms (SNPs). The high-density chips are designed using two different SNP selection approaches, the direct gene-centric approach, and the indirect quasi-random SNPs or linkage disequilibrium (LD)-based tagSNPs approaches. Although all these approaches can provide high genome coverage and ascertain variants in genes, it is not clear to which extent these approaches could capture the common genic variants. It is also important to characterize and compare the differences between these approaches.

Methodology/Principal Findings

In our study, by using both the Phase II HapMap data and the disease variants extracted from OMIM, a gene-centric evaluation was first performed to evaluate the ability of the approaches in capturing the disease variants in Caucasian population. Then the distribution patterns of SNPs were also characterized in genic regions, evolutionarily conserved introns and nongenic regions, ontologies and pathways. The results show that, no mater which SNP selection approach is used, the current high-density SNP chips provide very high coverage in genic regions and can capture most of known common disease variants under HapMap frame. The results also show that the differences between the direct and the indirect approaches are relatively small. Both have similar SNP distribution patterns in these gene-centric characteristics.

Conclusions/Significance

This study suggests that the indirect approaches not only have the advantage of high coverage but also are useful for studies focusing on various functional SNPs either in genes or in the conserved regions that the direct approach supports. The study and the annotation of characteristics will be helpful for designing and analyzing GWA studies that aim to identify genetic risk factors involved in common diseases, especially variants in genes and conserved regions.  相似文献   

10.

Background

Selection pressure on the number of teats has been applied to be able to provide enough teats for the increase in litter size in pigs. Although many QTL were reported, they cover large chromosomal regions and the functional mutations and their underlying biological mechanisms have not yet been identified. To gain a better insight in the genetic architecture of the trait number of teats, we performed a genome-wide association study by genotyping 936 Large White pigs using the Illumina PorcineSNP60 Beadchip. The analysis is based on deregressed breeding values to account for the dense family structure and a Bayesian approach for estimation of the SNP effects.

Results

The genome-wide association study resulted in 212 significant SNPs. In total, 39 QTL regions were defined including 170 SNPs on 13 Sus scrofa chromosomes (SSC) of which 5 regions on SSC7, 9, 10, 12 and 14 were highly significant. All significantly associated regions together explain 9.5% of the genetic variance where a QTL on SSC7 explains the most genetic variance (2.5%). For the five highly significant QTL regions, a search for candidate genes was performed. The most convincing candidate genes were VRTN and Prox2 on SSC7, MPP7, ARMC4, and MKX on SSC10, and vertebrae δ-EF1 on SSC12. All three QTL contain candidate genes which are known to be associated with vertebral development. In the new QTL regions on SSC9 and SSC14, no obvious candidate genes were identified.

Conclusions

Five major QTL were found at high resolution on SSC7, 9, 10, 12, and 14 of which the QTL on SSC9 and SSC14 are the first ones to be reported on these chromosomes. The significant SNPs found in this study could be used in selection to increase number of teats in pigs, so that the increasing number of live-born piglets can be nursed by the sow. This study points to common genetic mechanisms regulating number of vertebrae and number of teats.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-542) contains supplementary material, which is available to authorized users.  相似文献   

11.

Background

Twin studies have shown that anxiety in a general population sample of children involves both domain-general and trait-specific genetic effects. For this reason, in an attempt to identify genes responsible for these effects, we investigated domain-general and trait-specific genetic associations in the first genome-wide association (GWA) study on anxiety-related behaviours (ARBs) in childhood.

Methods

The sample included 2810 7-year-olds drawn from the Twins Early Development Study (TEDS) with data available for parent-rated anxiety and genome-wide DNA markers. The measure was the Anxiety-Related Behaviours Questionnaire (ARBQ), which assesses four anxiety traits and also yields a general anxiety composite. Affymetrix GeneChip 6.0 DNA arrays were used to genotype nearly 700,000 single-nucleotide polymorphisms (SNPs), and IMPUTE v2 was used to impute more than 1 million SNPs. Several GWA associations from this discovery sample were followed up in another TEDS sample of 4804 children. In addition, Genome-wide Complex Trait Analysis (GCTA) was used on the discovery sample, to estimate the total amount of variance in ARBs that can be accounted for by SNPs on the array.

Results

No SNP associations met the demanding criterion of genome-wide significance that corrects for multiple testing across the genome (p<5×10−8). Attempts to replicate the top associations did not yield significant results. In contrast to the substantial twin study estimates of heritability which ranged from 0.50 (0.03) to 0.61 (0.01), the GCTA estimates of phenotypic variance accounted for by the SNPs were much lower 0.01 (0.11) to 0.19 (0.12).

Conclusions

Taken together, these GWAS and GCTA results suggest that anxiety – similar to height, weight and intelligence − is affected by many genetic variants of small effect, but unlike these other prototypical polygenic traits, genetic influence on anxiety is not well tagged by common SNPs.  相似文献   

12.

Background

Recently, genome-wide association studies (GWAS) have been reported on various pig traits. We performed a GWAS to analyze 22 traits related to growth and fatness on two pig populations: a White Duroc × Erhualian F2 intercross population and a Chinese Sutai half-sib population.

Results

We identified 14 and 39 loci that displayed significant associations with growth and fatness traits at the genome-wide level and chromosome-wide level, respectively. The strongest association was between a 750 kb region on SSC7 (SSC for Sus scrofa) and backfat thickness at the first rib. This region had pleiotropic effects on both fatness and growth traits in F2 animals and contained a promising candidate gene HMGA1 (high mobility group AT-hook 1). Unexpectedly, population genetic analysis revealed that the allele at this locus that reduces fatness and increases growth is derived from Chinese indigenous pigs and segregates in multiple Chinese breeds. The second strongest association was between the region around 82.85 Mb on SSC4 and average backfat thickness. PLAG1 (pleiomorphic adenoma gene 1), a gene under strong selection in European domestic pigs, is proximal to the top SNP and stands out as a strong candidate gene. On SSC2, a locus that significantly affects fatness traits mapped to the region around the IGF2 (insulin-like growth factor 2) gene but its non-imprinting inheritance excluded IGF2 as a candidate gene. A significant locus was also detected within a recombination cold spot that spans more than 30 Mb on SSCX, which hampered the identification of plausible candidate genes. Notably, no genome-wide significant locus was shared by the two experimental populations; different loci were observed that had both constant and time-specific effects on growth traits at different stages, which illustrates the complex genetic architecture of these traits.

Conclusions

We confirm several previously reported QTL and provide a list of novel loci for porcine growth and fatness traits in two experimental populations with Chinese Taihu and Western pigs as common founders. We showed that distinct loci exist for these traits in the two populations and identified HMGA1 and PLAG1 as strong candidate genes on SSC7 and SSC4, respectively.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-015-0089-5) contains supplementary material, which is available to authorized users.  相似文献   

13.

Background

Understanding the genetic mechanisms that underlie meat quality traits is essential to improve pork quality. To date, most quantitative trait loci (QTL) analyses have been performed on F2 crosses between outbred pig strains and have led to the identification of numerous QTL. However, because linkage disequilibrium is high in such crosses, QTL mapping precision is unsatisfactory and only a few QTL have been found to segregate within outbred strains, which limits their use to improve animal performance. To detect QTL in outbred pig populations of Chinese and Western origins, we performed genome-wide association studies (GWAS) for meat quality traits in Chinese purebred Erhualian pigs and a Western Duroc × (Landrace × Yorkshire) (DLY) commercial population.

Methods

Three hundred and thirty six Chinese Erhualian and 610 DLY pigs were genotyped using the Illumina PorcineSNP60K Beadchip and evaluated for 20 meat quality traits. After quality control, 35 985 and 56 216 single nucleotide polymorphisms (SNPs) were available for the Chinese Erhualian and DLY datasets, respectively, and were used to perform two separate GWAS. We also performed a meta-analysis that combined P-values and effects of 29 516 SNPs that were common to Erhualian, DLY, F2 and Sutai pig populations.

Results

We detected 28 and nine suggestive SNPs that surpassed the significance level for meat quality in Erhualian and DLY pigs, respectively. Among these SNPs, ss131261254 on pig chromosome 4 (SSC4) was the most significant (P = 7.97E-09) and was associated with drip loss in Erhualian pigs. Our results suggested that at least two QTL on SSC12 and on SSC15 may have pleiotropic effects on several related traits. All the QTL that were detected by GWAS were population-specific, including 12 novel regions. However, the meta-analysis revealed seven novel QTL for meat characteristics, which suggests the existence of common underlying variants that may differ in frequency across populations. These QTL regions contain several relevant candidate genes.

Conclusions

These findings provide valuable insights into the molecular basis of convergent evolution of meat quality traits in Chinese and Western breeds that show divergent phenotypes. They may contribute to genetic improvement of purebreds for crossbred performance.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-015-0120-x) contains supplementary material, which is available to authorized users.  相似文献   

14.

Introduction

According to genome wide association (GWA) studies as well as candidate gene approaches, Behçet’s disease (BD) is associated with human leukocyte antigen (HLA)-A and HLA-B gene regions. The HLA-B51 has been consistently associated with the disease, but the role of other HLA class I molecules remains controversial. Recently, variants in non-HLA genes have also been associated with BD. The aims of this study were to further investigate the influence of the HLA region in BD and to explore the relationship with non-HLA genes recently described to be associated in other populations.

Methods

This study included 304 BD patients and 313 ethnically matched controls. HLA-A and HLA-B low resolution typing was carried out by PCR-SSOP Luminex. Eleven tag single nucleotide polymorphisms (SNPs) located outside of the HLA-region, previously described associated with the disease in GWA studies and having a minor allele frequency in Caucasians greater than 0.15 were genotyped using TaqMan assays. Phenotypic and genotypic frequencies were estimated by direct counting and distributions were compared using the χ2 test.

Results

In addition to HLA-B*51, HLA-B*57 was found as a risk factor in BD, whereas, B*35 was found to be protective. Other HLA-A and B specificities were suggestive of association with the disease as risk (A*02 and A*24) or protective factors (A*03 and B*58). Regarding the non-HLA genes, the three SNPs located in IL23R and one of the SNPs in IL10 were found to be significantly associated with susceptibility to BD in our population.

Conclusion

Different HLA specificities are associated with Behçet’s disease in addition to B*51. Other non-HLA genes, such as IL23R and IL-10, play a role in the susceptibility to the disease.  相似文献   

15.
16.

Background

The sensitivity of genome-wide association studies for the detection of quantitative trait loci (QTL) depends on the density of markers examined and the statistical models used. This study compares the performance of three marker densities to refine six previously detected QTL regions for mastitis traits: 54 k markers of a medium-density SNP (single nucleotide polymorphism) chip (MD), imputed 777 k markers of a high-density SNP chip (HD), and imputed whole-genome sequencing data (SEQ). Each dataset contained data for 4496 Danish Holstein cattle. Comparisons were performed using a linear mixed model (LM) and a Bayesian variable selection model (BVS).

Results

After quality control, 587, 7825, and 78 856 SNPs in the six targeted regions remained for MD, HD, and SEQ data, respectively. In general, the association patterns between SNPs and traits were similar for the three marker densities when tested using the same statistical model. With the LM model, 120 (MD), 967 (HD), and 7209 (SEQ) SNPs were significantly associated with mastitis, whereas with the BVS model, 43 (MD), 131 (HD), and 1052 (SEQ) significant SNPs (Bayes factor > 3.2) were observed. A total of 26 (MD), 75 (HD), and 465 (SEQ) significant SNPs were identified by both models. In addition, one, 16, and 33 QTL peaks for MD, HD, and SEQ data were detected according to the QTL intensity profile of SNP bins by post-analysis of the BVS model.

Conclusions

The power to detect significant associations increased with increasing marker density. The BVS model resulted in clearer boundaries between linked QTL than the LM model. Using SEQ data, the six targeted regions were refined to 33 candidate QTL regions for udder health. The comparison between these candidate QTL regions and known genes suggested that NPFFR2, SLC4A4, DCK, LIFR, and EDN3 may be considered as candidate genes for mastitis susceptibility.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-015-0129-1) contains supplementary material, which is available to authorized users.  相似文献   

17.

Background

Genome wide association study (GWAS) has been proven to be a powerful tool for detecting genomic variants associated with complex traits. However, the specific genes and causal variants underlying these traits remain unclear.

Results

Here, we used target-enrichment strategy coupled with next generation sequencing technique to study target regions which were found to be associated with milk production traits in dairy cattle in our previous GWAS. Among the large amount of novel variants detected by targeted resequencing, we selected 200 SNPs for further association study in a population consisting of 2634 cows. Sixty six SNPs distributed in 53 genes were identified to be associated significantly with on milk production traits. Of the 53 genes, 26 were consistent with our previous GWAS results. We further chose 20 significant genes to analyze their mRNA expression in different tissues of lactating cows, of which 15 were specificly highly expressed in mammary gland.

Conclusions

Our study illustrates the potential for identifying causal mutations for milk production traits using target-enrichment resequencing and extends the results of GWAS by discovering new and potentially functional mutations.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1105) contains supplementary material, which is available to authorized users.  相似文献   

18.

Background

Soybean (Glycine max) is a photoperiod-sensitive and self-pollinated species. Days to flowering (DTF) and maturity (DTM), duration of flowering-to-maturity (DFTM) and plant height (PH) are crucial for soybean adaptability and yield. To dissect the genetic architecture of these agronomically important traits, a population consisting of 309 early maturity soybean germplasm accessions was genotyped with the Illumina Infinium SoySNP50K BeadChip and phenotyped in multiple environments. A genome-wide association study (GWAS) was conducted using a mixed linear model that involves both relative kinship and population structure.

Results

The linkage disequilibrium (LD) decayed slowly in soybean, and a substantial difference in LD pattern was observed between euchromatic and heterochromatic regions. A total of 27, 6, 18 and 27 loci for DTF, DTM, DFTM and PH were detected via GWAS, respectively. The Dt1 gene was identified in the locus strongly associated with both DTM and PH. Ten candidate genes homologous to Arabidopsis flowering genes were identified near the peak single nucleotide polymorphisms (SNPs) associated with DTF. Four of them encode MADS-domain containing proteins. Additionally, a pectin lyase-like gene was also identified in a major-effect locus for PH where LD decayed rapidly.

Conclusions

This study identified multiple new loci and refined chromosomal regions of known loci associated with DTF, DTM, DFTM and/or PH in soybean. It demonstrates that GWAS is powerful in dissecting complex traits and identifying candidate genes although LD decayed slowly in soybean. The loci and trait-associated SNPs identified in this study can be used for soybean genetic improvement, especially the major-effect loci associated with PH could be used to improve soybean yield potential. The candidate genes may serve as promising targets for studies of molecular mechanisms underlying the related traits in soybean.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1441-4) contains supplementary material, which is available to authorized users.  相似文献   

19.

Background

Numerous quantitative trait loci (QTL) have been detected in pigs over the past 20 years using microsatellite markers. However, due to the low density of these markers, the accuracy of QTL location has generally been poor. Since 2009, the dense genome coverage provided by the Illumina PorcineSNP60 BeadChip has made it possible to more accurately map QTL using genome-wide association studies (GWAS). Our objective was to perform high-density GWAS in order to identify genomic regions and corresponding haplotypes associated with production traits in a French Large White population of pigs.

Methods

Animals (385 Large White pigs from 106 sires) were genotyped using the PorcineSNP60 BeadChip and evaluated for 19 traits related to feed intake, growth, carcass composition and meat quality. Of the 64 432 SNPs on the chip, 44 412 were used for GWAS with an animal mixed model that included a regression coefficient for the tested SNPs and a genomic kinship matrix. SNP haplotype effects in QTL regions were then tested for association with phenotypes following phase reconstruction based on the Sscrofa10.2 pig genome assembly.

Results

Twenty-three QTL regions were identified on autosomes and their effects ranged from 0.25 to 0.75 phenotypic standard deviation units for feed intake and feed efficiency (four QTL), carcass (12 QTL) and meat quality traits (seven QTL). The 10 most significant QTL regions had effects on carcass (chromosomes 7, 10, 16, 17 and 18) and meat quality traits (two regions on chromosome 1 and one region on chromosomes 8, 9 and 13). Thirteen of the 23 QTL regions had not been previously described. A haplotype block of 183 kb on chromosome 1 (six SNPs) was identified and displayed three distinct haplotypes with significant (0.0001 < P < 0.03) associations with all evaluated meat quality traits.

Conclusions

GWAS analyses with the PorcineSNP60 BeadChip enabled the detection of 23 QTL regions that affect feed consumption, carcass and meat quality traits in a LW population, of which 13 were novel QTL. The proportionally larger number of QTL found for meat quality traits suggests a specific opportunity for improving these traits in the pig by genomic selection.  相似文献   

20.

Background

It is common for humans and model organisms to exhibit sexual dimorphism in a variety of complex traits. However, this phenomenon has rarely been explored in pigs.

Results

To investigate the genetic contribution to sexual dimorphism in complex traits in pigs, we conducted a sex-stratified analysis on 213 traits measured in 921 individuals produced by a White Duroc × Erhualian F2 cross. Of the 213 traits examined, 102 differed significantly between the two sexes (q value <0.05), which indicates that sex is an important factor that influences a broad range of traits in pigs. We compared the estimated heritability of these 213 traits between males and females. In particular, we found that traits related to meat quality and fatty acid composition were significantly different between the two sexes, which shows that genetic factors contribute to variation in sexual dimorphic traits. Next, we performed a genome-wide association study (GWAS) in males and females separately; this approach allowed us to identify 13.6% more significant trait-SNP (single nucleotide polymorphism) associations compared to the number of associations identified in a GWAS that included both males and females. By comparing the allelic effects of SNPs in the two sexes, we identified 43 significant sexually dimorphic SNPs that were associated with 22 traits; 41 of these 43 loci were autosomal. The most significant sexually dimorphic loci were found to be associated with muscle hue angle and Minolta a* values (which are parameters that reflect the redness of meat) and were located between 9.3 and 10.7 Mb on chromosome 6. A nearby gene i.e. NUDT7 that plays an important role in heme synthesis is a strong candidate gene.

Conclusions

This study illustrates that sex is an important factor that influences phenotypic values and modifies the effects of the genetic variants that underlie complex traits in pigs; it also emphasizes the importance of stratifying by sex when performing GWAS.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-014-0076-2) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号