首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Abstract The highest activities of carnitine acetyltransferase (CAT) were found in non-oleaginous yeasts ( Candida utilis and Saccharomyces cerevisiae ); lower activities, ranging from 50% down to 3% of the highest values, were found in various strains of oleaginous yeasts ( Candida curvata, Lipomyces starkeyi, Rhodosporidium toruloides and Trichosporon cutaneum ). Supply of acetyl units into the cytosol of the latter, but not of the former yeasts, was therefore necessarily reliant on the action of ATP: citrate lyase (ACL), which was present in all oleaginous yeasts. There was no correlation, however, between the amount of lipid in the oleaginous yeasts and the specific activities of either CAT or ACL. Activity of CAT was increased up to 30-fold by growing yeasts on a triacylglycerol.  相似文献   

2.
The variations in the levels of adenine nucleotides during the phased growth (cell cycle) of the yeast Candida utilis growing under nitrogen, sulfate, or iron limitation with glycerol as carbon source have been determined. Synchronous cultures were obtained by the continuous phasing technique, and the results were compared with those of chemostat cultures growing at similar growth rates and under the same types of nutrient limitation. Whereas the chemostat experiments indicated only the average energy status of cultures growing at random, results from phased cultures showed that the adenylate energy charge, defined as (ATP + (1/2)ADP)/(ATP + ADP + AMP) (where ATP, ADP, and AMP signify adenosine 5'-triphosphate, -diphosphate, and -monophosphate, respectively), varied during the phased growth of the yeast. These variations were related to the stage of development of the cells and to the type of nutrient limitation. In every case the energy charge dropped to a low value during the first half of the phasing cycle (cell cycle). Whereas the energy charge was maintained at relatively high levels (ranging from 0.78 to 0.94), for sulfate- or nitrogen-limited cultures, it was very low when iron was the growth-limiting nutrient (0.44 to 0.78). In spite of the low energy charge, the yeast continued to grow under iron limitation. The main component of the adenylate pool of the iron-limited culture was ADP and not ATP as observed with other types of nutrient limitation. It is concluded that under iron limitation the growth of the organism is limited by energy and that under energy-limited growth the energy charge of a growing organism is maintained at low levels. The reason for maintaining a low energy charge in an energy-limited culture is discussed.  相似文献   

3.
The competition between the yeasts Saccharomyces cerevisiae CBS 8066 and Candida utilis CBS 621 for glucose was studied in sugar-limited chemostat cultures. Under aerobic conditions, C. utilis always successfully completed against S. cerevisiae. Only under anaerobic conditions did S. cerevisiae become the dominant species. The rationale behind these observations probably is that under aerobic glucose-limited conditions, high-affinity glucose/proton symporters are present in C. utilis, whereas in S. cerevisiae, glucose transport occurs via facilitated diffusion with low-affinity carriers. Our results explain the frequent occurrence of infections by Crabtree-negative yeasts during bakers' yeast production.  相似文献   

4.
Aspects of inorganic nitrogen assimilation in yeasts   总被引:1,自引:0,他引:1  
Cultures of Candida utilis utilise glutamate in preference to ammonia and ammonia in preference to nitrate. The nitrate reductase of this organism is induced by nitrate and repressed in cultures grown on glutamate or ammonia. Nitrate-grown cultures of C. utilis, irrespective of the medium nitrate concentration, behave as though nitrogen-limited. In contrast to C. utilis, Saccharomyces cerevisiae utilises ammonia in preference to glutamate. In eight yeasts studied the highest cellular contents of biosynthetic NADP-linked glutamate dehydrogenase were found in batch cultures containing low concentrations of ammonia or in nitrogen-limited chemostat cultures. NAD-linked glutamate dehydrogenase activity was detected in extracts of cells grown in the presence of glutamate but not in those grown in the presence of ammonia.  相似文献   

5.
The role of pyruvate metabolism in the triggering of aerobic, alcoholic fermentation in Saccharomyces cerevisiae has been studied. Since Candida utilis does not exhibit a Crabtree effect. this yeast was used as a reference organism. The localization, activity and kinetic properties of pyruvate carboxylase (EC 6.4.1.1), the pyruvate dehydrogenase complex and pyruvate decarboxylase (EC 4.1.1.1) in cells of glucose-limited chemostat cultures of the two yeasts were compared. In contrast to the general situation in fungi, plants and animals, pyruvate carboxylase was found to be a cytosolic enzyme in both yeasts. This implies that for anabolic processes, transport of C4-dicarboxylic acids into the mitochondria is required. Isolated mitochondria from both yeasts exhibited the same kinetics with respect to oxidation of malate. Also, the affinity of isolated mitochondria for pyruvate oxidation and the in situ activity of the pyruvate dehydrogenase complex was similar in both types of mitochondria. The activity of the cytosolic enzyme pyruvate decarboxylase in S. cerevisiae from glucose-limited chemostat cultures was 8-fold that in C. utilis. The enzyme was purified from both organisms, and its kinetic properties were determined. Pyruvate decarboxylase of both yeasts was competitively inhibited by inorganic phosphate. The enzyme of S. cerevisiae was more sensitive to this inhibitor than the enzyme of C. utilis. The in vivo role of phosphate inhibition of pyruvate decarboxylase upon transition of cells from glucose limitation to glucose excess and the associated triggering of alcoholic fermentation was investigated with 31P-NMR. In both yeasts this transition resulted in a rapid drop of the cytosolic inorganic phosphate concentration. It is concluded that the relief from phosphate inhibition does stimulate alcoholic fermentation, but it is not a prerequisite for pyruvate decarboxylase to become active in vivo. Rather, a high glycolytic flux and a high level of this enzyme are decisive for the occurrence of alcoholic fermentation after transfer of cells from glucose limitation to glucose excess.  相似文献   

6.
ATP:citrate lyase (ACL) catalyzes the conversion of citrate to acetyl-coenzyme A (CoA) and oxaloacetate and is a key enzyme for lipid accumulation in mammals and oleaginous yeasts and fungi. To investigate whether heterologous ACL genes can be targeted and imported into the plastids of plants, a gene encoding a fusion protein of the rat liver ACL with the transit peptide for the small subunit of ribulose bisphosphate carboxylase was constructed and introduced into the genome of tobacco. This was sufficient to provide import of the heterologous protein into the plastids. In vitro assays of ACL in isolated plastids showed that the enzyme was active and synthesized acetyl-CoA. Overexpression of the rat ACL gene led to up to a 4-fold increase in the total ACL activity; this increased the amount of fatty acids by 16% but did not cause any major change in the fatty acid profile. Therefore, increasing the availability of acetyl-CoA as a substrate for acetyl-CoA carboxylase and subsequent reactions of fatty acid synthetase has a slightly beneficial effect on the overall rate of lipid synthesis in plants.  相似文献   

7.
1. Pyruvate carboxylase from baker's yeast is inhibited by ADP, AMP and adenosine at pH8.0 in the presence of magnesium chloride concentrations equal to or higher than the ATP concentration. The adenine moiety is essential for the inhibitory effect. 2. In the absence of acetyl-CoA (an allosteric activator) ADP, AMP and adenosine are competitive inhibitors with respect to ATP. In the presence of acetyl-CoA, besides the effect with respect to ATP, AMP competes with acetyl-CoA, whereas ADP and adenosine are non-competitive inhibitors with respect to the activator. 3. Pyruvate carboxylase is inhibited by NADH. The inhibition is competitive with respect to acetyl-CoA and specific with respect to NADH, since NAD(+), NADP(+) and NADPH do not affect the enzyme activity. In the absence of acetyl-CoA, NAD(+), NADH, NADP(+) and NADPH do not inhibit pyruvate carboxylase. 4. Pyruvate carboxylase is inhibited by ADP, AMP and NADH at pH6.5, in the presence of 12mm-Mg(2+), 0.75mm-Mn(2+) and 0.5mm-ATP, medium conditions similar to those existing inside the yeast cell. The ADP and NADH effects are consistent with a regulation of enzyme activity by the intracellular [ATP]/[ADP] ratio and secondarily by NADH concentration. These mechanisms would supplement the already known control of yeast pyruvate carboxylase by acetyl-CoA and l-aspartate. Inhibition by AMP is less marked and its physiological role is perhaps limited.  相似文献   

8.
Specific oxygen uptake rates [Q(02)] were highest when Candida 107 and Rhodotorula gracilis grew at their maximum dilution rates. In nitrogen-limited medium, which encourages lipid accumulation, Q(02) values of both yeasts decreased as the dilution rate was lowered.  相似文献   

9.
Specific oxygen uptake rates [Q(02)] were highest when Candida 107 and Rhodotorula gracilis grew at their maximum dilution rates. In nitrogen-limited medium, which encourages lipid accumulation, Q(02) values of both yeasts decreased as the dilution rate was lowered.  相似文献   

10.
The effects of citrate and cyclic AMP on the rate and degree of phosphorylation and inactivation of rat liver acetyl-CoA carboxylase were examined. High citrate concentrations (10 to 20 mM), which are generally used to stabilize and activate the enzyme, inhibit phosphorylation and inactivation of carboxylase. At lower concentrations of citrate, the rate and degree of phosphorylation are increased. Furthermore, phosphorylation and enzyme inactivation are affected by cyclic AMP under these conditions. At high citrate concentrations, cyclic AMP has little or no effect on inactivation and phosphorylation of acetyl-CoA carboxylase. Phosphorlation and inactivation of carboxylase is accompanied by depolymerization of the polymeric form of the enzyme into intermediate and protomeric forms. Depolymerization of carboxylase requires the transfer of the gamma-phosphate group from ATP to carboxylase. Inactivation occurs in the absence of CO2, which indicates that phosphorylation of the enzyme is the cause of inactivation and depolymerization, i.e. carboxylation of the enzyme is not responsible for inactivation of the enzyme.  相似文献   

11.
The conversion of acetyl-CoA to malonyl-CoA by acetyl-CoA carboxylase (ACC) is the rate-limiting step in fatty acid biosynthesis. In this study, a gene coding for ACC was isolated and characterized from an oleaginous yeast, Lipomyces starkeyi. Real-time quantitative PCR (qPCR) analysis of L. starkeyi acetyl-CoA carboxylase gene (LsACC1) showed that the expression levels were upregulated with the fast accumulation of lipids. The LsACC1 was co-overexpressed with the glycerol 3-phosphate dehydrogenase gene (GPD1), which regulates lipids biosynthesis by supplying another substrates glycerol 3-phosphate for storage lipid assembly, in the non-oleaginous yeast Saccharomyces cerevisiae. Further, the S. cerevisiae acetyl-CoA carboxylase (ScACC1) was transferred with GPD1 and its function was analyzed in comparison with LsACC1. The results showed that overexpressed LsACC1 and GPD1 resulted in a 63% increase in S. cerevisiae. This study gives new data in understanding of the molecular mechanisms underlying the regulation of fatty acids and lipid biosynthesis in yeasts.  相似文献   

12.
The kinetic properties of citrate synthase from rat liver mitochondria   总被引:19,自引:6,他引:13       下载免费PDF全文
1. Citrate synthase (EC 4.1.3.7) was purified 750-fold from rat liver. 2. Measurements of the Michaelis constants for the substrates of citrate synthase gave values of 16mum for acetyl-CoA and 2mum for oxaloacetate. Each value is independent of the concentration of the other substrate. 3. The inhibition of citrate synthase by ATP, ADP and AMP is competitive with respect to acetyl-CoA. With respect to oxaloacetate the inhibition by AMP is competitive, but the inhibition by ADP and ATP is mixed, being partially competitive. 4. At low concentrations of both substrates the inhibition by ATP is sigmoidal and a Hill plot exhibits a slope of 2.5. 5. The pH optimum of the enzyme is 8.7, and is not significantly affected by ATP. 6. Mg(2+) inhibits citrate synthase slightly, but relieves the inhibition caused by ATP in a complex manner. 7. At constant total adenine nucleotide concentration made up of various proportions of ATP, ADP and AMP, the activity of citrate synthase is governed by the concentration of the sum of the energy-rich phosphate bonds of ADP and ATP. 8. The sedimentation coefficient of the enzyme, as measured by activity sedimentation, is 6.3s, equivalent to molecular weight 95000.  相似文献   

13.
Strain N.C.Y.C. 193 of Candida utilis was grown aerobically at 30 degrees C with nitrate as limiting nutrient in a chemostat. The washed yeast cells depleted of ATP absorbed up to 5 nmol of nitrate/mg dry wt. of yeast. At pH 4-6, extra protons and nitrate entered the yeast cells together, in a ratio of about 2:1. Charge balance was maintained by an outflow of about 1 equiv. of K+. Nitrate stimulated the uptake of about 1 proton equivalent during glycolysis or aerobic energy metabolism. Studies with 3,3'-dipropylthiadicarbocyanine indicated that the proton-linked absorption of nitrate, amino acids or glucose depolarized the yeast cells. Proton uptake along with lactate led neither to net expulsion of K+ nor to membrane depolarization.  相似文献   

14.
Lipid homeostasis is well-known in oleaginous yeasts, but there are few non-oleaginous yeast models apart from Saccharomyces cerevisiae. We are proposing the non-oleaginous yeast Candida zeylanoides QU 33 as model. The aim of this study was to investigate the influence of the carbon/nitrogen ratio and the type of nitrogen source upon oil accumulation by this yeast grown on shake flask cultures. The maximum biomass was obtained in yeast extract (2.39?±?0.19 g/l), followed by peptone (2.24?±?0.05 g/l), while the highest content of microbial oil (0.35?±?0.01 g/l) and the maximum lipid yield (15.63 %) were achieved with peptone. Oleic acid was the predominant cellular fatty acid in all culture media (>32.23 %), followed by linoleic (>15.79 %) and palmitic acids (>13.47 %). The highest lipid yield using glucose and peptone was obtained at the C/N ratio of 200:1.  相似文献   

15.
A theoretical evaluation of growth yields of yeasts   总被引:12,自引:0,他引:12  
Growth yields of Saccharomyces cerevisiae and Candida utilis in carbon-limited chemostat cultures were evaluated. The yields on ethanol and acetate were much lower in S. cerevisiae, in line with earlier reports that site I phosphorylation is absent in this yeast. However, during aerobic growth on glucose both organisms had the same cell yield. This can be attributed to two factors: --S. cerevisiae had a lower protein content than C. utilis; --uptake of glucose by C. utilis requires energy whereas in S. cerevisiae it occurs via facilitated diffusion. Theoretical calculations showed that, as a result of these two factors, the ATP requirement for biomass formation in C. utilis is 35% higher than in S. cerevisiae (theoretical YATP values of 20.8 and 28.1, respectively). The experimental YATP for anaerobic growth of S. cerevisiae on glucose was 16 g biomass.mol ATP-1. In vivo P/O-ratios can be calculated for aerobic growth on ethanol and acetate, provided that the gap between the theoretical and experimental ATP requirements as observed for growth on glucose is taken into account. This was done in two ways: --via the assumption that the gap is independent of the growth substrate (i.e. a fixed amount of ATP bridges the difference between the theoretical and experimental values). --alternatively, on the assumption that the difference is a fraction of the total ATP expenditure, that is dependent on the substrate. Calculations of P/O-ratios for growth of both yeasts on glucose, ethanol, and acetate made clear that only by assuming a fixed difference between theoretical and experimental ATP requirements, the P/O-ratios are more or less independent of the growth substrate. These P/O-ratios are approximately 30% lower than the calculated mechanistic values.  相似文献   

16.
Biomass production of yeast isolate from salad oil manufacturing wastewater   总被引:4,自引:0,他引:4  
Zheng S  Yang M  Yang Z 《Bioresource technology》2005,96(10):1183-1187
Conversion of oil-rich salad oil manufacturing wastewater (SOMW) into protein source for animal feed through biomass production of yeast isolate was investigated in this study. Five species of yeasts, including Rhodotorula rubra, Candida tropicalis, C. utilis, C. boidinii, Trichosporon cutaneum, were isolated from SOMW following enrichment culture. Of them, C. utilis was chosen as the sole biomass producer in the study due to its greatest oil uptake rate, 0.96 kg oil kg(-1) biomass d(-1), and highest specific growth rate, 0.25 h(-1). The cells of C. utilis contained 26% protein, 9% crude lipid, 55% carbohydrate and balanced amino acid compositions. The initial N:C ratio in SOMW drastically influenced oil reduction efficiency, biomass production and protein content of C. utilis, and therefore a range between 1:6 and 1:8 was recommended in consideration of these three factors simultaneously.  相似文献   

17.
Fatty acid synthesis via the citrate cleavage pathway requires the continual replenishment of oxaloacetate within the mitochondria, probably by carboxylation of pyruvate. Malic enzyme, although present in adipose tissue, is completely localized in the cytoplasm and has insufficient activity to support lipogenesis. Pyruvate carboxylase was found to be active in both the mitochondria and cytoplasm of epididymal adipose tissue cells; it was dependent on both ATP and biotin. Alteractions in dietary conditions induced no significant changes in mitochondrial pyruvate carboxylase activity, but the soluble activity was depressed in fat-fed animals. The possible importance of the soluble activity in lipogenesis lies in its participation in a soluble malate transhydrogenation cycle with NAD malate dehydrogenase and malic enzyme, whereby a continual supply of NADPH is produced. Consequently, the pyruvate carboxylase in adipose tissue both generates mitochondrial oxaloacetate for the citrate cleavage pathway and supplies soluble NADPH for the conversion of acetyl-CoA to fatty acid.  相似文献   

18.
During continuous culture ofCandida utilis the appearance of a morphologic variant yeast was detected. The new microorganism developed systematically whenever it was changed from normal to stressed propagation conditions. A simple system was used for the isolation of the yeast variant, which was defective in cellular division and showed improved kinetic parameters and oxygen uptake rate. An asynchronic nitrogen-limited continuous culture ofCandida utilis allowed us to enrich the population in the chemostat with the modified yeast and isolate it in a defined medium. Assimilation and fermentation tests indicated it to be a variant ofCandida utilis that showed stable morphologic and physiologic differences with the parental yeast.Candida utilis growing in this nitrogen-limited continuous culture also showed a high mutation rate.  相似文献   

19.
1. In epididymal adipose tissue synthesizing fatty acids from fructose in vitro, addition of insulin led to a moderate increase in fructose uptake, to a considerable increase in the flow of fructose carbon atoms to fatty acid, to a decrease in the steady-state concentration of lactate and pyruvate in the medium, and to net uptake of lactate and pyruvate from the medium. It is concluded that insulin accelerates a step in the span pyruvate-->fatty acid. 2. Mitochondria prepared from fat-cells exposed to insulin put out more citrate than non-insulin-treated controls under conditions where the oxaloacetate moiety of citrate was formed from pyruvate by pyruvate carboxylase and under conditions where it was formed from malate. This suggested that insulin treatment of fat-cells led to persistent activation of pyruvate dehydrogenase. 3. Insulin treatment of epididymal fat-pads in vitro increased the activity of pyruvate dehydrogenase measured in extracts of the tissue even in the absence of added substrate; the activities of pyruvate carboxylase, citrate synthase, glutamate dehydrogenase, acetyl-CoA carboxylase, NADP-malate dehydrogenase and NAD-malate dehydrogenase were not changed by insulin. 4. The effect of insulin on pyruvate dehydrogenase activity was inhibited by adrenaline, adrenocorticotrophic hormone and dibutyryl cyclic AMP (6-N,2'-O-dibutyryladenosine 3':5'-cyclic monophosphate). The effect of insulin was not reproduced by prostaglandin E(1), which like insulin may lower the tissue concentration of cyclic AMP (adenosine 3':5'-cyclic monophosphate) and inhibit lipolysis. 5. Adipose tissue pyruvate dehydrogenase in extracts of mitochondria is almost totally inactivated by incubation with ATP and can then be reactivated by incubation with 10mm-Mg(2+). In this respect its properties are similar to that of pyruvate dehydrogenase from heart and kidney where evidence has been given that inactivation and activation are catalysed by an ATP-dependent kinase and a Mg(2+)-dependent phosphatase. Evidence is given that insulin may act by increasing the proportion of active (dephosphorylated) pyruvate dehydrogenase. 6. Cyclic AMP could not be shown to influence the activity of pyruvate dehydrogenase in mitochondria under various conditions of incubation. 7. These results are discussed in relation to the control of fatty acid synthesis in adipose tissue and the role of cyclic AMP in mediating the effects of insulin on pyruvate dehydrogenase.  相似文献   

20.
Many facultatively fermentative yeast species exhibit a "Kluyver effect": even under oxygen-limited growth conditions, certain disaccharides that support aerobic, respiratory growth are not fermented, even though the component monosaccharides are good fermentation substrates. This article investigates the applicability of this phenomenon for high-cell-density cultivation of yeasts. In glucose-grown batch cultures of Candida utilis CBS 621, the onset of oxygen limitation led to alcoholic fermentation and, consequently, a decrease of the biomass yield on sugar. In maltose-grown cultures, alcoholic fermentation did not occur and oxygen-limited growth resulted in high biomass concentrations (90 g dry weight L(-1) from 200 g L(-1) maltose monohydrate in a simple batch fermentation). It was subsequently investigated whether this principle could also be applied to Kluyveromyces species exhibiting a Kluyver effect for lactose. In oxygen-limited, glucose-grown chemostat cultures of K. wickerhamii CBS 2745, high ethanol concentrations and low biomass yields were observed. Conversely, ethanol was absent and biomass yields on sugar were high in oxygen-limited chemostat cultures grown on lactose. Batch cultures of K. wickerhamii grown on lactose exhibited the same growth characteristics as the maltose-grown C. utilis cultures: absence of ethanol formation and high biomass yields. Within the species K. marxianus, the occurrence of a Kluyver effect for lactose is known to be strain dependent. Thus, K. marxianus CBS 7894 could be grown to high biomass densities in lactose-grown batch cultures, whereas strain CBS 5795 produced ethanol after the onset of oxygen limitation and, consequently, yielded low amounts of biomass. Because the use of yeast strains exhibiting a Kluyver effect obviates the need for controlled substrate-feeding strategies to avoid oxygen limitation, such strains should be excellently suited for the production of biomass and growth-related products from low-cost disaccharide-containing feedstocks. (c) 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号