首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lee JY  Lee YM  Chang GC  Yu SL  Hsieh WY  Chen JJ  Chen HW  Yang PC 《PloS one》2011,6(8):e23756

Background

Non-small cell lung cancer (NSCLC) patients with L858R or exon 19 deletion mutations in epidermal growth factor receptor (EGFR) have good responses to the tyrosine kinase inhibitor (TKI), gefitinib. However, patients with wild-type EGFR and acquired mutation in EGFR T790M are resistant to gefitinib treatment. Here, we showed that curcumin can improve the efficiency of gefitinib in the resistant NSCLC cells both in vitro and in vivo models.

Methods/Principal Findings

After screening 598 herbal and natural compounds, we found curcumin could inhibit cell proliferation in different gefitinib-resistant NSCLC cell lines; concentration-dependently down-regulate EGFR phosphorylation through promoting EGFR degradation in NSCLC cell lines with wild-type EGFR or T790M EGFR. In addition, the anti-tumor activity of gefitinib was potentiated via curcumin through blocking EGFR activation and inducing apoptosis in gefitinib-resistant NSCLC cell lines; also the combined treatment with curcumin and gefitinib exhibited significant inhibition in the CL1-5, A549 and H1975 xenografts tumor growth in SCID mice through reducing EGFR, c-MET, cyclin D1 expression, and inducing apoptosis activation through caspases-8, 9 and PARP. Interestingly, we observed that the combined treatment group represented better survival rate and less intestinal mucosal damage compare to gefitinib-alone therapy. We showed that curcumin attenuated the gefitinib-induced cell proliferation inhibition and apoptosis through altering p38 mitogen-activated protein kinase (MAPK) activation in intestinal epithelia cell.

Conclusions/Significance

Curcumin potentiates antitumor activity of gefitinib in cell lines and xenograft mice model of NSCLC through inhibition of proliferation, EGFR phosphorylation, and induction EGFR ubiquitination and apoptosis. In addition, curcumin attenuates gefitinib-induced gastrointestinal adverse effects via altering p38 activation. These findings provide a novel treatment strategy that curcumin as an adjuvant to increase the spectrum of the usage of gefitinib and overcome the gefitinib inefficiency in NSCLC patients.  相似文献   

2.
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI), such as gefitinib, have been proven to efficiently inhibit the proliferation of a subset of non small-cell lung cancers (NSCLC). Unfortunately, the majority of NSCLC expressing wild type EGFR is primarily resistant to EGFR-TKI treatment. Here, we show that the proliferation of the gefitinib-resistant NSCLC cell lines H460 and A549 is reduced by the small molecule SecinH3 which indirectly attenuates EGFR activation by inhibition of cytohesins, a class of recently discovered cytoplasmic EGFR activators. SecinH3 and gefitinib showed a synergistic antiproliferative effect, which correlated with a profound inhibition of Akt activation and survivin expression. Treating mice bearing H460 xenografts with SecinH3 showed the antiproliferative and pro-apoptotic effect of SecinH3 in vivo. Our data suggest that targeting the EGFR indirectly by inhibiting its cytoplasmic activators, the cytohesins, has the potential to improve the treatment of primarily EGFR-TKI resistant lung cancers.  相似文献   

3.
4.
Activation of the epidermal growth factor receptor (EGFR) contributes to the pathogenesis of non-small-cell lung carcinomas (NSCLC) and gefitinib, a selective reversible EGFR inhibitor, is effective in treating patients with NSCLC. However, clinical resistance to gefitinib is a frequent occurrence highlighting the need for improved therapeutic strategies. Melanoma differentiation associated gene-7 (mda-7)/Interleukin-24 (IL-24) (mda-7/IL-24) displays cancer-selective apoptosis induction when delivered via a replication-incompetent adenovirus (Ad.mda-7). In this study, the effect of Ad.mda-7 infection, either alone or in combination with gefitinib, was analyzed in a panel of NSCLC cell lines carrying wild-type EGFR (H-460 and H-2030) or mutant EGFR (H-1650 and H-1975). While H-2030 and H-1650 cells were sensitive, H-460 and H-1975 cells were resistance to growth inhibition by Ad.mda-7, which was reversed by the combination of Ad.mda-7 and gefitinib. This combination increased MDA-7/IL-24 and downstream effector double-stranded RNA-activated protein kinase (PKR) protein expression, promoting apoptosis induction of NSCLC cells. Inhibition of PKR significantly inhibited apoptosis induction by Ad.mda-7 when administered alone but not when used in combination with gefitinib. The combination treatment also augmented inhibition of EGFR signaling. Our findings indicate that a combinatorial treatment with Ad.mda-7 and gefitinib may provide benefit in the treatment of NSCLC, especially in patients displaying resistance to clinically used EGFR inhibitors.  相似文献   

5.
Despite initial dramatic efficacy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (EGFR‐TKIs) in EGFR‐mutant lung cancer patients, subsequent emergence of acquired resistance is almost inevitable. Resveratrol and its derivatives have been found to exert some effects on EGFR‐TKI resistance in non‐small cell lung cancer (NSCLC), but the underlying mechanisms remain unclear. We screened several NSCLC cell lines with gefitinib resistance by MTT assay and analysed the miR‐345/miR‐498 expression levels. NSCLC cells were pre‐treated with a resveratrol derivative, trans‐3,5,4‐trimethoxystilbene (TMS) and subsequently challenged with gefitinib treatment. The changes in apoptosis and miR‐345/miR‐498 expression were analysed by flow cytometry and q‐PCR respectively. The functions of miR‐345/miR‐498 were verified by CCK‐8 assay, cell cycle analysis, dual‐luciferase reporter gene assay and immunoblotting analysis. Our results showed that the expression of miR‐345 and miR‐498 significantly decreased in gefitinib resistant NSCLC cells. TMS pre‐treatment significantly upregulated the expression of miR‐345 and miR‐498 increasing the sensitivity of NSCLC cells to gefitinib and inducing apoptosis. MiR‐345 and miR‐498 were verified to inhibit proliferation by cell cycle arrest and regulate the MAPK/c‐Fos and AKT/Bcl‐2 signalling pathways by directly targeting MAPK1 and PIK3R1 respectively. The combination of TMS and gefitinib promoted apoptosis also by miR‐345 and miR‐498 targeting the MAPK/c‐Fos and AKT/Bcl‐2 signalling pathways. Our study demonstrated that TMS reduced gefitinib resistance in NSCLCs via suppression of the MAPK/Akt/Bcl‐2 pathway by upregulation of miR‐345/498. These findings would lay the theoretical basis for the future study of TMS for the treatment of EGFR‐TKI resistance in NSCLCs.  相似文献   

6.
The use of tyrosine kinase inhibitors (TKIs) against EGFR/c-Met in non-small cell lung cancer (NSCLC) has been shown to be effective in increasing patient progression free survival (PFS), but their efficacy is limited due to the development of resistance and tumor recurrence. Therefore, understanding the molecular mechanisms underlying development of drug resistance in NSCLC is necessary for developing novel and effective therapeutic approaches to improve patient outcome. This study aims to understand the mechanism of EGFR/c-Met tyrosine kinase inhibitor (TKI) resistance in NSCLC. H2170 and H358 cell lines were made resistant to SU11274, a c-Met inhibitor, and erlotinib, an EGFR inhibitor, through step-wise increases in TKI exposure. The IC50 concentrations of resistant lines exhibited a 4–5 and 11–22-fold increase for SU11274 and erlotinib, respectively, when compared to parental lines. Furthermore, mTOR and Wnt signaling was studied in both cell lines to determine their roles in mediating TKI resistance. We observed a 2–4-fold upregulation of mTOR signaling proteins and a 2- to 8-fold upregulation of Wnt signaling proteins in H2170 erlotinib and SU11274 resistant cells. H2170 and H358 cells were further treated with the mTOR inhibitor everolimus and the Wnt inhibitor XAV939. H358 resistant cells were inhibited by 95% by a triple combination of everolimus, erlotinib and SU11274 in comparison to 34% by a double combination of these drugs. Parental H2170 cells displayed no sensitivity to XAV939, while resistant cells were significantly inhibited (39%) by XAV939 as a single agent, as well as in combination with SU11274 and erlotinib. Similar results were obtained with H358 resistant cells. This study suggests a novel molecular mechanism of drug resistance in lung cancer.  相似文献   

7.
Despite the initial response, all patients with epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer (NSCLC) eventually develop acquired resistance to EGFR tyrosine kinase inhibitors (TKIs). The EGFR-T790M secondary mutation is responsible for half of acquired resistance cases, while MET amplification has been associated with acquired resistance in about 5-15% of NSCLCs. Clinical findings indicate the retained addiction of resistant tumors on EGFR signaling. Therefore, we evaluated the molecular mechanisms supporting the therapeutic potential of gefitinib maintenance in the HCC827 GR5 NSCLC cell line harbouring MET amplification as acquired resistance mechanism. We demonstrated that resistant cells can proliferate and survive regardless of the presence of gefitinib, whereas the absence of the drug significantly enhanced cell migration and invasion. Moreover, the continuous exposure to gefitinib prevented the epithelial-mesenchymal transition (EMT) with increased E-cadherin expression and down-regulation of vimentin and N-cadherin. Importantly, the inhibition of cellular migration was correlated with the suppression of EGFR-dependent Src, STAT5 and p38 signaling as assessed by a specific kinase array, western blot analysis and silencing functional studies. On the contrary, the lack of effect of gefitinib on EGFR phosphorylation in the H1975 cells (EGFR-T790M) correlated with the absence of effects on cell migration and invasion. In conclusion, our findings suggest that certain EGFR-mutated patients may still benefit from a second-line therapy including gefitinib based on the specific mechanism underlying tumor cell resistance.  相似文献   

8.
9.
《Cytotherapy》2019,21(6):603-611
BackgroundTreatment with tyrosine kinase inhibitors (TKIs) has improved the outcomes for patients with non-small cell lung cancer (NSCLC) harboring targetable driver mutations. However, acquired resistance to TKIs invariably develops within approximately 1 year of treatment by various mechanisms, including gatekeeper mutations, alternative pathway activation and histological transformations. Because immunotherapy is an option for patients with drug-resistant cancers, we generated several TKI-resistant NSCLC cell lines in vitro, and then evaluated the cytotoxicity of NK92-CD16 cells to these resistant cells.Materials and MethodsTKI-resistant NSCLC cells (H3122CR1, H3122LR1, H3122CR1LR1, PC-9GR, PC-9ER, EBC-CR1 and EBC-CR2) were established from NCI-H3122 (EML4-ALK fusion), PC-9 (EGFR exon19 deletion) and EBC-1 (MET amplification) after continuous exposure to crizotinib, ceritinib, gefitinib, erlotinib and capmatinib. Expression of ligands for natural killer (NK) cell receptors and total EGFR were analyzed using flow cytometry. NK cytotoxicity and antibody-dependent cell-mediated cytotoxicity (ADCC) using anti-EGFR monoclonal antibody (mAb) cetuximab were measured using NK92-CD16 as effectors and detected using the 51Chromium-release assay.ResultsWe found that NK92-CD16 cells preferentially killed TKI-resistant NSCLC cells when compared with their parental NSCLC cells. Mechanistically, intracellular adhesion molecule 1 (ICAM-1) was up-regulated in the TKI-resistant NSCLC cells and patients’ tumors, and the ICAM-1 up-regulated cancer cells lines were less susceptible to NK cytotoxicity by blocking ICAM-1. Moreover, NK92-CD16 cell-induced cytotoxicity toward TKI-resistant NSCLC cells was enhanced in the presence of cetuximab, an EGFR-targeting mAb.ConclusionThese data suggest that combinational treatment with NK cell–based immunotherapy and cetuximab may be promising for patients with TKI-resistant NSCLC.  相似文献   

10.
Costa DB  Halmos B  Kumar A  Schumer ST  Huberman MS  Boggon TJ  Tenen DG  Kobayashi S 《PLoS medicine》2007,4(10):1669-79; discussion 1680

Background

Epidermal growth factor receptor (EGFR) mutations are present in the majority of patients with non-small cell lung cancer (NSCLC) responsive to the EGFR tyrosine kinase inhibitors (TKIs) gefitinib or erlotinib. These EGFR-dependent tumors eventually become TKI resistant, and the common secondary T790M mutation accounts for half the tumors with acquired resistance to gefitinib. However, the key proapoptotic proteins involved in TKI-induced cell death and other secondary mutations involved in resistance remain unclear. The objective of this study was to identify the mechanism of EGFR TKI-induced apoptosis and secondary resistant mutations that affect this process.

Methods and Findings

To study TKI-induced cell death and mechanisms of resistance, we used lung cancer cell lines (with or without EGFR mutations), Ba/F3 cells stably transfected with EGFR mutation constructs, and tumor samples from a gefitinib-resistant patient. Here we show that up-regulation of the BH3-only polypeptide BIM (also known as BCL2-like 11) correlated with gefitinib-induced apoptosis in gefitinib-sensitive EGFR-mutant lung cancer cells. The T790M mutation blocked gefitinib-induced up-regulation of BIM and apoptosis. This blockade was overcome by the irreversible TKI CL-387,785. Knockdown of BIM by small interfering RNA was able to attenuate apoptosis induced by EGFR TKIs. Furthermore, from a gefitinib-resistant patient carrying the activating L858R mutation, we identified a novel secondary resistant mutation, L747S in cis to the activating mutation, which attenuated the up-regulation of BIM and reduced apoptosis.

Conclusions

Our results provide evidence that BIM is involved in TKI-induced apoptosis in sensitive EGFR-mutant cells and that both attenuation of the up-regulation of BIM and resistance to gefitinib-induced apoptosis are seen in models that contain the common EGFR T790M and the novel L747S secondary resistance mutations. These findings also suggest that induction of BIM may have a role in the treatment of TKI-resistant tumors.  相似文献   

11.
Emerging evidence has shown that exosomes derived from drug‐resistant tumour cells are able to horizontally transmit drug‐resistant phenotype to sensitive cells. However, whether exosomes shed by EGFR T790M‐mutant–resistant NSCLC cells could transfer drug resistance to sensitive cells has not been investigated. We isolated exosomes from the conditioned medium (CM) of T790M‐mutant NSCLC cell line H1975 and sensitive cell line PC9. The role and mechanism of exosomes in regulating gefitinib resistance was investigated both in vitro and in vivo. Exosome‐derived miRNA expression profiles from PC9 and H1975 were analysed by small RNA sequencing and confirmed by qRT‐PCR. We found that exosomes shed by H1975 could transfer gefitinib resistance to PC9 both in vitro and in vivo through activating PI3K/AKT signalling pathway. Small RNA sequencing and RT‐PCR confirmed that miR‐3648 and miR‐522‐3p were the two most differentially expressed miRNAs and functional study showed that up‐regulation of miR‐522‐3p could induce gefitinib resistance in PC9 cell. The findings of our study reveal an important mechanism of acquired resistance to EGFR‐TKIs in NSCLC.  相似文献   

12.
Secondary acquired mutant EGFR (L858R-T790M) overexpressed NSCLC forms one of the prevalent form of resistant NSCLC. Another subset of resistant NSCLC includes amplified cMET in mutant EGFR derived tumours. Thus, in continuation to our previous work on these two major targets of resistant NSCLC, i.e., EGFR (L858R-T790M) and cMET, we are hereby reporting reversible inhibitors of these kinases. Out of 11 lead molecules reported in our previous study, we selected triazolo-pyrimidone (BAS 09867482) scaffold for further development of small molecule dual and reversible inhibitors. Analogues of lead with different substituents on the side ring were sketched and docked in both the target kinases, followed by molecular dynamic simulations. Analogues maintaining hydrophobic interaction with M790 in secondary acquired mutant EGFR (L858R-T790M) were selected and duly synthesized. In vitro biochemical evaluation of these molecules against EGFR (L858R-T790M) and cMET kinase, along with EGFR (L858R) kinase disclosed that three molecules were having significant dual kinase inhibitory potential with IC50 values well below 100 nM. Further, in vitro anti-proliferative assay against three cell lines (A549, A431 and H460) was performed. Out of all, two compounds were having significant potency against these cell lines.  相似文献   

13.
BackgroundEpidermal growth factor receptor (EGFR) inhibitor gefitinib (Iressa) is used for treating non-small cell lung cancer. Gefitinib also induces differentiation in acute myeloid leukemia (AML) cell lines and patient samples lacking EGFR by an unknown mechanism. Here we dissected the mechanism of gefitinib action responsible for its EGFR-independent effects.MethodsSignaling events were analyzed by homogenous time-resolved fluorescence and immunoblotting. Cellular proliferation and differentiation were assessed by ATP measurement, trypan blue exclusion, 5-bromo-2′-deoxyuridine incorporation and flow-cytometry. Gefitinib and G protein-coupled receptor (GPCR) interactions were assessed by β-arrestin recruitment, luciferase and radioligand competition assays. Role of histamine receptors (HR) in gefitinib actions were assessed by HR knockdown or pharmacological modulation. EGFR and HR interaction was assessed by co-immunoprecipitation.ResultsGefitinib reduced cyclic AMP content in both AML and EGFR-expressing cells and induced ERK phosphorylation in AML cells. Dibutyryl-cAMP or PD98059 suppressed gefitinib-induced AML cell cytostasis and differentiation. Gefitinib bound to and modulated HRs with subtype selectivity. Pharmacological or genetic modulations of H2 and H4 HRs (H2R and H4R) not only suppressed gefitinib-induced cytostasis and differentiation of AML cells but also blocked EGFR and ERK1/2 inhibition in MDA-MB-231 cells. Moreover, in MDA-MB-231 cells gefitinib enhanced EGFR interaction with H4R that was blocked by H4R agonist 4-methyl histamine (4MH).ConclusionHRs play critical roles in anti-cancer effects of gefitinib in both EGFR-deficient and EGFR-rich environments.General significanceWe furnish fresh insights into gefitinib functions which may provide new molecular clues to its efficacy and safety issues.  相似文献   

14.
Although non-small cell lung cancer (NSCLC) tumors with activating mutations in the epidermal growth factor receptor (EGFR) are highly responsive to EGFR tyrosine kinase inhibitors (TKIs) including gefitinib and erlotinib, development of acquired resistance is almost inevitable. Statins show antitumor activity, but it is unknown whether they can reverse EGFR-TKIs resistance in NSCLC with the T790M mutation of EGFR. This study investigated overcoming resistance to EGFR-TKI using simvastatin. We demonstrated that addition of simvastatin to gefitinib enhanced caspase-dependent apoptosis in T790M mutant NSCLC cells. Simvastatin also strongly inhibited AKT activation, leading to suppression of β-catenin activity and the expression of its targets, survivin and cyclin D1. Both insulin treatment and AKT overexpression markedly increased p-β-catenin and survivin levels, even in the presence of gefitinib and simvastatin. However, inhibition of AKT by siRNA or LY294002 treatment decreased p-β-catenin and survivin levels. To determine the role of survivin in simvastatin-induced apoptosis of gefitinib-resistant NSCLC, we showed that the proportion of apoptotic cells following treatment with survivin siRNA and the gefitinib–simvastatin combination was greater than the theoretical additive effects, whereas survivin up-regulation could confer protection against gefitinib and simvastatin-induced apoptosis. Similar results were obtained in erlotinib and simvastatin-treated HCC827/ER cells. These findings suggest that survivin is a key molecule that renders T790M mutant NSCLC cells resistant to apoptosis induced by EGFR-TKIs and simvastatin. Overall, these data indicate that simvastatin may overcome EGFR-TKI resistance in T790M mutant NSCLCs via an AKT/β-catenin signaling-dependent down-regulation of survivin and apoptosis induction.  相似文献   

15.
Backgroundc-Met, a high-affinity receptor for Hepatocyte Growth Factor (HGF), plays a critical role in tumor growth, invasion, and metastasis. Hepatocellular carcinoma (HCC) patients with activated HGF/c-Met signaling have a significantly worse prognosis. Targeted therapies using c-Met tyrosine kinase inhibitors are currently in clinical trials for HCC, although receptor tyrosine kinase inhibition in other cancers has demonstrated early success. Unfortunately, therapeutic effect is frequently not durable due to acquired resistance.MethodsWe utilized the human MHCC97-H c-Met positive (c-Met+) HCC cell line to explore the compensatory survival mechanisms that are acquired after c-Met inhibition. MHCC97-H cells with stable c-Met knockdown (MHCC97-H c-Met KD cells) were generated using a c-Met shRNA vector with puromycin selection and stably transfected scrambled shRNA as a control. Gene expression profiling was conducted, and protein expression was analyzed to characterize MHCC97-H cells after blockade of the c-Met oncogene. A high-throughput siRNA screen was performed to find putative compensatory survival proteins, which could drive HCC growth in the absence of c-Met. Findings from this screen were validated through subsequent analyses.ResultsWe have previously demonstrated that treatment of MHCC97-H cells with a c-Met inhibitor, PHA665752, results in stasis of tumor growth in vivo. MHCC97-H c-Met KD cells demonstrate slower growth kinetics, similar to c-Met inhibitor treated tumors. Using gene expression profiling and siRNA screening against 873 kinases and phosphatases, we identified ErbB3 and TGF-α as compensatory survival factors that are upregulated after c-Met inhibition. Suppressing these factors in c-Met KD MHCC97-H cells suppresses tumor growth in vitro. In addition, we found that the PI3K/Akt signaling pathway serves as a negative feedback signal responsible for the ErbB3 upregulation after c-Met inhibition. Furthermore, in vitro studies demonstrate that combination therapy with PHA665752 and Gefitinib (an EGFR inhibitor) significantly reduced cell viability and increased apoptosis compared with either PHA665752 or Gefitinib treatment alone.Conclusionc-Met inhibition monotherapy is not sufficient to eliminate c-Met+ HCC tumor growth. Inhibition of both c-Met and EGFR oncogenic pathways provides superior suppression of HCC tumor growth. Thus, combination of c-Met and EGFR inhibition may represent a superior therapeutic regimen for c-Met+ HCC.  相似文献   

16.

Background  

Epidermal growth factor receptor (EGFR) signaling plays an important role in the regulation of cell proliferation, survival, metastasis, and invasion in various tumors. Earlier studies showed that the EGFR is frequently overexpressed in non-small-cell lung cancer (NSCLC) and EGFR mutations at specific amino acid residues in the kinase domain induce altered responsiveness to gefitinib, a small molecule EGFR tyrosine kinase inhibitor. However, the mechanism underlying the drug response modulated by EGFR mutation is still largely unknown. To elucidate drug response in EGFR signal transduction pathway in which complex dynamics of multiple molecules involved, a systematic approach is necessary. In this paper, we performed experimental and computational analyses to clarify the underlying mechanism of EGFR signaling and cell-specific gefitinib responsiveness in three H1299-derived NSCLC cell lines; H1299 wild type (H1299WT), H1299 with an overexpressed wild type EGFR (H1299EGFR-WT), and H1299 with an overexpressed mutant EGFR L858R (H1299L858R; gefitinib sensitive mutant).  相似文献   

17.

Introduction

Inherent and acquired cisplatin resistance reduces the effectiveness of this agent in the management of non-small cell lung cancer (NSCLC). Understanding the molecular mechanisms underlying this process may result in the development of novel agents to enhance the sensitivity of cisplatin.

Methods

An isogenic model of cisplatin resistance was generated in a panel of NSCLC cell lines (A549, SKMES-1, MOR, H460). Over a period of twelve months, cisplatin resistant (CisR) cell lines were derived from original, age-matched parent cells (PT) and subsequently characterized. Proliferation (MTT) and clonogenic survival assays (crystal violet) were carried out between PT and CisR cells. Cellular response to cisplatin-induced apoptosis and cell cycle distribution were examined by FACS analysis. A panel of cancer stem cell and pluripotent markers was examined in addition to the EMT proteins, c-Met and β-catenin. Cisplatin-DNA adduct formation, DNA damage (γH2AX) and cellular platinum uptake (ICP-MS) was also assessed.

Results

Characterisation studies demonstrated a decreased proliferative capacity of lung tumour cells in response to cisplatin, increased resistance to cisplatin-induced cell death, accumulation of resistant cells in the G0/G1 phase of the cell cycle and enhanced clonogenic survival ability. Moreover, resistant cells displayed a putative stem-like signature with increased expression of CD133+/CD44+cells and increased ALDH activity relative to their corresponding parental cells. The stem cell markers, Nanog, Oct-4 and SOX-2, were significantly upregulated as were the EMT markers, c-Met and β-catenin. While resistant sublines demonstrated decreased uptake of cisplatin in response to treatment, reduced cisplatin-GpG DNA adduct formation and significantly decreased γH2AX foci were observed compared to parental cell lines.

Conclusion

Our results identified cisplatin resistant subpopulations of NSCLC cells with a putative stem-like signature, providing a further understanding of the cellular events associated with the cisplatin resistance phenotype in lung cancer.  相似文献   

18.
Aberrant expression of microRNA-146a (miR-146a) has been reported to be involved in the development and progression of various types of cancers. However, its role in non-small cell lung cancer (NSCLC) has not been elucidated. The aim of this study was to investigate the contribution of miR-146a to various aspects of the malignant phenotype of human NSCLCs. In functional experiments, miR-146a suppressed cell growth, induced cellular apoptosis and inhibited EGFR downstream signaling in five NSCLC cell lines (H358, H1650, H1975, HCC827 and H292). miR-146a also inhibited the migratory capacity of these NSCLC cells. On the other hand, miR-146a enhanced the inhibition of cell proliferation by drugs targeting EGFR, including both TKIs (gefitinib, erlotinib, and afatinib) and a monoclonal antibody (cetuximab). These effects were independent of the EGFR mutation status (wild type, sensitizing mutation or resistance mutation), but were less potent compared to the effects of siRNA targeting of EGFR. Our results suggest that these effects of miR-146a are due to its targeting of EGFR and NF-κB signaling. We also found, in clinical formalin fixed paraffin embedded (FFPE) lung cancer samples, that low expression of miR-146a was correlated with advanced clinical TNM stages and distant metastasis in NSCLC (P<0.05). The patients with high miR-146a expression in their tumors showed longer progression-free survival (25.6 weeks in miR-146a high patients vs. 4.8 weeks in miR-146a low patients, P<0.05). miR-146a is therefore a strong candidate prognostic biomarker in NSCLC. Thus inducing miR-146a might be a therapeutic strategy for NSCLC.  相似文献   

19.
Epidermal growth factor receptor (EGFR) and c-MET receptors are expressed on many non-small cell lung cancer (NSCLC) cells. Current single agent therapeutic targeting of a mutant EGFR has a high efficacy in the clinic, but is not curative. Here, we investigated the combination of targeting EGFR and c-MET pathways in NSCLC cells resistant to receptor tyrosine kinase inhibitors (TKIs), using RNA interference and inhibition by TKIs. Different NSCLC cell lines with various genomic characteristics (H358, H1650 and H1975) were transfected with EGFR-specific-siRNA, T790M-specific-siRNA, c-MET siRNA or the combination. Subsequently EGFR TKIs (gefitinib, erlotinib or afatinib) or monoclonal antibody cetuximab were combined respectively with the c-MET-specific TKI su11274 in NSCLC cell lines. The cell proliferation, viability, caspase−3/7 activity and apoptotic morphology were monitored by spectrophotometry, fluorimetry and fluorescence microscopy. The combined effect of EGFR TKIs, or cetuximab and su11274, was evaluated using a combination index. The results showed that the cell lines that were relatively resistant to EGFR TKIs, especially the H1975 cell line containing the resistance T790M mutation, were found to be more sensitive to EGFR-specific-siRNA. The combination of EGFR siRNA plus c-MET siRNA enhanced cell growth inhibition, apoptosis induction and inhibition of downstream signaling in EGFR TKI resistant H358, H1650 and H1975 cells, despite the absence of activity of the c-MET siRNA alone. EGFR TKIs or cetuximab plus su11274 were also consistently superior to either agent alone. The strongest biological effect was observed when afatinib, an irreversible pan-HER blocker was combined with su11274, which achieved a synergistic effect in the T790M mutant H1975 cells. In a conclusion, our findings offer preclinical proof of principle for combined inhibition as a promising treatment strategy for NSCLC, especially for patients in whom current EGFR-targeted treatments fail due to the presence of the T790M-EGFR-mutation or high c-MET expression.  相似文献   

20.
The epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) such as gefitinib and erlotinib have been widely used in treating patients with advanced non-small cell lung cancer (NSCLC). However, acquired resistance to EGFR TKI almost occurs in every patient eventually. To identify its potential mechanism, we established a human NSCLC cell line PC9/AB2 which was 576-fold decrease in gefitinib sensitivity compared with its parental PC9 cell lines. No EGFR-T790M mutation or abnormal expression of c-Met protein was found in PC9/AB2 cells. Over-expression of integrin β1 was found, accompanied with increase of the cells' adhesion and migration. To further confirm the role of integrin β1 in gefitinib acquired resistance, we transferred its siRNA-expressing plasmid and its whole cDNA expressing plasmid into PC9/AB2 and into PC9 cells, respectively. The sensitivity of NSCLC cells to gefitinib was negatively correlated with integrin β1 expression levels. All these data suggest that up-regulation of integrin β1 might be an important factor for gefitinib resistance in NSCLC cell line PC9/AB2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号