首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Treponema hyodysenteriae, the etiologic agent of swine dysentery, caused gross and microscopic lesions in the large intestines of C3HeB/FeJ mice. No gross lesions were observed in the intestines of the closely related, but lipopolysaccharide-resistant, C3H/HeJ strain of mice, and microscopic lesions were mild, if present at all. In the presence of actinomycin D, 1 mg of T. hyodysenteriae lipopolysaccharide (LPS) was lethal for C3HeB/FeJ but not for C3H/HeJ mice. Also, the treponemal LPS was chemotactic for macrophages from C3H/HeJ mice but not for macrophages from C3HeB/FeJ mice. The difference between the two mouse strains in lesion development may be due to the nondestructive nature of LPS in C3H/HeJ mice, which suggests that the treponemal LPS is involved in the pathogenicity of T. hyodysenteriae. T. hyodysenteriae may prove to be a useful bacterium in the study of LPS-resistant C3H/HeJ mice, because resistance to the treponemal LPS and to the treponeme itself appear to correlate.  相似文献   

2.
Immunization with a virulent Salmonella typhimurium, strain SL3235, has been found to provide high levels of protection against challenge with virulent Salmonella in hypersusceptible mouse strains in the C3H lineage. These mouse strains include the lipopolysaccharide-hyporesponsive C3/HeJ mouse and the closely related but lipopolysaccharide-responsive C3HeB/FeJ mouse. To assess the role of cellular immunity in the protection elicited by this attentuated organism, delayed-type hypersensitivity (DTH) was measured in these mouse strains and in inherently resistant mice. Of the mouse strains tested, only the inherently resistant CD-1 and C3H/HeNCrlBR mice developed significant DTH responses, as assessed by footpad swelling tested at various times after immunization with SL3235. The hypersusceptible C3H/HeJ and C3HeB/FeJ mice failed to exhibit significant DTH responses despite their high levels of immunity.  相似文献   

3.
Induction of activated macrophages in C3H/HeJ mice by avirulent Salmonella   总被引:3,自引:0,他引:3  
A single injection of viable Salmonella typhimurium SL3235, an avirulent organism blocked in the aromatic pathway, induced the generation of activated peritoneal macrophages in three different C3H mouse strains, including macrophage-defective C3H/HeJ mice. Macrophages obtained from immunized mice were cytotoxic for B16 melanoma cells, P815 mastocytoma cells, and TU-5 fibrosarcoma cells and microbicidal in vitro for the obligate, intracellular, protozoan parasite Leishmania major. The capacity of live SL3235 to activate C3H/HeJ macrophages contrasts with the failure of live Bacillus Calmette-Guérin to induce activated macrophages in this mouse strain. Although viable SL3235 were capable of fully activating cells of both normal and defective mice, a dose-dependent difference was observed in the number of organisms necessary for induction of tumoricidal macrophages in C3HeB/FeJ (normal) and C3H/HeJ (defective) animals. As few as 80 viable SL3235 were capable of activating C3HeB/FeJ macrophages whereas 5 X 10(4) organisms were required to activate C3H/HeJ macrophages. Maximal macrophage activation occurred 7 to 10 days after SL3235 inoculation in C3H/HeJ and C3HeB/FeJ mice. Acetone-killed cells of SL3235 had some but not all of the activity of the living Salmonella. A single in vivo injection of the nonviable preparation resulted in the induction of tumoricidal macrophages in C3HeB/FeJ but not in C3H/HeJ mice, even when tested over a wide dosage range. Injection of acetone-killed cells of SL3235 did, however, result in a population of primed macrophages in C3H/HeJ mice, as explanted cells could be induced to express activated macrophage effector activities after additional treatment in vitro with either LPS or IFN-gamma. Thus, in vivo administration of viable SL3235 is, by itself, capable of eliciting the full series of steps required for activation of C3H/HeJ macrophages, whereas killed SL3235 only provides signals sufficient to prime these defective macrophages for further activation in vitro. AI 15613  相似文献   

4.
Past studies have suggested a linkage between susceptibility to Salmonella typhimurium infection and the Lpsd genotype in C3H mice. Recently, this linkage was questioned by the finding that C3HeB/FeJ mice (Lpsn,Lpsn) were highly susceptible to systemic S. typhimurium infection. The present study shows a marked difference between C3H/HeJ and C3HeB/FeJ in their susceptibility to Gram-negative urinary tract infection. The number of E. coli and S. typhimurium recovered from the kidneys 24 hr after infection was 70 to 100 times higher in C3H/HeJ than in C3HeB/FeJ or C3H/HeN mice. Subsequently, in C3HeB/FeJ mice S. typhimurium multiplied to the level of C3H/HeJ mice, resulting in a shorter mean survival time of C3H/HeJ and C3HeB/FeJ compared with C3H/HeN mice. In contrast, E. coli remained localized to the urinary tract of C3H/HeJ mice but were eliminated from C3HeB/FeJ and C3H/HeN mice. Thus, experimental E. coli urinary tract infection appears to provide a method to differentiate the genetic defects of C3H/HeJ and C3HeB/FeJ mice. The results support an influence of the Lpsd genotype on clearance of Gram-negative bacteria from the kidneys of C3H mice.  相似文献   

5.

Background

Keratins 8 and 18 (K8/K18) are intermediate filament proteins that protect the liver from various forms of injury. Exonic K8/K18 variants associate with adverse outcome in acute liver failure and with liver fibrosis progression in patients with chronic hepatitis C infection or primary biliary cirrhosis. Given the association of K8/K18 variants with end-stage liver disease and progression in several chronic liver disorders, we studied the importance of keratin variants in patients with hemochromatosis.

Methods

The entire K8/K18 exonic regions were analyzed in 162 hemochromatosis patients carrying homozygous C282Y HFE (hemochromatosis gene) mutations. 234 liver-healthy subjects were used as controls. Exonic regions were PCR-amplified and analyzed using denaturing high-performance liquid chromatography and DNA sequencing. Previously-generated transgenic mice overexpressing K8 G62C were studied for their susceptibility to iron overload. Susceptibility to iron toxicity of primary hepatocytes that express K8 wild-type and G62C was also assessed.

Results

We identified amino-acid-altering keratin heterozygous variants in 10 of 162 hemochromatosis patients (6.2%) and non-coding heterozygous variants in 6 additional patients (3.7%). Two novel K8 variants (Q169E/R275W) were found. K8 R341H was the most common amino-acid altering variant (4 patients), and exclusively associated with an intronic KRT8 IVS7+10delC deletion. Intronic, but not amino-acid-altering variants associated with the development of liver fibrosis. In mice, or ex vivo, the K8 G62C variant did not affect iron-accumulation in response to iron-rich diet or the extent of iron-induced hepatocellular injury.

Conclusion

In patients with hemochromatosis, intronic but not exonic K8/K18 variants associate with liver fibrosis development.  相似文献   

6.

Background

Whole-genome sequencing represents a promising approach to pinpoint chemically induced mutations in genetic model organisms, thereby short-cutting time-consuming genetic mapping efforts.

Principal Findings

We compare here the ability of two leading high-throughput platforms for paired-end deep sequencing, SOLiD (ABI) and Genome Analyzer (Illumina; “Solexa”), to achieve the goal of mutant detection. As a test case we used a mutant C. elegans strain that harbors a mutation in the lsy-12 locus which we compare to the reference wild-type genome sequence. We analyzed the accuracy, sensitivity, and depth-coverage characteristics of the two platforms. Both platforms were able to identify the mutation that causes the phenotype of the mutant C. elegans strain, lsy-12. Based on a 4 MB genomic region in which individual variants were validated by Sanger sequencing, we observe tradeoffs between rates of false positives and false negatives when using both platforms under similar coverage and mapping criteria.

Significance

In conclusion, whole-genome sequencing conducted by either platform is a viable approach for the identification of single-nucleotide variations in the C. elegans genome.  相似文献   

7.
《Genome biology》2013,14(7):R82

Background

The mouse inbred line C57BL/6J is widely used in mouse genetics and its genome has been incorporated into many genetic reference populations. More recently large initiatives such as the International Knockout Mouse Consortium (IKMC) are using the C57BL/6N mouse strain to generate null alleles for all mouse genes. Hence both strains are now widely used in mouse genetics studies. Here we perform a comprehensive genomic and phenotypic analysis of the two strains to identify differences that may influence their underlying genetic mechanisms.

Results

We undertake genome sequence comparisons of C57BL/6J and C57BL/6N to identify SNPs, indels and structural variants, with a focus on identifying all coding variants. We annotate 34 SNPs and 2 indels that distinguish C57BL/6J and C57BL/6N coding sequences, as well as 15 structural variants that overlap a gene. In parallel we assess the comparative phenotypes of the two inbred lines utilizing the EMPReSSslim phenotyping pipeline, a broad based assessment encompassing diverse biological systems. We perform additional secondary phenotyping assessments to explore other phenotype domains and to elaborate phenotype differences identified in the primary assessment. We uncover significant phenotypic differences between the two lines, replicated across multiple centers, in a number of physiological, biochemical and behavioral systems.

Conclusions

Comparison of C57BL/6J and C57BL/6N demonstrates a range of phenotypic differences that have the potential to impact upon penetrance and expressivity of mutational effects in these strains. Moreover, the sequence variants we identify provide a set of candidate genes for the phenotypic differences observed between the two strains.  相似文献   

8.

Background

Although useful for probing bacterial pathogenesis and physiology, current random mutagenesis systems suffer limitations for studying the toxin-producing bacterium Clostridium perfringens.

Methodology/Principal Findings

An EZ-Tn5-based random mutagenesis approach was developed for use in C. perfringens. This mutagenesis system identified a new regulatory locus controlling toxin production by strain 13, a C. perfringens type A strain. The novel locus, encoding proteins with homology to the AgrB and AgrD components of the Agr quorum sensing system of Staphylococcus aureus and two hypothetical proteins, was found to regulate early production of both alpha toxin and perfringolysin O (PFO) by strain 13. PFO production by the strain 13 ΔagrB mutant could be restored by genetic complementation or by physical complementation, i.e. by co-culture of the strain 13 ΔagrB mutant with a pfoA mutant of either strain 13 or C. perfringens type C CN3685. A similar AgrB- and AgrD-encoding locus is identifiable in all sequenced C. perfringens strains, including type B, C, D, and E isolates, suggesting this regulatory locus contributes to toxin regulation by most C. perfringens strains. In strain 13, the agrB and agrD genes were found to be co-transcribed in an operon with two upstream genes encoding hypothetical proteins.

Conclusions/Significance

The new Tn5-based random mutagenesis system developed in this study is more efficient and random than previously reported C. perfringens random mutagenesis approaches. It allowed identification of a novel C. perfringens toxin regulatory locus with homology to the Agr system of S. aureus and which functions as expected of an Agr-like quorum sensing system. Since previous studies have shown that alpha toxin and perfringolysin O are responsible for strain 13-induced clostridial myonecrosis in the mouse model, the new agr regulatory locus may have importance for strain 13 virulence.  相似文献   

9.

Background

Clostridium difficile strain 630Δerm is a spontaneous erythromycin sensitive derivative of the reference strain 630 obtained by serial passaging in antibiotic-free media. It is widely used as a defined and tractable C. difficile strain. Though largely similar to the ancestral strain, it demonstrates phenotypic differences that might be the result of underlying genetic changes. Here, we performed a de novo assembly based on single-molecule real-time sequencing and an analysis of major methylation patterns.

Results

In addition to single nucleotide polymorphisms and various indels, we found that the mobile element CTn5 is present in the gene encoding the methyltransferase rumA rather than adhesin CD1844 where it is located in the reference strain.

Conclusions

Together, the genetic features identified in this study may help to explain at least part of the phenotypic differences. The annotated genome sequence of this lab strain, including the first analysis of major methylation patterns, will be a valuable resource for genetic research on C. difficile.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1252-7) contains supplementary material, which is available to authorized users.  相似文献   

10.
C3H/HeJ mice contain a defect in a single autosomal locus which is not linked to the H-2 histocompatibility or the heavy chain allotype loci that restrict immune, mitogenic, and polyclonal responses to bacterial lipopolysaccharides (LPS). Adult thymectomized C3H/HeJ mice that have been irradiated and reconstituted with C3HeB/FeJ bone marrow cells respond well to LPS. Cell-mixing experiments using C3H/HEJ-C3HeB/FeJ spleen cultures show that the failure of C3H/HeJ spleen cells to support responses to LPS is not due to nonspecific or LPS-induced suppressive events, or the lack of accessory cell types. C3H/HeJ and C3HeB/FeJ spleen cells bind LPS and respond to other B cell mitogens equally well. We suggest that the B lymphocytes of C3H/HeJ mice have a defect in a membrane component that is activated via interaction with LPS, and initiates the intracellular events that lead to cell proliferation.  相似文献   

11.

Background

The domestic pig (Sus scrofa) is both an important livestock species and a model for biomedical research. Exome sequencing has accelerated identification of protein-coding variants underlying phenotypic traits in human and mouse. We aimed to develop and validate a similar resource for the pig.

Results

We developed probe sets to capture pig exonic sequences based upon the current Ensembl pig gene annotation supplemented with mapped expressed sequence tags (ESTs) and demonstrated proof-of-principle capture and sequencing of the pig exome in 96 pigs, encompassing 24 capture experiments. For most of the samples at least 10x sequence coverage was achieved for more than 90% of the target bases. Bioinformatic analysis of the data revealed over 236,000 high confidence predicted SNPs and over 28,000 predicted indels.

Conclusions

We have achieved coverage statistics similar to those seen with commercially available human and mouse exome kits. Exome capture in pigs provides a tool to identify coding region variation associated with production traits, including loss of function mutations which may explain embryonic and neonatal losses, and to improve genomic assemblies in the vicinity of protein coding genes in the pig.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-550) contains supplementary material, which is available to authorized users.  相似文献   

12.
13.

Background

Mycobacterium tuberculosis phoP mutant SO2 derived from a clinical isolate was shown to be attenuated in mouse bone marrow-derived macrophages and in vivo mouse infection model and has demonstrated a high potential as attenuated vaccine candidate against tuberculosis.

Methodology/Principal Findings

In this study, we analyze the adhesion and the intracellular growth and trafficking of SO2 in human macrophages. Our results indicate an enhanced adhesion to phagocitic cells and impaired intracellular replication of SO2 in both monocyte-derived macrophages and human cell line THP-1 in comparison with the wild type strain, consistent with murine model. Intracellular trafficking analysis in human THP-1 cells suggest that attenuation of SO2 within macrophages could be due to an impaired ability to block phagosome-lysosome fusion compared with the parental M. tuberculosis strain. No differences were found between SO2 and the wild-type strains in the release and mycobacterial susceptibility to nitric oxide (NO) produced by infected macrophages.

Conclusions/Significance

SO2 has enhanced ability to bind human macrophages and differs in intracellular trafficking as to wild-type M. tuberculosis. The altered lipid profile expression of the phoP mutant SO2 and its inability to secrete ESAT-6 is discussed.  相似文献   

14.

Background & Aims

Telaprevir, a hepatitis C virus NS3/4A protease inhibitor has significantly improved sustained viral response rates when given in combination with pegylated interferon alfa-2a and ribavirin, compared with current standard of care in hepatitis C virus genotype 1 infected patients. In patients with a failed sustained response, the emergence of drug-resistant variants during treatment has been reported. It is unclear to what extent these variants persist in untreated patients. The aim of this study was to assess using ultra-deep pyrosequencing, whether after 4 years follow-up, the frequency of resistant variants is increased compared to pre-treatment frequencies following 14 days of telaprevir treatment.

Methods

Fifteen patients from 2 previous telaprevir phase 1 clinical studies (VX04-950-101 and VX05-950-103) were included. These patients all received telaprevir monotherapy for 14 days, and 2 patients subsequently received standard of care. Variants at previously well-characterized NS3 protease positions V36, T54, R155 and A156 were assessed at baseline and after a follow-up of 4±1.2 years by ultra-deep pyrosequencing. The prevalence of resistant variants at follow-up was compared to baseline.

Results

Resistance associated mutations were detectable at low frequency at baseline. In general, prevalence of resistance mutations at follow-up was not increased compared to baseline. Only one patient had a small, but statistically significant, increase in the number of V36M and T54S variants 4 years after telaprevir-dosing.

Conclusion

In patients treated for 14 days with telaprevir monotherapy, ultra-deep pyrosequencing indicates that long-term persistence of resistant variants is rare.  相似文献   

15.
16.

Background

Genetic association studies are conducted to discover genetic loci that contribute to an inherited trait, identify the variants behind these associations and ascertain their functional role in determining the phenotype. To date, functional annotations of the genetic variants have rarely played more than an indirect role in assessing evidence for association. Here, we demonstrate how these data can be systematically integrated into an association study’s analysis plan.

Results

We developed a Bayesian statistical model for the prior probability of phenotype–genotype association that incorporates data from past association studies and publicly available functional annotation data regarding the susceptibility variants under study. The model takes the form of a binary regression of association status on a set of annotation variables whose coefficients were estimated through an analysis of associated SNPs in the GWAS Catalog (GC). The functional predictors examined included measures that have been demonstrated to correlate with the association status of SNPs in the GC and some whose utility in this regard is speculative: summaries of the UCSC Human Genome Browser ENCODE super–track data, dbSNP function class, sequence conservation summaries, proximity to genomic variants in the Database of Genomic Variants and known regulatory elements in the Open Regulatory Annotation database, PolyPhen–2 probabilities and RegulomeDB categories. Because we expected that only a fraction of the annotations would contribute to predicting association, we employed a penalized likelihood method to reduce the impact of non–informative predictors and evaluated the model’s ability to predict GC SNPs not used to construct the model. We show that the functional data alone are predictive of a SNP’s presence in the GC. Further, using data from a genome–wide study of ovarian cancer, we demonstrate that their use as prior data when testing for association is practical at the genome–wide scale and improves power to detect associations.

Conclusions

We show how diverse functional annotations can be efficiently combined to create ‘functional signatures’ that predict the a priori odds of a variant’s association to a trait and how these signatures can be integrated into a standard genome–wide–scale association analysis, resulting in improved power to detect truly associated variants.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-398) contains supplementary material, which is available to authorized users.  相似文献   

17.
Kumar A  Schweizer HP 《PloS one》2011,6(10):e26520

Background

The Pseudomonas aeruginosa MexEF-OprN efflux pump confers resistance to clinically significant antibiotics. Regulation of mexEF-oprN operon expression is multifaceted with the MexT activator being one of the most prominent regulatory proteins.

Methodology

We have exploited the impaired metabolic fitness of a P. aeruginosa mutant strain lacking several efflux pump of the resistance nodulation cell division superfamily and the TolC homolog OpmH, and isolated derivatives (large colony variants) that regained fitness by incubation on nutrient-rich medium in the absence of antibiotics. Although the mexEF-oprN operon is uninducible in this mutant due to a 8-bp mexT insertion present in some P. aeruginosa PAO1 strains, the large colony variants expressed high levels of MexEF-OprN. Unlike large colony variants obtained after plating on antibiotic containing medium which expressed mexEF-oprN in a MexT-dependent fashion as evidenced by clean excision of the 8-bp insertion from mexT, mexEF-oprN expression was MexT-independent in the large colony variants obtained by plating on LB alone since the mexT gene remained inactivated. A search for possible regulators of mexEF-oprN expression using transposon mutagenesis and genomic library expression approaches yielded several candidates but proved inconclusive.

Significance

Our results show that antibiotic and metabolic stress lead to up-regulation of MexEF-OprN expression via different mechanisms and that MexEF-OprN does not only extrude antimicrobials but rather serves other important metabolic functions.  相似文献   

18.

Background

Bacteria can be selectively imaged in experimentally-infected animals using exogenously administered 1-(2′deoxy-2′-fluoro-β-D-arabinofuranosyl)-5-[125I]-iodouracil ([125I]-FIAU), a nucleoside analog substrate for bacterial thymidine kinase (TK). Our goal was to use this reporter and develop non-invasive methods to detect and localize Mycobacterium tuberculosis.

Methodology/Principal Findings

We engineered a M. tuberculosis strain with chromosomally integrated bacterial TK under the control of hsp60 - a strong constitutive mycobacterial promoter. [125I]FIAU uptake, antimicrobial susceptibilities and in vivo growth characteristics were evaluated for this strain. Using single photon emission computed tomography (SPECT), M. tuberculosis Phsp60 TK strain was evaluated in experimentally-infected BALB/c and C3HeB/FeJ mice using the thigh inoculation or low-dose aerosol infection models. M. tuberculosis Phsp60 TK strain actively accumulated [125I]FIAU in vitro. Growth characteristics of the TK strain and susceptibility to common anti-tuberculous drugs were similar to the wild-type parent strain. M. tuberculosis Phsp60 TK strain was stable in vivo and SPECT imaging could detect and localize this strain in both animal models tested.

Conclusion

We have developed a novel tool for non-invasive assessment of M. tuberculosis in live experimentally-infected animals. This tool will allow real-time pathogenesis studies in animal models of TB and has the potential to simplify preclinical studies and accelerate TB research.  相似文献   

19.
20.

Background

Several genomes have now been sequenced, with millions of genetic variants annotated. While significant progress has been made in mapping single nucleotide polymorphisms (SNPs) and small (<10 bp) insertion/deletions (indels), the annotation of larger structural variants has been less comprehensive. It is still unclear to what extent a typical genome differs from the reference assembly, and the analysis of the genomes sequenced to date have shown varying results for copy number variation (CNV) and inversions.

Results

We have combined computational re-analysis of existing whole genome sequence data with novel microarray-based analysis, and detect 12,178 structural variants covering 40.6 Mb that were not reported in the initial sequencing of the first published personal genome. We estimate a total non-SNP variation content of 48.8 Mb in a single genome. Our results indicate that this genome differs from the consensus reference sequence by approximately 1.2% when considering indels/CNVs, 0.1% by SNPs and approximately 0.3% by inversions. The structural variants impact 4,867 genes, and >24% of structural variants would not be imputed by SNP-association.

Conclusions

Our results indicate that a large number of structural variants have been unreported in the individual genomes published to date. This significant extent and complexity of structural variants, as well as the growing recognition of their medical relevance, necessitate they be actively studied in health-related analyses of personal genomes. The new catalogue of structural variants generated for this genome provides a crucial resource for future comparison studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号