首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The study of stem cells in cnidarians has a history spanning hundreds of years, but it has primarily focused on the hydrozoan genus Hydra. While Hydra has a number of self-renewing cell types that act much like stem cells—in particular the interstitial cell line—finding cellular homologues outside of the Hydrozoa has been complicated by the morphological simplicity of stem cells and inconclusive gene expression data. In non-hydrozoan cnidarians, an enigmatic cell type known as the amoebocyte might play a similar role to interstitial cells, but there is little evidence that I-cells and amoebocytes are homologous. Instead, self-renewal and transdifferentiation of epithelial cells was probably more important to ancestral cnidarian development than any undifferentiated cell lineage, and only later in evolution did one or more cell types come under the regulation of a “stem” cell line. Ultimately, this hypothesis and competing ones will need to be tested by expanding genetic and developmental studies on a variety of cnidarian model systems.  相似文献   

3.
The last common ancestor of Bilateria and Cnidaria is considered to develop a nervous system over 500 million years ago. Despite the long course of evolution, many of the neuron-related genes, which are active in Bilateria, are also found in the cnidarian Hydra. Thus, Hydra is a good model to study the putative primitive nervous system in the last common ancestor that had the great potential to evolve to a more advanced one. Regionalization of the nervous system is one of the advanced features of bilaterian nervous system. Although a regionalized nervous system is already known to be present in Hydra, its developmental mechanisms are poorly understood. In this study we show how it is formed and maintained, focusing on the neuropeptide Hym-176 gene and its paralogs. First, we demonstrate that four axially localized neuron subsets that express different combination of the neuropeptide Hym-176 gene and its paralogs cover almost an entire body, forming a regionalized nervous system in Hydra. Second, we show that positional information governed by the Wnt signaling pathway plays a key role in determining the regional specificity of the neuron subsets as is the case in bilaterians. Finally, we demonstrated two basic mechanisms, regionally restricted new differentiation and phenotypic conversion, both of which are in part conserved in bilaterians, are involved in maintaining boundaries between the neuron subsets. Therefore, this study is the first comprehensive analysis of the anatomy and developmental regulation of the divergently evolved and axially regionalized peptidergic nervous system in Hydra, implicating an ancestral origin of neural regionalization.  相似文献   

4.
Coelenterate Neuropeptides: Structure, Action and Biosynthesis   总被引:3,自引:0,他引:3  
Evolutionary "old" nervous systems such as those of coelenteratesare peptidergic: Using various radioimmunoassays we have nowisolated 13 novel neuropeptides from sea anemones and severalothers from hydrozoan polyps and medusae. These peptides areall structurally related and contain the C-terminal sequenceArg-X-NH2 or Lys-X-NH2, where X is Ala, Asn, Ile, Phe, Pro orTrp. Three neuropeptides have a novel N-terminal L-3-phenyllactylresidue, which protects against degradation by nonspecific aminopeptidases.The neuropeptides from sea anemones are produced by differentsets of neurones and have excitatory or inhibitory actions onisolated muscle preparations, suggesting that they are neurotransmittersor neuromodulators. We have also cloned the precursor proteinfor the sea-anemone neuropeptide Antho-RFamide (<Glu-Gly-Arg-Phe-NH2).In Calliactis parasitica this precursor harbours 19 copies ofimmature Antho-RFamide (Gln-Gly-Arg-Phe-Gly) together with 7other, putative neuropeptide sequences. The precursor of Anthopleuraelegantissima contains 14 copies of Antho-RFamide and 19 other,putative neuropeptides. This shows that the biosynthetic machineryfor neuropeptides in coelenterates, the lowest animal grouphaving a nervous system, is already very efficient and similarto that of higher invertebrates, such as molluscs and insects,and vertebrates.  相似文献   

5.
Acetylcholinesterase (AChE) activity in Oesophagostomum radiatum increased markedly during the fourth and early fifth stages of parasitic development and thereafter remained relatively constant in the mature parasites. Fourth stage Oe. radiatum maintained in vitro in a saline medium released AChE steadily for 4 h. Whereas the excretory glands of Oe. radiatum appeared to be the major site of AChE secretion, the highest concentration of the enzyme in Oe. venulosum was found in the cephalic tissues.Antibodies to Oe. radiatum AChE appeared in the serum of calves three weeks after primary infection with the parasite and were also found in the serum of neonatal calves and in the colostrum of their dams.Several soluble non-specific esterases were present in homogenates of adult Oe. radiatum and Oe. venulosum. In Oe. radiatum these esterases occurred both in gut tissue and excretory glands, and were present in secretions released in vitro by fourth-stage larvae. However, no antibodies against the esterases were detected in host serum.  相似文献   

6.
Three hydrozoan species, reputedly from the Black Sea (Maeotias marginata, Blackfordia virginica, Moerisia lyonsi), are now found throughout the San Francisco Estuary, California, but long-term and seasonal patterns of distribution and abundance have been poorly documented. We evaluated trends from 35 years of monthly otter trawl data and from a 2-year macrozooplankton survey in Suisun Marsh, a brackish region with extensive tidal sloughs and channels that is part of the San Francisco Estuary. Medusae of all three hydrozoans occurred primarily during the dry season (summer–fall). Abundance of M. marginata medusae significantly increased since the 1980s. Moerisia lyonsi was the most abundant hydrozoan in the macrozooplankton medusa survey followed by M. marginata and B. virginica. Salinity and temperature were strongly positively associated with medusa abundance. Maeotias marginata occurred in the lowest salinity range (2.3–9.1 ppt), while M. lyonsi (2.8–9.9 ppt) and B. virginica (5.6–10.3 ppt) occupied slightly higher salinities. Overall, abundance and distribution of medusae of these three hydrozoans in Suisun Marsh depended on seasonal stability of environmental conditions that favored blooms. While harmful effects have yet to be demonstrated, they could become more of a problem as both sea level and water temperatures rise, especially given the combined range of environmental conditions at which the three species occur.  相似文献   

7.
Cartwright  Paulyn 《Hydrobiologia》2004,530(1-3):309-317
Hydrozoans represent an extremely diverse group of mostly colonial forms. Despite this tremendous diversity, many of the morphological differences between hydrozoan species can be attributed to simple changes in the relative position of regions/structures along the axes of the polyp and the stolon or hydrocaulus from which polyps bud. Many genes have been implicated in the specification of positional information along the axis of the polyp. Knowledge from these studies in Hydra, and from comparative studies in Hydractinia polyp polymorphs, suggests that evolutionary changes in the regulation of axial patterning genes may be a prominent mechanism underlying hydrozoan evolution. Despite the paucity of interspecies comparative expression information, hypotheses can be formulated about the role of developmental regulatory genes in hydrozoan evolution from information available from Hydra.  相似文献   

8.
Lewis  J. B. 《Hydrobiologia》1991,216(1):165-169
The ampullae and medusae of the calcareous hydrozoan Millepora complanata Lamarck from Barbados were examined by transmission and electron microscopy. The sequence of development of the ampullae, before and after release of medusae, is reported. The medusae are described from live material and compared with medusae of other hydrozoans.  相似文献   

9.
This chapter reviews experimental evidence for peptides actingas transmitters or morphogens in the Cnidaria. A wide rangeof brain/gut peptides have been localized immunohistochemicallyto specific neuronal populations in Hydra. These include gastrin/CCK,substance P, neurotensin, bombesin, oxytocin/vasopressin andFMRFamide. In most cases the amino-acid sequences of the cnidarianpeptides are somewhat different from their mammalian counterparts.The functions of these peptides in Hydra are unknown. A seriesof neuropeptides with the carboxy-terminus, Arg-Phe-amide, isubiquitous within the phylum. Immunoreactivity to antisera againstRFamide is seen in two characteristic neuronal subpopulations;a sensory and a ganglionic cell type. Two of these peptideshave now been isolated and sequenced. One has the structure,pGlu-Gly-Arg-Phe-amide (Antho-RFamide) and is found in severalanthozoans, a second with the sequence pGlu-Leu-Leu- Gly-Gly-Arg-Phe-amide(Poly A peptide) is found in the hydrozoan Polyorchis. Arg-Pheamidepeptides have excitatory effects on both muscles and neuronalsystems. In the anthozoans, RFamide peptides can increase thetone, contraction amplitude and frequency of a number of smoothmuscle systems. Additionally, in the anemone Calliactis, applicationof Antho-RFamide can dramatically increase the firing rate inone of the ectodermal conducting systems, the SSI. In Polyorchisseveral RFamides produce long duration spike trains in motorneurons that may or may not be associated with membrane depolarization.A peptide called ‘head activator’ (pGlu-(Pro)j-(Gly)8-Ser-Lys-Val-Ile-Leu-Phe)can induce the formation of a new head when it is released athigh concentrations at the cut surface of the column of Hydra.It acts by committing stem cells to become head specific neurons.  相似文献   

10.
Oocyte maturation and subsequent spawning in hydrozoan jellyfish are generally triggered by light‐dark cycles. To examine if the initiation of the maturation process after light stimulus is mediated by neurotransmitters, neuropeptides isolated originally from Hydra magnipapillata were applied to sexually mature female medusae of the hydrozoan jellyfish Cytaeis uchidae. Among the Hydra neuropeptides tested, Hym‐53 (NPYPGLW‐NH2), as well as a nonphysiological peptide, CGLWamide (CGLW‐NH2), were most effective in inducing oocyte maturation and spawning. Hym‐355 (FPQSFLPRG‐NH2) also triggered these events, but the stimulatory effect was weaker. Since Hym‐53‐OH (NPYPGLW) and Hym‐355‐OH (FPQSFLPRG) had no effect, amidation at the C‐terminus may be critical for the stimulatory activities of the peptides. Exposure to Hym‐53 for 2 min was sufficient to trigger of oocyte maturation, and the spawned eggs were able to be fertilized and to develop normally. Transmission electron microscopy confirmed that bundles of axon‐like structures that contain dense‐core synaptic vesicles and microtubules are present in the ovarian ectodermal epithelium overlying the oocytes. In addition, immunohistological analyses revealed that some of the neurons in the ectodermal epithelium are GLWamide‐ and PRGamide‐positive. These results suggest that a neuropeptide signal transduction pathway is involved in mediating the induction of oocyte maturation and spawning in this jellyfish. Mol. Reprod. Dev. 80: 223–232, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
Serotonin is a widespread neurotransmitter which is present in almost all animal phyla including lower metazoans such as Cnidaria. Serotonin detected in the polyps of several cnidarian species participates in the functioning of a neural system. It was suggested that serotonin coordinates polyp behavior. For example, serotonin may be involved in muscle contraction and/or cnidocyte discharge. However, the role of serotonin in cnidarians is not revealed completely yet. The aim of this study was to investigate the neural system of Cladonema radiatum polyps. We detected the net of serotonin-positive processes within the whole hydranth body using anti-serotonin antibodies. The hypostome and tentacles had denser neural net in comparison with the gastric region. Electron microscopy revealed muscle processes throughout the hydranth body. Neural processes with specific vesicles and neurotubules in their cytoplasm were also shown at an ultrastructural level. This work demonstrates the structure of serotonin-positive neural system and smooth muscle layer in C. radiatum hydranths.  相似文献   

12.
Plickert  Günter  Schneider  Birgit 《Hydrobiologia》2004,515(1-3):49-57
Peptides of the RFamide family occur in neurosecretory cells of all nervous systems of Cnidaria so far studied. Photoreceptive organs – if evolved in a cnidarian species – are always associated with neural cells showing RFamide immunoreactivity. Experimental evidence for the function of RFamides and other neuropeptides in nervous systems and photoreceptive organs is, however, scarce or lacking. RFamide and LWamide immunoreactivity were surveyed in photoreceptive organs of the hydromedusa Cladonema radiatum, in rhopalia of the scyphozoan Aurelia aurita, and in rhopalia of the cubomedusa Tripedalia cystophora. A possible function of neuropeptides in transmission of photic stimuli was assayed by analysing photic behavior in Tripedalia, which has highly developed eyes, and in the simply constructed planula of the hydroid Hydractinia echinata, in which the mode of light perception is unknown. In both species, light orientation was effectively prevented by RFamides administered to the animals in micromolar concentration. In contrast, among four other neuropeptides occurring in the larva of Hydractinia, only one interfered with phototaxis and then only at 10× higher concentrations. Planulae depleted of bioactive peptideamides also lost phototaxis while still locomotorily active. The results support the hypothesis that one possible function of RFamides in Cnidaria is to transmit photic stimuli to epitheliomuscular targets.  相似文献   

13.
Jellyfish live in complex environments and must continually make behavioural choices. In field observations, adult Aurelia labiata were confronted with a conflict between swimming up elicited by touch of the manubrium and swimming down elicited by low salinity. Following a touch, downward-swimming medusae (1.5–2.0 m deep) turned and swam to within 0.5 m of the surface when the salinity in the top 1.5 m of the water column was greater than 20 ppt but medusae uniformly refused to swim up into the top 1.25 m when the salinity was less than 20 ppt even after being touched three times. The central nervous system of A. labiata appears to have neural circuitry that specifies their response when medusae encounter stimuli that elicit incompatible behaviours. Upward-swimming adult medusae had animal, vegetable or cellulose (paper) material dispersed ahead of them. Medusae captured each material on the bell margin and transported it to a gastric pouch. Medusae displayed only minor behavioural differences in the process. Having sensory, neural and muscular systems organized to capture and pass to the stomach, a huge variety of materials allows medusae to survive in different seasons and environments.  相似文献   

14.
The coordination of physiological processes requires precise communication between cells. Cellular interactions allow cells to be functionally related, facilitating the maintaining of homeostasis. Neuropeptides functioning as intercellular signals are widely distributed in Metazoa. It is assumed that neuropeptides were the first intercellular transmitters, appearing early during the evolution. In Cnidarians, neuropeptides are mainly involved in neurotransmission, acting directly or indirectly on epithelial muscle cells, and thereby controlling coordinated movements. Allatostatins are a group of chemically unrelated neuropeptides that were originally characterized based on their ability to inhibit juvenil hormone synthesis in insects. Allatostatin-C has pleiotropic functions, acting as myoregulator in several insects. In these studies, we analyzed the myoregulatory effect of Aedes aegypti Allatostatin-C in Hydra sp., a member of the phylum Cnidaria. Allatostatin-C peptide conjugated with Qdots revealed specifically distributed cell populations that respond to the peptide in different regions of hydroids. In vivo physiological assays using Allatostatin-C showed that the peptide induced changes in shape and length in tentacles, peduncle and gastrovascular cavity. The observed changes were dose and time dependent suggesting the physiological nature of the response. Furthermore, at highest doses, Allatostatin-C induced peristaltic movements of the gastrovascular cavity resembling those that occur during feeding. In silico search of putative Allatostatin-C receptors in Cnidaria showed that genomes predict the existence of proteins of the somatostatin/Allatostatin-C receptors family. Altogether, these results suggest that Allatostatin-C has myoregulatory activity in Hydra sp, playing a role in the control of coordinated movements during feeding, indicating that Allatostatin-C/Somatostatin based signaling might be an ancestral mechanism.  相似文献   

15.
 The release of medusae from three hydrozoan fire corals, Millepora dichotoma, M. murrayi and M. platyphylla, was investigated at three sites in southern Taiwan from February 1994 to July 1995. All three species were gonochoristic, and developed and released several batches of medusae between April and May. The duration of open ampulla appearing on the surface of coralla was short, about three months, and could be used to infer the reproductive season of the fire corals between April and May. No obvious lunar cycles of medusa release were found in these species. Medusa release started before dark at approximately 17:00 h and continued for several hours. Males began releasing medusae earlier than females. Synchronization of medusa release between colonies, i.e., the probability of occurring on the same nights, was significantly higher within a species than between different species. Hybridization in nature among the three species is, therefore, unlikely due to segregation in the spawning dates. Moreover, the synchronization within each species was often significantly higher within versus between sites. The free-swimming medusae released gametes within approximately one hour, and the spent medusae lived for a few more hours. Medusae may facilitate fertilization rates as a result of an apparently negatively geotactic swimming response that results in medusa aggregation at the surface. No differences in the sizes of medusae, eggs and sperm were detected among the three species; however, some characteristic differences of medusa nematocysts were found. Accepted: 25 September 1997  相似文献   

16.
Hydra, a simple freshwater animal famous for its regenerative capabilities, must tear a hole through its epithelial tissue each time it opens its mouth. The feeding response of Hydra has been well-characterized physiologically and is regarded as a classical model system for environmental chemical biology. However, due to a lack of in vivo labeling and imaging tools, the biomechanics of mouth opening have remained completely unexplored. We take advantage of the availability of transgenic Hydra lines to perform the first dynamical analysis, to our knowledge, of Hydra mouth opening and test existing hypotheses regarding the underlying cellular mechanisms. Through cell position and shape tracking, we show that mouth opening is accompanied by changes in cell shape, but not cellular rearrangements as previously suggested. Treatment with a muscle relaxant impairs mouth opening, supporting the hypothesis that mouth opening is an active process driven by radial contractile processes (myonemes) in the ectoderm. Furthermore, we find that all events exhibit the same relative rate of opening. Because one individual can open consecutively to different amounts, this suggests that the degree of mouth opening is controlled through neuronal signaling. Finally, from the opening dynamics and independent measurements of the elastic properties of the tissues, we estimate the forces exerted by the myonemes to be on the order of a few nanoNewtons. Our study provides the first dynamical framework, to our knowledge, for understanding the remarkable plasticity of the Hydra mouth and illustrates that Hydra is a powerful system for quantitative biomechanical studies of cell and tissue behaviors in vivo.  相似文献   

17.
γ-aminobutyric acid (GABA) receptors, responding to GABA positive allosteric modulators, are present in the freshwater polyp Hydra vulgaris (Cnidaria, Hydrozoa), one of the most primitive metazoans to develop a nervous system. We examined the occurrence and distribution of GABAA receptor subunits in Hydra tissues by western blot and immunohistochemistry. Antibodies against different GABAA receptor subunits were used in Hydra membrane preparations. Unique protein bands, inhibited by the specific peptide, appeared at 35, 60, ~50 and ~52 kDa in membranes incubated with α3, β1, γ3 or δ antibodies, respectively. Immunohistochemical screening of whole mount Hydra preparations revealed diffuse immunoreactivity to α3, β1 or γ3 antibodies in tentacles, hypostome, and upper part of the gastric region; immunoreactive fibers were also present in the lower peduncle. By contrast, δ antibodies revealed a strong labeling in the lower gastric region and peduncle, as well as in tentacles. Double labeling showed colocalization of α3/β1, α3/γ3 and α3/δ immunoreactivity in granules or cells in tentacles and gastric region. In the peduncle, colocalization of both α3/β1 and α3/γ3 immunoreactivity was found in fibers running horizontally above the foot. These data indicate that specific GABAA receptor subunits are present and differentially distributed in Hydra body regions. Subunit colocalization suggests that Hydra GABA receptors are heterologous multimers, possibly sub-serving different physiological activities.  相似文献   

18.
19.
Immunoreactivity (IR) obtained by monoclonal antibodies to substance P (SP) was studied in the asexually reproducing microturbellarians Stenostomum leucops and Microstomum lineare. The IR pattern was studied by confocal and ordinary fluorescence microscopy. In both species, IR occurs in the brain in peripheral cells, neuropilar fibres, in longitudinal cords and in the pharyngeal nervous system. The IR patterns reveal neuroanatomical details not observed with other neuroactive substances. In both species, immunopositive cells send fibers to the ciliary pits. In M. lineare, additional fibres run to more frontally located sensory structures. In S. leucops, two pharyngeal nerve rings are visualized. The pharyngeal nerve ring close to the surface associated with symmetrical immunopositive cell pairs is demonstrated for the first time, while the deeper-lying pharyngeal nerve ring has been previously demonstrated by antibodies to the molluscan cardioactive peptide FMRF-amide. Two cells with strong IR are connected by short fibres to the pharyngeal nerve ring in M. lineare. In the developing new individuals, i.e., the zooids of M. lineare, IR to SP is first revealed in nerve fibres growing out from parental lateral nerve cords towards the centre of the worm where the new brain commissure will appear. Immunopositive cells in the brain periphery and close to the developing ciliary pits appear later. Simultaneous staining by antibodies to SP and 5-HT shows that IR to SP appears later than IR to 5-HT.  相似文献   

20.
The kinetics of nerve commitment during head regeneration in Hydra were investigated using a newly developed assay for committed cells. Committed nerve precursors were assayed by their ability to continue nerve differentiation following explanation of small pieces of tissue. Committed nerve precursors appear at the site of regeneration within 6 hr after cutting and increase rapidly. The increase is localized to the site of regeneration and does not occur at proximal sites in the body column of the regenerate. The increase is delayed about 8–12 hr when regeneration occurs at sites lower in the body column. The results show, furthermore, that redistribution of committed precursors does not play a major role in the pattern of nerve differentiation during regeneration. Since the increase in committed nerves coincides with the increase in morphogenetic potential of the regenerating tissue, the results strengthen the idea that morphogenetic signals are involved directly in the control of nerve commitment in Hydra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号