首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peroxidase uptake by photoreceptor terminals of the skate retina   总被引:6,自引:4,他引:2       下载免费PDF全文
The photoreceptors of dark-adapted skate retinas bathed in a Ringer solution containing horseradish peroxidase (HRP) incorporate the tracer into membrane-bound compartments within the synaptic terminal of the cell; after 1 or 2 h of incubation, approx. 10-38% of the synaptic vesicles were labeled. The receptors appeared to be functioning normally throughout the incubation period, since electrical potentials of normal amplitude could be elicited in response to dimphotic stimuli. However, it was possible to block the uptake of peroxidase by a regimen of light adaptation that effectively suppressed light-induced activity in the electroretinogram. If, during incubation with peroxidase, retinas were exposed at 10-min intervals to an intense 1-ms flash from a xenon discharge tube, the receptor terminals were almost completely devoid of peroxidase; fewer than 2% of the vesicles were labeled. The suppression of HRP uptake could also be achieved in dark-adapted retinas by adding magnesium to the bathing solution, suggesting that calcium is necessary for transmitter release from vesicles in the receptor terminals. These findings are consistent with the view that vertebrate photoreceptors discharge a neurotransmitter in darkness, and that light decreases the release of this substance. It seems likely that the incorporation of peroxidase into vesicles of physiologically active receptor terminals reflects a mechanism for the retrieval of vesicle membrane after exocytosis.  相似文献   

2.
When the nerves of isolated frog sartorius muscles were stimulated at 10 Hz, synaptic vesicles in the motor nerve terminals became transiently depleted. This depletion apparently resulted from a redistribution rather than disappearance of synaptic vesicle membrane, since the total amount of membrane comprising these nerve terminals remained constant during stimulation. At 1 min of stimulation, the 30% depletion in synaptic vesicle membrane was nearly balanced by an increase in plasma membrane, suggesting that vesicle membrane rapidly moved to the surface as it might if vesicles released their content of transmitter by exocytosis. After 15 min of stimulation, the 60% depletion of synaptic vesicle membrane was largely balanced by the appearance of numerous irregular membrane-walled cisternae inside the terminals, suggesting that vesicle membrane was retrieved from the surface as cisternae. When muscles were rested after 15 min of stimulation, cisternae disappeared and synaptic vesicles reappeared, suggesting that cisternae divided to form new synaptic vesicles so that the original vesicle membrane was now recycled into new synaptic vesicles. When muscles were soaked in horseradish peroxidase (HRP), this tracerfirst entered the cisternae which formed during stimulation and then entered a large proportion of the synaptic vesicles which reappeared during rest, strengthening the idea that synaptic vesicle membrane added to the surface was retrieved as cisternae which subsequently divided to form new vesicles. When muscles containing HRP in synaptic vesicles were washed to remove extracellular HRP and restimulated, HRP disappeared from vesicles without appearing in the new cisternae formed during the second stimulation, confirming that a one-way recycling of synaptic membrane, from the surface through cisternae to new vesicles, was occurring. Coated vesicles apparently represented the actual mechanism for retrieval of synaptic vesicle membrane from the plasma membrane, because during nerve stimulation they proliferated at regions of the nerve terminals covered by Schwann processes, took up peroxidase, and appeared in various stages of coalescence with cisternae. In contrast, synaptic vesicles did not appear to return directly from the surface to form cisternae, and cisternae themselves never appeared directly connected to the surface. Thus, during stimulation the intracellular compartments of this synapse change shape and take up extracellular protein in a manner which indicates that synaptic vesicle membrane added to the surface during exocytosis is retrieved by coated vesicles and recycled into new synaptic vesicles by way of intermediate cisternae.  相似文献   

3.
The supply of synaptic vesicles in the nerve terminal is maintained by a temporally linked balance of exo- and endocytosis. Tetanus and botulinum neurotoxins block neurotransmitter release by the enzymatic cleavage of proteins identified as critical for synaptic vesicle exocytosis. We show here that botulinum neurotoxin A is unique in that the toxin-induced block in exocytosis does not arrest vesicle membrane endocytosis. In the murine spinal cord, cell cultures exposed to botulinum neurotoxin A, neither K(+)-evoked neurotransmitter release nor synaptic currents can be detected, twice the ordinary number of synaptic vesicles are docked at the synaptic active zone, and its protein substrate is cleaved, which is similar to observations with tetanus and other botulinal neurotoxins. In marked contrast, K(+) depolarization, in the presence of Ca(2+), triggers the endocytosis of the vesicle membrane in botulinum neurotoxin A-blocked cultures as evidenced by FM1-43 staining of synaptic terminals and uptake of HRP into synaptic vesicles. These experiments are the first demonstration that botulinum neurotoxin A uncouples vesicle exo- from endocytosis, and provide evidence that Ca(2+) is required for synaptic vesicle membrane retrieval.  相似文献   

4.
Presynaptic nerve terminals contain a great number ofsynaptic vesicles filled with neurotransmitter. The transmission of information in synapses is mediated by release of transmitter from vesicles: exocytosis, after their fusion with presynaptic membrane. At the functioning synapses, the continuous recycling of synaptic vesicles occurs (vesicle cycle), which provides multiple reuse of vesicular membrane material during synaptic activity. Vesicle cycle consists of large number of steps, including vesicle fusion--exocytosis, formation of new vesicles--endocytosis, vesicle sorting, filling of vesicles with transmitter, intraterminal vesicle transport driving the vesicles to different vesicle pools and preparing to next exocytic event. At this paper, I presented the latest literature and our data regarding the steps and mechanisms of vesicle cycle at synapses. Special attention was paid to neuromuscular synapse as the most thoroughly investigated and as my favorite preparation.  相似文献   

5.
Summary Horseradish peroxidase (HRP) was introduced directly into the cerebral cortex of adult rats, which were allowed to survive for 60 min before perfusion fixation. After the tissue had been incubated to demonstrate HRP at the LM and EM levels, blocks of cortical tissue were taken at varying distances from the injection site. These eight blocks of tissue constituted a time sequence for HRP diffusion.Qualitative examination of the presynaptic terminals showed that the most commonly encountered profiles are the plain synaptic vesicles, many of which accumulate tracer. In some terminals labelled vesicles are lined-up in tubular fashion. Other profiles commonly labelled are coated vesicles, tubular and vacuolar cisternae, and plain and coated pinocytotic vesicles.Quantitative analyses based on the number of terminals containing labelled profiles demonstrate an early rise in the rate of labelling of both plain synaptic vesicles and coated vesicles, after which synaptic vesicle labelling rises slowly towards a plateau. By contrast, there is a late parallel increase in the rate of labelling of coated vesicles and cisternae. A more detailed analysis, based on the actual numbers of labelled and total profiles within each presynaptic terminal, highlight early and late periods of rapid labelling for plain synaptic vesicles, coated vesicles and cisternae. A further aspect of HRP incorporation studied, concerns its uptake into four delineated regions of the presynaptic terminal.Our data indicate that membrane uptake into the presynaptic terminal is accomplished mainly via coated vesicles, although plain synaptic vesicles may also be involved. Coated vesicles, in turn, appear to give rise directly to plain synaptic vesicles, with some coalescing to produce vacuolar cisternae. The latter are involved in a two-way interchange of membrane with tubular cisternae, plain synaptic vesicles and coated vesicles. An additional source of plain synaptic vesicles are the tubular cisternae. Exocytosis of plain synaptic vesicles constitutes the mechanism by which transmitter is released from the presynaptic terminal.Supported by the Nuffield Foundation. We are grateful to Mr. M. Austin for help with the photography  相似文献   

6.
The role of coated vesicles in recycling of synaptic vesicle membrane   总被引:9,自引:0,他引:9  
The uptake of extracellular tracers into synaptic nerve terminals has been a phenomenon of persistent interest. Uptake is into synaptic vesicles, hence vesicles spend part of their life in continuity with the plasma membrane, as expected if exocytosis underlies the quantal discharge of neurotransmitters. However, exactly how or when synaptic vesicles acquire extracellular tracers has not been unambiguously determined. Two schools of thought have developed, one holding that vesicles acquire tracers directly via a reversible exo/endocytotic sequence in which they consistently maintain their biochemical identity during their transient continuity with the plasma membrane, the other holding that synaptic vesicles acquire tracers indirectly, via the formation of clathrin-coated vesicles which are spatially and temporally separate from exocytosis and reverse a temporary loss of the vesicles' individual identity upon merger with the plasma membrane. Efforts to distinguish between these two alternatives have generated an interesting diversity of electron microscopic experiments, many of which are reviewed here. However, definitive determination of which view is correct may ultimately require direct visualization of synaptic vesicle turnover in living nerve terminals. To this end, we here review the results of visualizing endocytosis in tissue cultured cells, where light microscopy can provide sufficient resolution to reveal membrane dynamics in living cells. This has allowed visual discrimination of two different types of endocytosis, one clathrin-mediated (coated vesicle formation) and the other actin-mediated (macropinocytosis). Current work is also reviewed which aims at determining experimental methods for inhibiting each type of endocytosis selectively. Hypertonicity and severe cytoplasmic acidification turn out to inhibit coated vesicle formation, while cytochalasin D and mild cytoplasmic acidification selectively inhibit macropinocytosis. Applied to nerves, these various treatments affect synaptic vesicle turnover in a manner that supports the notion that synaptic vesicle membrane recycles via the "indirect" route of coated vesicle formation.  相似文献   

7.
Frog cutaneous pectoris muscles were treated with low doses of crude black widow spider venom (BWSV) or purified alpha-latrotoxin, and neuromuscular transmission, quantal secretion, changes in ultrastructure and uptake of horseradish peroxidase (HRP) were studied. When these agents were applied to muscles bathed in a Ca2+-free solution with 1 mM EGTA and 4 mM Mg2+, the rate of quantal secretion rose to high levels but quickly subsided; neuromuscular transmission was totally and irreversibly blocked within 1 h. The terminals became swollen and were depleted of vesicles; HRP was not taken up. When BWSV was applied to other muscles bathed in a solution with 1.8 mM Ca2+ and 4 mM Mg2+, the rate of secretion rose to high levels and then declined to intermediate levels that were sustained throughot the hour of exposure. Neuromuscular transmission was blocked in fewer than 50% of these fibers. The ultrastructure of these terminals was normal and they contained large numbers of synaptic vesicles. If HRP had been present, most of the synaptic vesicles were labeled with reaction product. These observations suggest that Ca2+ plays an important role in endocytosis at the frog neuromuscular junction.  相似文献   

8.
Mb1 bipolar cells (ON-type cells) of the goldfish retina have exceptionally large (approximately 10 microns in diameter) presynaptic terminals, and thus, are suitable for investigating presynaptic mechanisms for transmitter release. Using enzymatically dissociated Mb1 bipolar cells under whole-cell voltage clamp, we measured the Ca2+ current (ICa), the intracellular free Ca2+ concentration ([Ca2+]i), and membrane capacitance changes associated with exocytosis and endocytosis. Release of transmitter (glutamate) was monitored electrophysiologically by a glutamate receptor-rich neuron as a probe. L-type Ca2+ channels were localized at the presynaptic terminals. The presynaptic [Ca2+]i was strongly regulated by cytoplasmic Ca2+ buffers, the Na(+)-Ca2+ exchanger and the Ca2+ pump in the plasma membrane. Once ICa was activated, a steep Ca2+ gradient was created around Ca2+ channels; [Ca2+]i increased to approximately 100 microM at the fusion sites of synaptic vesicles whereas up to approximately 1 microM at the cytoplasm. The short delay (approximately 1 ms) of exocytosis and the lack of prominent asynchronous release after the termination of ICa suggested a low-affinity Ca2+ fusion sensor for exocytosis. Depending on the rate of Ca2+ influx, glutamate was released in a rapid phasic mode as well as a tonic mode. Multiple pools of synaptic vesicles as well as vesicle cycling seemed to support continuous glutamate release. Activation of protein kinase C increased the size of synaptic vesicle pool, resulting in the potentiation of glutamate release. Goldfish Mb1 bipolar cells may still be an important model system for understanding the molecular mechanisms of transmitter release.  相似文献   

9.
L-Glutamate is regarded as the major excitatory neurotransmitter in the mammalian CNS. However, whether the released transmitter originates from a cytosolic pool or is discharged from synaptic vesicles by exocytosis (vesicle hypothesis) remains controversial. A problem with the general acceptance of the vesicle hypothesis is that the enrichment of glutamate in synaptic vesicles has not been convincingly demonstrated. In the present study, we have analyzed the glutamate content of synaptic vesicles isolated from rat cerebral cortex by a novel immunobead procedure. A large amount of glutamate was present in these vesicles when a proton electrochemical gradient was maintained across the vesicle membrane during isolation. Compared with the starting fraction, glutamate was enriched more than 10-fold relative to other amino acids. Addition of N-ethylmaleimide prevented glutamate loss during isolation. Isotope exchange experiments revealed that exchange or re-uptake of glutamate after homogenization is negligible. We conclude that rat brain synaptic vesicles contain high levels of glutamate in situ.  相似文献   

10.
The neuronal isoform of vesicular monoamine transporter, VMAT2, is responsible for packaging dopamine and other monoamines into synaptic vesicles and thereby plays an essential role in dopamine neurotransmission. Dopamine neurons in mice lacking VMAT2 are unable to store or release dopamine from their synaptic vesicles. To determine how VMAT2-mediated filling influences synaptic vesicle morphology and function, we examined dopamine terminals from VMAT2 knockout mice. In contrast to the abnormalities reported in glutamatergic terminals of mice lacking VGLUT1, the corresponding vesicular transporter for glutamate, we found that the ultrastructure of dopamine terminals and synaptic vesicles in VMAT2 knockout mice were indistinguishable from wild type. Using the activity-dependent dyes FM1-43 and FM2-10, we also found that synaptic vesicles in dopamine neurons lacking VMAT2 undergo endocytosis and exocytosis with kinetics identical to those seen in wild-type neurons. Together, these results demonstrate that dopamine synaptic vesicle biogenesis and cycling are independent of vesicle filling with transmitter. By demonstrating that such empty synaptic vesicles can cycle at the nerve terminal, our study suggests that physiological changes in VMAT2 levels or trafficking at the synapse may regulate dopamine release by altering the ratio of fillable-to-empty synaptic vesicles, as both continue to cycle in response to neural activity.  相似文献   

11.
This study examined the ultrastructure of presynaptic terminals after short periods of vigorous acetylcholine (ACh) secretion in the cat superior cervical ganglion in vivo. Experimental trunks of cats anesthetized with chloralose-urethane were stimulated supra-maximally for periods of 15–30 min and at several frequencies including the upper physiological range (5–10 Hz). Stimulated and contralateral control ganglia from each animal were fixed by intra-arterial aldehyde perfusion, processed simultaneously, and compared by electron microscopy. Stimulation produced an absolute decrease in the number of synaptic vesicles, an enlargement of axonal surface membrane, and distinct alterations in the shape of presynaptic terminals. Virtually complete recovery occurred within 1 h after stimulation at 10 Hz for 30 min. These results support the hypothesis that ACh release at mammalian axodendritic synapses occurs by exocytosis of synaptic vesicles resulting in the incorporation of vesicle membrane into the presynaptic membrane and that synaptic vesicles subsequently are reformed from plasma membrane.  相似文献   

12.
Abstract: The role of the transvesicular protonmotive force in synaptic vesicle recycling was investigated in cultured cerebellar granule cells. The vesicular V-ATPase was inhibited by 1 µ M bafilomycin A1; as an alternative, the pH component of the gradient was selectively collapsed by equilibration of the cells with 10 m M methylamine and monitored with the fluorescent probe Lysosensor Green. Electrical field-evoked exocytosis of d -[3H]aspartate was inhibited by bafilomycin A1 but not by methylamine, indicating that a transvesicular membrane potential rather than pH gradient is required for transmitter retention within vesicles. In contrast, neither compound affected the field-evoked uptake, recycling, or destaining of the vesicle-specific dye FM2-10; thus, vesicles whose lumens were neutral and/or depleted of transmitter could still recycle in the nerve terminal. No exhaustion of d -[3H]aspartate exocytosis was observed when cells were subjected to six consecutive trains of field stimuli (40 Hz/10 s separated by 10 s). In contrast, the release of preloaded FM2-10 was reduced by ∼50%, with each stimulus indicating that unlabeled vesicles with accumulated d -[3H]aspartate were competing with labeled vesicles for exocytosis. As d -[3H]aspartate was accumulated rapidly across the vesicle membrane from the large cytoplasmic pool, the transmitter-loaded but unlabelled vesicles may represent refilled recycling vesicles. FM2-10 destaining and d -[3H]aspartate exocytosis were reduced in parallel at low frequencies, challenging a role for transient vesicle fusion.  相似文献   

13.
Following the fusion of synaptic vesicles with the presynaptic plasma membrane of nerve terminals by the process of exocytosis, synaptic-vesicle components are recycled to replenish the vesicle pool. Here we use a pH-sensitive green fluorescent protein to measure the residence time of VAMP, a vesicle-associated SNARE protein important for membrane fusion, on the surfaces of synaptic terminals of hippocampal neurons following exocytosis. The time course of VAMP retrieval depends linearly on the amount of VAMP that is added to the plasma membrane, with retrieval occurring between about 4 seconds and 90 seconds after exocytosis, and newly internalized vesicles are rapidly acidified. These data are well described by a model in which endocytosis appears to be saturable, but proceeds with an initial maximum velocity of about one vesicle per second. We also find that, following exocytosis, a portion of the newly inserted VAMP appears on the surface of the axon.  相似文献   

14.
Synaptophysin, an integral protein of the synaptic vesicle membrane, and synapsin I, a phosphoprotein associated with the cytoplasmic side of synaptic vesicles, represent useful markers that allow to follow the movements of the vesicle membrane during recycling. The use of antibodies against these proteins to label nerve terminals during experimental treatments which stimulate secretion has provided evidence that during the exo-endocytotic cycle synaptic vesicles transiently fuse with the axolemma, from which they are specifically recovered. When recycling is blocked, exocytosis leads to the permanent incorporation of the synaptic vesicle membrane into the axolemma and to diffusion of the vesicle components in the plane of the membrane.  相似文献   

15.
We describe the design and operation of a machine that freezes biological tissues by contact with a cold metal block, which incorporates a timing circuit that stimulates frog neuromuscular junctions in the last few milliseconds before thay are frozen. We show freeze-fracture replicas of nerve terminals frozen during transmitter discharge, which display synpatic vesicles caught in the act of exocytosis. We use 4-aminopyridine (4-AP) to increase the number of transmitter quanta discharged with each nerve impulse, and show that the number of exocytotic vesicles caught by quick-freezing increases commensurately, indicating that one vesicle undergoes exocytosis for each quantum that is discharged. We perform statistical analyses on the spatial distribution of synaptic vesicle discharge sites along the "active zones" that mark the secretory regions of these nerves, and show that individual vesicles fuse with the plasma membrane independent of one another, as expected from physiological demonstrations that quanta are discharged independently. Thus, the utility of quick-freezing as a technique to capture biological processes as evanescent as synaptic transmission has been established. An appendix describes a new capacitance method to measure freezing rates, which shows that the "temporal resolution" of our quick-freezing technique is 2 ms or better.  相似文献   

16.
Zenisek D  Steyer JA  Feldman ME  Almers W 《Neuron》2002,35(6):1085-1097
Perhaps synaptic vesicles can recycle so rapidly because they avoid complete exocytosis, and release transmitter through a fusion pore that opens transiently. This view emerges from imaging whole terminals where the fluorescent lipid FM1-43 seems unable to leave vesicles during transmitter release. Here we imaged single, FM1-43-stained synaptic vesicles by evanescent field fluorescence microscopy, and tracked the escape of dye from single vesicles by watching the increase in fluorescence after exocytosis. Dye left rapidly and completely during most or all exocytic events. We conclude that vesicles at this terminal allow lipid exchange soon after exocytosis, and lose their dye even if they connected with the plasma membrane only briefly. At the level of single vesicles, therefore, observations with FM1-43 provide no evidence that exocytosis of synaptic vesicles is incomplete.  相似文献   

17.
《The Journal of cell biology》1996,133(6):1237-1250
Strong evidence implicates clathrin-coated vesicles and endosome-like vacuoles in the reformation of synaptic vesicles after exocytosis, and it is generally assumed that these vacuoles represent a traffic station downstream from clathrin-coated vesicles. To gain insight into the mechanisms of synaptic vesicle budding from endosome-like intermediates, lysed nerve terminals and nerve terminal membrane subfractions were examined by EM after incubations with GTP gamma S. Numerous clathrin-coated budding intermediates that were positive for AP2 and AP180 immunoreactivity and often collared by a dynamin ring were seen. These were present not only on the plasma membrane (Takei, K., P.S. McPherson, S.L.Schmid, and P. De Camilli. 1995. Nature (Lond.). 374:186-190), but also on internal vacuoles. The lumen of these vacuoles retained extracellular tracers and was therefore functionally segregated from the extracellular medium, although narrow connections between their membranes and the plasmalemma were sometimes visible by serial sectioning. Similar observations were made in intact cultured hippocampal neurons exposed to high K+ stimulation. Coated vesicle buds were generally in the same size range of synaptic vesicles and positive for the synaptic vesicle protein synaptotagmin. Based on these results, we suggest that endosome-like intermediates of nerve terminals originate by bulk uptake of the plasma membrane and that clathrin- and dynamin-mediated budding takes place in parallel from the plasmalemma and from these internal membranes. We propose a synaptic vesicle recycling model that involves a single vesicle budding step mediated by clathrin and dynamin.  相似文献   

18.
The uptake of horseradish peroxidase (HRP) into membranous structures, detectable by light and electron microscopy, is used here to monitor the synaptic activity of photoreceptors of isolated frog retinas maintained in the dark or under various illumination conditions. The major findings are: (a) Neurotransmission from photoreceptor terminals seems to involve the same types of endocytic membrane-retrieval processes that occur at other nerve terminals. Presumably, the endocytic processes compensate for exocytic events associated with neurotransmission. The retrieved membrane is "recycled" to form vesicles. Some of these accumulate near the synaptic ribbons, perhaps indicating reutilization for exocytosis. On the other hand, some retrieved membrane evidently is degraded via multivesicular bodies that appear to undergo "retrograde" transport from the receptor synapses to the myoid regions. (b) Photoreceptor terminals take up much HRP in the dark. Steady illumination markedly decreases uptake by rods. Uptake by cones is notably reduced only at illumination intensities higher than those that have maximal effects on rods. (c) The decrease in rod HRP uptake with light is reversible when retinas are allowed to adapt to the dark, if the light exposures used were at intensities that bleach very little visual pigment. Such "recovery" is not observed after light exposures that bleach a considerable amount of visual pigment. The cones recover their dark levels of HRP uptake even after light exposures that bleach considerable amounts of visual pigment. The changes in HRP uptake that we observe parallel expectations for photoreceptor synaptic neurotransmission derived from indirect physiological evidence.  相似文献   

19.
During sustained action potential (AP) firing at nerve terminals, the rates of endocytosis compared to exocytosis determine how quickly the available synaptic vesicle pool is depleted, in turn influencing presynaptic efficacy. Mechanisms, including rapid kiss-and-run endocytosis as well as local, preferential recycling of docked vesicles, have been proposed as a means to allow endocytosis and recycling to keep up with stimulation. We show here that, for CNS nerve terminals at physiological temperatures, endocytosis is sufficiently fast to avoid vesicle pool depletion during continuous AP firing at 10 Hz. This endocytosis-exocytosis balance persists for turnover of the entire releasable pool of vesicles and allows for efficient escape of FM 4-64, indicating that it is a non-kiss-and-run endocytic event. Thus, under physiological conditions, the sustained speed of vesicle membrane retrieval for the entire releasable pool appears to be sufficiently fast to compensate for exocytosis, avoiding significant vesicle pool depletion during robust synaptic activity.  相似文献   

20.
The docking of synaptic vesicles at active zones on the presynaptic plasma membrane of axon terminals is essential for their fusion with the membrane and exocytosis of their neurotransmitter to mediate synaptic impulse transmission. Dense networks of macromolecules, called active zone material, (AZM) are attached to the presynaptic membrane next to docked vesicles. Electron tomography has shown that some AZM macromolecules are connected to docked vesicles, leading to the suggestion that AZM is somehow involved in the docking process. We used electron tomography on the simply arranged active zones at frog neuromuscular junctions to characterize the connections of AZM to docked synaptic vesicles and to search for the establishment of such connections during vesicle docking. We show that each docked vesicle is connected to 10-15 AZM macromolecules, which fall into four classes based on several criteria including their position relative to the presynaptic membrane. In activated axon terminals fixed during replacement of docked vesicles by previously undocked vesicles, undocked vesicles near vacated docking sites on the presynaptic membrane have connections to the same classes of AZM macromolecules that are connected to docked vesicles in resting terminals. The number of classes and the total number of macromolecules to which the undocked vesicles are connected are inversely proportional to the vesicles' distance from the presynaptic membrane. We conclude that vesicle movement toward and maintenance at docking sites on the presynaptic membrane are directed by an orderly succession of stable interactions between the vesicles and distinct classes of AZM macromolecules positioned at different distances from the membrane. Establishing the number, arrangement and sequence of association of AZM macromolecules involved in vesicle docking provides an anatomical basis for testing and extending concepts of docking mechanisms provided by biochemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号