首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To elucidate the molecular requirements for cancer cell internalization of the extracellular cysteine protease inhibitor cystatin C, 12 variants of the protein were produced and used for uptake experiments in MCF-7 cells. Variants with alterations in the cysteine cathepsin binding region ((Δ1–10)-, K5A-, R8G-, (R8G,L9G,V10G)-, (R8G,L9G,V10G,W106G)-, and W106G-cystatin C) were internalized to a very low extent compared with the wild-type inhibitor. Substitutions of N39 in the legumain binding region (N39K- and N39A-cystatin C) decreased the internalization and (R24A,R25A)-cystatin C, with substitutions of charged residues not involved in enzyme inhibition, was not taken up at all. Two variants, W106F- and K75A-cystatin C, showed that the internalization can be positively affected by engineering of the cystatin molecule. Microscopy revealed vesicular co-localization of internalized cystatin C with the lysosomal marker proteins cathepsin D and legumain. Activities of both cysteine cathepsins and legumain, possible target enzymes associated with cancer cell invasion and metastasis, were down-regulated in cell homogenates following cystatin C uptake. A positive effect on regulation of intracellular enzyme activity by a cystatin variant selected from uptake properties was illustrated by incubating cells with W106F-cystatin C. This resulted in more efficient down-regulation of intracellular legumain activity than when cells were incubated with wild-type cystatin C. Uptake experiments in prostate cancer cells corroborated that the cystatin C internalization is generally relevant and confirmed an increased uptake of W106F-cystatin C, in PC3 cells. Thus, intracellular cysteine proteases involved in cancer-promoting processes might be controled by cystatin uptake.  相似文献   

2.
Cystatin F is an unusual member of the cystatin family of protease inhibitors, which is made as an inactive dimer and becomes activated by proteolysis in the endo/lysosome pathway of the immune cells that produce it. However a proportion is secreted and can be taken up and activated by other cells. We show here that cystatin F acquired in this way induces a dramatic accumulation of the single-chain form of cathepsin L (CatL). Cystatin F was observed in the same cellular compartments as CatL and was tightly complexed with CatL as determined by co-precipitation studies. The observed accumulation of single-chain CatL was partly due to cystatin F-mediated inhibition of the putative single-chain to two-chain CatL convertase AEP/legumain and partly to general suppression of cathepsin activity. Thus, cystatin F stabilizes CatL leading to the dramatic accumulation of an inactive complex composed either of the single-chain or two-chain form depending on the capacity of cystatin F to inhibit AEP. Cross-transfer of cystatin F from one cell to another may therefore attenuate potentially harmful effects of excessive CatL activity while paradoxically, inducing accumulation of CatL protein. Finally, we confirmed earlier data (Beers, C., Honey, K., Fink, S., Forbush, K., and Rudensky, A. (2003) J. Exp. Med. 197, 169-179) showing a loss of CatL activity, but not of CatL protein, in macrophages activated with IFNγ. However, we found equivalent loss of CatL activity in wild type and cystatin F-null macrophages suggesting that an inhibitory activity other than cystatin F quenches CatL activity in activated macrophages.  相似文献   

3.
We have investigated the inhibition of the recently identified family C13 cysteine peptidase, pig legumain, by human cystatin C. The cystatin was seen to inhibit enzyme activity by stoichiometric 1:1 binding in competition with substrate. The Ki value for the interaction was 0.20 nM, i.e. cystatin C had an affinity for legumain similar to that for the papain-like family C1 cysteine peptidase, cathepsin B. However, cystatin C variants with alterations in the N-terminal region and the "second hairpin loop" that rendered the cystatin inactive against cathepsin B, still inhibited legumain with Ki values 0.2-0.3 nM. Complexes between cystatin C and papain inhibited legumain activity against benzoyl-Asn-NHPhNO2 as efficiently as did cystatin C alone. Conversely, cystatin C inhibited papain activity against benzoyl-Arg-NHPhNO2 whether or not the cystatin had been incubated with legumain, strongly indicating that the cystatin inhibited the two enzymes with non-overlapping sites. A ternary complex between legumain, cystatin C, and papain was demonstrated by gel filtration supported by immunoblotting. Screening of a panel of cystatin superfamily members showed that type 1 inhibitors (cystatins A and B) and low Mr kininogen (type 3) did not inhibit pig legumain. Of human type 2 cystatins, cystatin D was non-inhibitory, whereas cystatin E/M and cystatin F displayed strong (Ki 0.0016 nM) and relatively weak (Ki 10 nM) affinity for legumain, respectively. Sequence alignments and molecular modeling led to the suggestion that a loop located on the opposite side to the papain-binding surface, between the alpha-helix and the first strand of the main beta-pleated sheet of the cystatin structure, could be involved in legumain binding. This was corroborated by analysis of a cystatin C variant with substitution of the Asn39 residue in this loop (N39K-cystatin C); this variant showed a slight reduction in affinity for cathepsin B (Ki 1.5 nM) but >5,000-fold lower affinity for legumain (Ki >1,000 nM) than wild-type cystatin C.  相似文献   

4.
Cystatin M/E is a high affinity inhibitor of the asparaginyl endopeptidase legumain, and we have previously reported that both proteins are likely to be involved in the regulation of stratum corneum formation in skin. Although cystatin M/E contains a predicted binding site for papain-like cysteine proteases, no high affinity binding for any member of this family has been demonstrated so far. We report that human cathepsin V (CTSV) and human cathepsin L (CTSL) are strongly inhibited by human cystatin M/E. Kinetic studies show that Ki values of cystatin M/E for the interaction with CTSV and CTSL are 0.47 and 1.78 nM, respectively. On the basis of the analogous sites in cystatin C, we used site-directed mutagenesis to identify the binding sites of these proteases in cystatin M/E. We found that the W135A mutant was rendered inactive against CTSV and CTSL but retained legumain-inhibiting activity. Conversely, the N64A mutant lost legumain-inhibiting activity but remained active against the papain-like cysteine proteases. We conclude that legumain and papain-like cysteine proteases are inhibited by two distinct non-overlapping sites. Using immunohistochemistry on normal human skin, we found that cystatin M/E co-localizes with CTSV and CTSL. In addition, we show that CTSL is the elusive enzyme that processes and activates epidermal transglutaminase 3. The identification of CTSV and CTSL as novel targets for cystatin M/E, their (co)-expression in the stratum granulosum of human skin, and the activity of CTSL toward transglutaminase 3 strongly imply an important role for these enzymes in the differentiation process of human epidermis.  相似文献   

5.
Conventional chemotherapy has undesirable toxic side-effects to healthy tissues due to low cell selectivity of cytotoxic drugs. One approach to increase the specificity of a cytotoxic drug is to make a less toxic prodrug which becomes activated at the tumour site. The cysteine protease legumain have remarkable restricted substrate specificity and is the only known mammalian asparaginyl (Asn) endopeptidase. Over-expression of legumain is reported in cancers and unstable atherosclerotic plaques, and utilizing legumain is a promising approach to activate prodrugs.In this study we have synthesized the legumain-cleavable peptide sequence N-Boc-Ala-Ala-Asn-Val-OH. The peptide was subsequently conjugated to deacetyl colchicine during three steps to produce Suc-Ala-Ala-Asn-Val-colchicine (prodrug) with >90% chemical purity. Several cell lines with different expressions and activities of legumain were used to evaluate the general toxicity, specificity and efficacy of the microtubule inhibitor colchicine, valyl colchicine and the legumain-cleavable colchicine prodrug. The prodrug was more toxic to the colorectal cancer HCT116 cells (expressing both the 36 kDa active and 56 kDa proform of legumain) than SW620 cells (only expressing the 56 kDa prolegumain) indicating a relationship between toxicity of the prodrug and activity of legumain in the cells. Also, in monoclonal legumain over-expressing HEK293 cells the prodrug toxicity was higher compared to native HEK293 cells. Furthermore, co-administration of the prodrug either with the potent legumain inhibitor cystatin E/M or the endocytosis inhibitor Dyngo-4a inhibited cell death, indicating that the prodrug toxicity was dependent on both asparaginyl endopeptidase activity and endocytosis. This colchicine prodrug adds to a legumain-activated prodrug strategy approach and could possibly be of use both in targeted anticancer and anti-inflammatory therapy.  相似文献   

6.
Altered protease activity is considered important for tumour invasion and metastasis, processes in which the cysteine proteases cathepsin B and L are involved. Their natural inhibitor cystatin C is a secreted protein, suggesting that it functions to control extracellular protease activity. Because cystatins added to cell cultures can inhibit polio, herpes simplex and coronavirus replication, which are intracellular processes, the internalization and intracellular regulation of cysteine proteases by cystatin C should be considered. The extension, mechanism and biological importance of this hypothetical process are unknown. We investigated whether internalization of cystatin C occurs in a set of human cell lines. Demonstrated by flow cytometry and confocal microscopy, A-431, MCF-7, MDA-MB-453, MDA-MB-468 and Capan-1 cells internalized fluorophore-conjugated cystatin C when exposed to physiological concentrations (1 microm). During cystatin C incubation, intracellular cystatin C increased after 5 min and accumulated for at least 6 h, reaching four to six times the baseline level. Western blotting showed that the internalized inhibitor was not degraded. It was functionally intact and extracts of cells exposed to cystatin C showed a higher capacity to inhibit papain and cathepsin B than control cells (decrease in enzyme activity of 34% and 37%, respectively). The uptake of labelled cystatin C was inhibited by unlabelled inhibitor, suggesting a specific pathway for the internalization. We conclude that the cysteine protease inhibitor cystatin C is internalized in significant quantities in various cancer cell lines. This is a potentially important physiological phenomenon not previously described for this group of inhibitors.  相似文献   

7.
Of seven human cystatins investigated, none inhibited the cysteine proteases staphopain A and B secreted by the human pathogen Staphylococcus aureus. Rather, the extracellular cystatins C, D and E/M were hydrolyzed by both staphopains. Based on MALDI-TOF time-course experiments, staphopain A cleavage of cystatin C and D should be physiologically relevant and occur upon S. aureus infection. Staphopain A hydrolyzed the Gly11 bond of cystatin C and the Ala10 bond of cystatin D with similar Km values of approximately 33 and 32 microM, respectively. Such N-terminal truncation of cystatin C caused >300-fold lower inhibition of papain, cathepsin B, L and K, whereas the cathepsin H activity was compromised by a factor of ca. 10. Similarly, truncation of cystatin D caused alleviated inhibition of all endogenous target enzymes investigated. The normal activity of the cystatins is thus down-regulated, indicating that the bacterial enzymes can cause disturbance of the host protease-inhibitor balance. To illustrate the in vivo consequences, a mixed cystatin C assay showed release of cathepsin B activity in the presence of staphopain A. Results presented for the specificity of staphopains when interacting with cystatins as natural protein substrates could aid in the development of therapeutic agents directed toward these proteolytic virulence factors.  相似文献   

8.
Cancer metastasis involves multiple factors, one of which is the production and secretion of matrix degrading proteases by the cancer cells. Many metastasizing cancer cells secrete the lysosomal proteases, cathepsins L and B, which implicates them in the metastatic process. Cathepsins L and B are regulated by endogenous cysteine proteinase inhibitors (CPI) known as cystatins. An imbalance between cathepsin L and/or B and cystatin expression/activity may be a characteristic of the metastatic phenotype. To determine whether cystatins can attenuate the invasive ability of PC3 prostate cancer cells, cells were transfected with a cDNA coding for chicken cystatin. Expression of chicken cystatin mRNA was determined by PCR analysis. Total cysteine proteinase inhibitory activity, cathepsins L+B activity, and invasion through a Matrigel® matrix were assessed. Stably transfected cells expressed the chicken cystatin mRNA and exhibited a significant decrease in secreted cathepsin L+B activity and a small increase in secreted cysteine proteinase inhibitor activity. The ability of cystatin transfected cells to invade the reconstituted basement membrane, Matrigel®, was attenuated compared to nontransfected cells or cells transfected with vector alone. We have demonstrated that the cysteine proteinases cathepsins L and B participate in the invasive ability of the PC3 prostate cancer cell line, and we discuss here the potential of using cysteine proteinase inhibitors such as the cystatins as anti-metastatic agents.  相似文献   

9.
Cancer metastasis involves multiple factors, one of which is the production and secretion of matrix degrading proteases by the cancer cells. Many metastasizing cancer cells secrete the lysosomal proteases, cathepsins L and B, which implicates them in the metastatic process. Cathepsins L and B are regulated by endogenous cysteine proteinase inhibitors (CPI) known as cystatins. An imbalance between cathepsin L and/or B and cystatin expression/activity may be a characteristic of the metastatic phenotype. To determine whether cystatins can attenuate the invasive ability of PC3 prostate cancer cells, cells were transfected with a cDNA coding for chicken cystatin. Expression of chicken cystatin mRNA was determined by PCR analysis. Total cysteine proteinase inhibitory activity, cathepsins L+B activity, and invasion through a Matrigel® matrix were assessed. Stably transfected cells expressed the chicken cystatin mRNA and exhibited a significant decrease in secreted cathepsin L+B activity and a small increase in secreted cysteine proteinase inhibitor activity. The ability of cystatin transfected cells to invade the reconstituted basement membrane, Matrigel®, was attenuated compared to nontransfected cells or cells transfected with vector alone. We have demonstrated that the cysteine proteinases cathepsins L and B participate in the invasive ability of the PC3 prostate cancer cell line, and we discuss here the potential of using cysteine proteinase inhibitors such as the cystatins as anti-metastatic agents.  相似文献   

10.
Cystatins are natural inhibitors of papain-like (family C1) and legumain-related (family C13) cysteine peptidases. Cystatin D is a type 2 cystatin, a secreted inhibitor found in human saliva and tear fluid. Compared with its homologues, cystatin D presents an unusual inhibition profile with a preferential inhibition cathepsin S > cathepsin H > cathepsin L and no inhibition of cathepsin B or pig legumain. To elucidate the structural reasons for this specificity, we have crystallized recombinant human Arg(26)-cystatin D and solved its structures at room temperature and at cryo conditions to 2.5- and 1.8-A resolution, respectively. Human cystatin D presents the typical cystatin fold, with a five-stranded anti-parallel beta-sheet wrapped around a five-turn alpha-helix. The structures reveal differences in the peptidase-interacting regions when compared with other cystatins, providing plausible explanations for the restricted inhibitory specificity of cystatin D for some papain-like peptidases and its lack of reactivity toward legumain-related enzymes.  相似文献   

11.
In dendritic cells (DCs) cysteine cathepsins play a key role in antigen processing, invariant chain (Ii) cleavage and regulation of cell adhesion after maturation stimuli. Cystatin F, a cysteine protease inhibitor, is present in DCs in endosomal/lysosomal vesicles and thus has a potential to modulate cathepsin activity. In immature DCs cystatin F colocalizes with cathepsin S. After induction of DC maturation however, it is translocated into lysosomes and colocalizes with cathepsin L. The inhibitory potential of cystatin F depends on the properties of the monomer. We showed that the full-length monomeric cystatin F was a 12-fold stronger inhibitor of cathepsin S than the N-terminally processed cystatin F, whereas no significant difference in inhibition was observed for cathepsins L, H and X. Therefore, the role of cystatin F in regulating the main cathepsin S function in DCs, i.e. the processing of Ii, may depend on the form of the monomer present in endosomal/lysosomal vesicles. On the other hand, intact and truncated monomeric cystatin F are both potent inhibitors of cathepsin L and it is likely that cystatin F could regulate its activity in maturing, adherent DCs, controlling the processing of procathepsin X, which promotes cell adhesion via activation of Mac-1 (CD11b/CD18) integrin receptor.  相似文献   

12.
Lysosomal cysteine proteinase cathepsin B is implicated in remodeling the extracellular matrix, a crucial step in the process of tumor cell invasion. In this study the contributions of intracellular and extracellular cathepsin B activities in the invasion of ras-transformed human breast epithelial cells, MCF-10A neoT, were assessed using specific cathepsin B neutralizing monoclonal antibody (Mab) 2A2, together with other general and specific cysteine proteinase inhibitors. We showed that the degradation of extracellular matrix by living MCF-10A neoT cells was predominantly intracellular, as imaged by confocal assays using quenched fluorescent substrate DQ-collagen IV. CA-074, a membrane-impermeable cathepsin B-selective inhibitor and its membrane-permeable analogue CA-074Me showed similar inhibition of invasion at 10 microM, i.e., 24.9 and 27.0%, respectively. Neutralizing monoclonal antibody exhibited a significantly higher inhibitory effect, decreasing invasion at 0.5 microM by 42.7%. Tumor cells may internalize monoclonal antibody; therefore, 2A2 Mab could impair both the intracellular and the extracellular fractions of cathepsin B activity. However, both 2A2 Mab and cathepsin B-selective inhibitors were less potent than the general cysteine proteinase inhibitors chicken cystatin and E-64, indicating that other cysteine proteinases, presumably cathepsin L, are involved in invasion. Our results show that intracellular and extracellular cathepsin B activity contribute to in vitro invasion of MCF-10A neoT cells and suggest that inhibitors capable of impairing both fractions have a potential as new anticancer drugs.  相似文献   

13.
14.
Cystatins   总被引:1,自引:0,他引:1  
Chicken egg white cystatin was first described in the late 1960s. Since then, our knowledge about a superfamily of similar proteins present in mammals, birds, fish, insects, plants and some protozoa has expanded, and their properties as potent peptidase inhibitors have been firmly established. Today, 12 functional chicken cystatin relatives are known in humans, but a few evolutionarily related gene products still remain to be characterized. The type 1 cystatins (A and B) are mainly intracellular, the type 2 cystatins (C, D, E/M, F, G, S, SN and SA) are extracellular, and the type 3 cystatins (L- and H-kininogens) are intravascular proteins. All true cystatins inhibit cysteine peptidases of the papain (C1) family, and some also inhibit legumain (C13) family enzymes. These peptidases play key roles in physiological processes, such as intracellular protein degradation (cathepsins B, H and L), are pivotal in the remodelling of bone (cathepsin K), and may be important in the control of antigen presentation (cathepsin S, mammalian legumain). Moreover, the activities of such peptidases are increased in pathophysiological conditions, such as cancer metastasis and inflammation. Additionally, such peptidases are essential for several pathogenic parasites and bacteria. Thus cystatins not only have capacity to regulate normal body processes and perhaps cause disease when down-regulated, but may also participate in the defence against microbial infections. In this chapter, we have aimed to summarize our present knowledge about the human cystatins.  相似文献   

15.
16.
During a comparison of the infectivity of mNDK, a CD4-independent human immunodeficiency virus type 1 (HIV-1) strain, to various cell lines, we found that HeLa cells were much less susceptible than 293T and TE671 cells. Hybridoma cells between HeLa and 293T cells were as susceptible as 293T cells, suggesting that cellular factors enhance the mNDK infection in 293T cells. By screening a cDNA expression library in HeLa cells, cystatin C was isolated as an enhancer of the mNDK infection. Because cathepsin B protease, a natural ligand of cystatin C, was upregulated in HeLa cells, we speculated that the high levels of cathepsin B activities were inhibitory to the CD4-independent infection and that cystatin C enhanced the infection by impairing the excessive cathepsin B activity. Consistent with this idea, pretreatment of HeLa cells with 125 μM of CA-074Me, a cathepsin B inhibitor, resulted in an 8-fold enhancement of the mNDK infectivity. Because cathepsin B is activated by low pH in acidic endosomes, we further examined the potential roles of endosomes in the CD4-independent infection. Suppression of endosome acidification or endocytosis by inhibitors or by an Eps15 dominant negative mutant reduced the infectivity of mNDK in which CD4-dependent infections were not significantly impaired. Taken together, these results suggest that endocytosis, endosomal acidification, and cathepsin B activity are involved in the CD4-independent entry of HIV-1.  相似文献   

17.
Cystatins are a family of naturally occurring cysteine protease inhibitors, yet the target proteases and biological processes they regulate are poorly understood. Cystatin F is expressed selectively in immune cells and is the only cystatin to be synthesised as an inactive disulphide-linked dimeric precursor. Here, we show that a major target of cystatin F in different immune cell types is the aminopeptidase cathepsin C, which regulates the activation of effector serine proteases in T cells, natural killer cells, neutrophils and mast cells. Surprisingly, recombinant cystatin F was unable to inhibit cathepsin C in vitro even though overexpression of cystatin F suppressed cellular cathepsin C activity. We predicted, using structural models, that an N-terminal processing event would be necessary before cystatin F can engage cathepsin C and we show that the intracellular form of cystatin F indeed has a precise N-terminal truncation that creates a cathepsin C inhibitor. Thus, cystatin F is a latent protease inhibitor itself regulated by proteolysis in the endocytic pathway. By targeting cathepsin C, it may regulate diverse immune cell effector functions.  相似文献   

18.
19.
Desquamation or cell shedding in mammalian skin is known to involve serine proteases, aspartic proteases and glycosidases. In addition, evidence continues to accumulate that papain-like cysteine proteases and an inhibitor cystatin M/E largely confined to the cutaneous epithelia also play key roles in the process. This involves the complete proteolysis of cell adhesive structures of the stratum corneum, the corneodesmosomes and notably of the desmogleins. Continual cell replacement in the epidermis is the result of the balance between the loss of the outer squames and mitosis of the cells in the basal cell layer. This article provides a brief account of the salient features of the characteristics and catalytic mechanism of cysteine proteases, followed by a discussion of the relevant epidermal biology. The proteases include the asparaginyl endopeptidase legumain, which exerts a strict specificity for the hydrolysis of asparaginyl bonds, cathepsin-V and cathepsin-L. The control of these enzymes by cystatin M/E regulates the processing of transglutaminases and is crucial in the biochemical pathway responsible for regulating the cross-linking and desquamation of the stratum corneum. In addition, caspase-14 has now been shown to play a major part in epidermal maturation. Uncontrolled proteolytic activity leads to abnormal hair follicle formation and deleterious effects on the skin barrier function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号