首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Mason-Pfizer monkey virus (M-PMV), the prototype type D retrovirus, differs from most other retroviruses by assembling its Gag polyproteins into procapsids in the cytoplasm of infected cells. Once assembled, the procapsids migrate to the plasma membrane, where they acquire their envelope during budding. Because the processes of M-PMV protein transport, procapsid assembly, and budding are temporally and spatially unlinked, we have been able to determine whether cellular proteins play an active role during the different stages of procapsid morphogenesis. We report here that at least two stages of morphogenesis require ATP. Both procapsid assembly and procapsid transport to the plasma membrane were reversibly blocked by treating infected cells with sodium azide and 2-deoxy-d-glucose, which we show rapidly and reversibly depletes cellular ATP pools. Assembly of procapsids in vitro in a cell-free translation/assembly system was inhibited by the addition of nonhydrolyzable ATP analogs, suggesting that ATP hydrolysis and not just ATP binding is required. Since retrovirus Gag polyproteins do not bind or hydrolyze ATP, these results demonstrate that cellular components must play an active role during retrovirus morphogenesis.

Assembly and release of nascent retrovirus particles requires that the viral precursor polyproteins and genomic RNAs, and certain host cell tRNAs, migrate to the plasma membrane, where budding occurs. Two discrete intracellular transport pathways are utilized during the assembly of the infectious virion. The viral glycoproteins are synthesized on membrane-bound polysomes and are transported through the secretory pathway of the cell to the plasma membrane, where they colocalize with the immature capsid during the budding process (20). The major structural proteins of the viral capsid and the enzymatic proteins are synthesized in the cytoplasm on free polysomes and are transported to the underside of the plasma membrane (13, 36). While many of the details of the secretory pathway have been established, the mechanisms for intracytoplasmic protein transport are poorly understood.The major structural polyprotein (Gag) of a nascent retrovirus capsid is encoded by the gag gene. Unlike most enveloped RNA viruses in which the viral glycoproteins mediate assembly by stabilizing the interactions between the capsid proteins and the viral membrane, retroviral Gag proteins can drive capsid assembly and budding in the absence of all the other viral gene products (19, 55, 58). As such, they contain all cis-acting information necessary for intracytoplasmic transport, capsid assembly, membrane binding, envelopment, and release from the cell surface. Assembly of the immature retrovirus capsid begins shortly after the Gag polyproteins are synthesized and modified by myristylation (15, 17, 40, 4749). The Gag proteins of most retroviruses (the type C avian and mammalian viruses, lentiviruses, and human T-cell leukemia virus/bovine leukemia virus-related viruses) migrate directly to the plasma membrane, where they coalesce into spherical, immature capsids and simultaneously bud through the lipid bilayer, thereby acquiring their envelope. During or shortly after release, the Gag protein is cleaved by the viral protease into the internal structural (NH2-MA [matrix], CA [capsid], and NC [nucleocapsid]) proteins of the mature, infectious virion (22). In contrast, the Gag proteins of the mammalian and type B and D viruses (mouse mammary tumor virus [MMTV] and Mason-Pfizer monkey virus [M-PMV], respectively) accumulate in the cytoplasm, where they assemble into spherical structures in the absence of membranes. These nascent particles have been referred to as intracytoplasmic type A particles, but by analogy to other viruses and bacteriophages, we have redefined them as procapsids (55). Once assembled, procapsids are transported to the plasma membrane, from which they bud. Despite the different assembly strategies, the processes whereby Gag proteins assemble into procapsids are probably similar since a single amino acid change near the amino terminus of the Gag protein from M-PMV has been shown to convert it to the type C morphogenic pathway (41).Genetic analyses of the gag genes from different retroviruses have shown that Gag proteins contain specific domains which are required for capsid formation. A membrane binding (M) domain has been located at the amino-terminal end of Gag of several retroviruses (31, 43, 60, 61). A late (L) domain functions during the budding and release. In Rous sarcoma virus (RSV) and M-PMV, the L domain is located between the MA and CA domains (57, 59). An equivalent domain in the lentiviruses has been found near the carboxy terminus of the Gag precursor (34). A third domain (I), located near the CA-NC junction, appears to be a region of interaction between Gag proteins (3, 56). Despite the lack of any extensive sequence similarities between different Gag proteins, there is functional conservation between assembly domains. Chimeric Gag proteins containing the M, L, and I domains from different retroviruses can assemble into capsid-like structures and mediate budding at the plasma membrane (3, 9, 10, 34).The M-PMV Gag protein contains additional assembly elements which influence procapsid assembly, stability, and transport. This virus contains a region within Gag (known as p12) that is not found in either the type C viruses or lentiviruses. It has been suggested from biochemical data derived from studies with p12 deletion mutants that this domain assists in assembly by stabilizing intermolecular Gag associations (50). Protein stability and protein/procapsid transport depend on sequences in the MA domain which appear to be distinct from the M domain. As mentioned above, a single point mutation in MA at residue 55 results in a Gag protein that no longer assembles in the cytoplasm but rather assembles at the plasma membrane. This mutation lies within an 18-amino-acid region of the MA domain that has sequence similarity only to the type B retroviruses (41). The nuclear magnetic resonance-derived solution structure of a nonmyristylated M-PMV MA protein indicates that this region folds into a structured turn which is solvent accessible in the monomer and trimer models (8). Moreover, this structural feature is absent in human immunodeficiency virus (HIV), simian immunodeficiency virus, human T-cell leukemia virus, and bovine leukemia virus MA proteins (7, 18, 2730, 37). It is reasonable, therefore, to suspect that this region contains a cytoplasmic protein transport signal which must interact with a cellular factor. In contrast, other mutations in either the myristic acid addition signal or at a variety of positions elsewhere in the MA coding region result in Gag proteins that fail to be released as virus-like particles despite assembling into procapsids in the cytoplasm (40, 43). Thus, the M-PMV Gag protein appears to contain a second cytoplasmic transport signal which normally directs assembled procapsids and not unassembled Gag proteins to the plasma membrane. It is implied in this model that the M-PMV Gag protein must utilize multiple cellular components during the different stages of assembly and release.The type D retroviruses provide a useful system for studying morphogenic events since procapsid assembly, protein transport, and budding are temporally and spatially unlinked. We report here that in infected cells and an in vitro translation/assembly system, procapsid assembly and transport to the plasma membrane require ATP. Thus, cellular proteins do play an active role during at least two stages of M-PMV morphogenesis.  相似文献   

4.
The human stomatin-like protein-1 (SLP-1) is a membrane protein with a characteristic bipartite structure containing a stomatin domain and a sterol carrier protein-2 (SCP-2) domain. This structure suggests a role for SLP-1 in sterol/lipid transfer and transport. Because SLP-1 has not been investigated, we first studied the molecular and cell biological characteristics of the expressed protein. We show here that SLP-1 localizes to the late endosomal compartment, like stomatin. Unlike stomatin, SLP-1 does not localize to the plasma membrane. Overexpression of SLP-1 leads to the redistribution of stomatin from the plasma membrane to late endosomes suggesting a complex formation between these proteins. We found that the targeting of SLP-1 to late endosomes is caused by a GYXXΦ (Φ being a bulky, hydrophobic amino acid) sorting signal at the N terminus. Mutation of this signal results in plasma membrane localization. SLP-1 and stomatin co-localize in the late endosomal compartment, they co-immunoprecipitate, thus showing a direct interaction, and they associate with detergent-resistant membranes. In accordance with the proposed lipid transfer function, we show that, under conditions of blocked cholesterol efflux from late endosomes, SLP-1 induces the formation of enlarged, cholesterol-filled, weakly LAMP-2-positive, acidic vesicles in the perinuclear region. This massive cholesterol accumulation clearly depends on the SCP-2 domain of SLP-1, suggesting a role for this domain in cholesterol transfer to late endosomes.Human stomatin-like protein-1 (SLP-1),3 also known as STOML-1, STORP (1), slipin-1 (2), or hUNC-24 (3), is the human orthologue of Caenorhabditis elegans UNC-24 and a member of the stomatin protein family that comprises 5 human members: stomatin (46), SLP-1 (1, 7), SLP-2 (8), SLP-3 (9, 10), and podocin (11). SLP-1 is predominantly expressed in the brain, heart, and skeletal muscle (7, 8) and can be identified in most other tissues (1). Its structure contains a hydrophilic N terminus, a 30-residue hydrophobic domain that is thought to anchor the protein to the cytoplasmic side of the membrane, followed by a stomatin/prohibitin/flotillin/HflK/C (SPFH) domain (12) that is also known as prohibitin (PHB) domain (13), and a C-terminal sterol carrier protein-2 (SCP-2)/nonspecific lipid transfer protein domain (14, 15). This unique structure that was first revealed in C. elegans UNC-24 (16) suggests that SLP-1 may be involved in lipid transfer and transport (17).The founder of the family, stomatin, is a major protein of the red blood cell membrane (band 7.2) and is ubiquitously expressed (18). It is missing in red cells of patients with overhydrated hereditary stomatocytosis, a pathological condition characterized by increased permeability of the red cells for monovalent ions and stomatocytic morphology (19, 20). However, the lack of stomatin is not due to a mutation in its gene but rather to a transport defect (21, 22). Stomatin is a monotopic, oligomeric, palmitoylated, cholesterol-binding membrane protein (18) that is associated with lipid rafts (23, 24) or raft-like detergent-resistant membranes (DRMs) (25), serving as a respective marker (2628). Other stomatin family members like podocin (29, 30) and SLP-3 (9) are also enriched in DRMs. Many SPFH/PHB proteins share this property suggesting that the SPFH/PHB domain plays an important role in lipid raft/DRM targeting (13, 31). Several interactions of stomatin with membrane proteins have been revealed, notably with the acid sensing ion channels (32) and the glucose transporter GLUT1 (33, 34). Interestingly, stomatin functions as a switch of GLUT1 specificity from glucose to dehydroascorbate in the human red blood cell thus increasing vitamin C recycling and compensating the human inability to synthesize vitamin C (35).The C. elegans genome contains 10 members of the stomatin family. Defects in three of these genes (mec-2, unc-1, and unc-24) cause distinct neuropathologic phenotypes, namely uncoordinated movement and defect in mechanosensation, respectively (36, 37). These are explained by dysfunction of the respective stomatin-like proteins in complex with degenerin/epithelial sodium channels that also affects the sensitivity to volatile anesthetics (38, 39). Importantly, MEC-2 and human podocin bind cholesterol and form large supercomplexes with various ion channels thus modulating channel activity (40). The biological functions of the SLP-1 orthologue UNC-24 and stomatin orthologue UNC-1 are associated, because the unc-24 gene controls the distribution or stability of the UNC-1 protein (41). In addition, UNC-24 co-localizes and interacts with MEC-2 and is essential for touch sensitivity (36). Based on these observations, we hypothesize that human stomatin and SLP-1 similarly interact and modify the distribution of each other. These proteins may have important functions in regulating the activity of ion channels in the human brain and muscle tissues. Despite its putative role in cellular lipid distribution, SLP-1 has not been studied to date.In this work, we characterized human SLP-1 as a late endosomal protein and identified an N-terminal GYXXΦ motif as the targeting signal. We found that SLP-1 interacts with stomatin in vitro and in vivo and associates with DRMs. Regarding the proposed lipid transfer function, we showed that SLP-1 induces the formation of large, cholesterol-rich vesicles or vacuoles when cholesterol trafficking from the late endosomes is blocked suggesting a net cholesterol transfer to the late endosomes and/or lysosomes. This effect was clearly attributed to the SCP-2/nonspecific lipid transfer protein domain of SLP-1, in line with the original hypothesis.  相似文献   

5.
The cystic fibrosis transmembrane conductance regulator (CFTR), a member of the ABC transporter superfamily, is a cyclic AMP-regulated chloride channel and a regulator of other ion channels and transporters. In epithelial cells CFTR is rapidly endocytosed from the apical plasma membrane and efficiently recycles back to the plasma membrane. Because ubiquitination targets endocytosed CFTR for degradation in the lysosome, deubiquitinating enzymes (DUBs) are likely to facilitate CFTR recycling. Accordingly, the aim of this study was to identify DUBs that regulate the post-endocytic sorting of CFTR. Using an activity-based chemical screen to identify active DUBs in human airway epithelial cells, we demonstrated that Ubiquitin Specific Protease-10 (USP10) is located in early endosomes and regulates the deubiquitination of CFTR and its trafficking in the post-endocytic compartment. small interference RNA-mediated knockdown of USP10 increased the amount of ubiquitinated CFTR and its degradation in lysosomes, and reduced both apical membrane CFTR and CFTR-mediated chloride secretion. Moreover, a dominant negative USP10 (USP10-C424A) increased the amount of ubiquitinated CFTR and its degradation, whereas overexpression of wt-USP10 decreased the amount of ubiquitinated CFTR and increased the abundance of CFTR. These studies demonstrate a novel function for USP10 in facilitating the deubiquitination of CFTR in early endosomes and thereby enhancing the endocytic recycling of CFTR.The endocytosis, endocytic recycling, and endosomal sorting of numerous transport proteins and receptors are regulated by ubiquitination (16). Ubiquitin, an 8-kDa protein, is conjugated to target proteins via a series of steps that includes ubiquitin-activating enzymes (E1),2 ubiquitin-conjugating enzymes (E2), and ubiquitin ligases (E3) (1). Proteins that are ubiquitinated in the plasma membrane are internalized and are either deubiquitinated and recycle back to the plasma membrane or, via interactions with the endosomal sorting complexes required for transport machinery, are delivered to the lysosome for degradation (17). Sorting of ubiquitinated plasma membrane proteins for either the lysosomal pathway or for the recycling pathway is regulated, in part, by the removal of ubiquitin by deubiquitinating enzymes (DUBs) (16). Thus, the balance between ubiquitination and deubiquitination regulates the plasma membrane abundance of several membrane proteins, including the epithelial sodium channel (ENaC), the epidermal growth factor receptor, the transforming growth factor-β receptor, and the cytokine receptor γ-c (814).CFTR is rapidly endocytosed from the plasma membrane and undergoes rapid and efficient recycling back to the plasma membrane in human airway epithelial cells, with >75% of endocytosed wild-type CFTR recycling back to the plasma membrane (1518). A study published several years ago demonstrated that, although ubiquitination did not regulate CFTR endocytosis, ubiquitination reduced the plasma membrane abundance of CFTR in BHK cells by redirecting CFTR from recycling endosomes to lysosomes for degradation (19). However, neither the E3 ubiquitin ligase(s) responsible for the ubiquitination of CFTR nor the DUB(s) responsible for the deubiquitination of CFTR in the endocytic pathway have been identified in any cell type. Moreover, the effect of the ubiquitin status of CFTR on its endocytic sorting in human airway epithelial cells has not been reported. Thus, the goals of this study were to determine if the ubiquitin status regulates the post-endocytic sorting of CFTR in polarized airway epithelial cells, and to identify the DUBs that deubiquitinate CFTR.Approximately 100 DUBs have been identified in the human genome and are classified into five families based on sequence similarity and mechanism of action (16, 20, 21). To identify DUBs that regulate the deubiquitination of CFTR from this large class of enzymes, we chose an activity-based, chemical probe screening approach developed by Dr. Hidde Ploegh (4, 21, 22). This approach utilizes a hemagglutinin (HA)-tagged ubiquitin probe engineered with a C-terminal modification incorporating a thiol-reactive group that forms an irreversible, covalent bond with active DUBs. Using this approach we demonstrated in polarized human airway epithelial cells that ubiquitin-specific protease-10 (USP10) is located in early endosomes and regulates the deubiquitination of CFTR and thus its trafficking in the post-endocytic compartment. These studies demonstrate a novel function for USP10 in promoting the deubiquitination of CFTR in early endosomes and thereby enhancing the endocytic recycling of CFTR.  相似文献   

6.
7.
8.
9.
10.
We have investigated the cellular uptake of Gag p24 shortly after exposure of cells to human immunodeficiency virus (HIV) particles. In the absence of envelope glycoprotein on virions or of viral receptors or coreceptors at the cell surface, p24 was incorporated in intracellular vesicles but not detected in the cytosolic subcellular fraction. When appropriate envelope-receptor interactions could occur, the nonspecific vesicular uptake was still intense and cytosolic p24 represented 10 to 40% of total intracellular p24. The measurement of cytosolic p24 early after exposure to HIV type 1 is a reliable assay for investigating virus entry and early events leading to authentic cell infection.The entry of human immunodeficiency virus type 1 (HIV-1) into target cells follows receptor-mediated attachment of viral particles to the cell surface. The cell surface receptor for HIV-1 is the CD4 molecule (7, 15), which promotes attachment of the particle to the cell surface. Fusion between the viral and plasma membranes leading to virus entry into the cytoplasm also requires interaction with a coreceptor. Various chemokine receptors ensure this function. The CXCR4 receptor is used by lymphotropic virus strains (10), whereas the entry of macrophage-tropic and of most primary isolates is processed through interaction with the CCR5 receptor (8, 9). Interactions with CD4 and with a coreceptor expose highly hydrophobic epitopes at the N terminus of the gp41 transmembrane component of envelope, leading to subsequent fusion between viral and cell membranes (6, 17, 34, 35).Several observations have suggested that the fusion process takes place at the cell surface: (i) HIV infection is pH independent, whereas infection by most viruses entering through the endocytic pathway is inhibited by weak bases and ionophore agents (20, 32); (ii) HIV fusion images have been observed at the cell surface (11); (iii) endocytosis of CD4 is not required for entry (18, 20, 25, 28, 32); and (iv) mutant CXCR5 receptors which are not endocytosed in response to ligand binding still function as HIV coreceptors (2). However, other considerations led to the assumption that although HIV entry is clearly pH independent, it may not necessarily be endocytosis independent: (i) images of HIV particles internalized in endocytic vesicles and undergoing fusion with endosomal membranes have been observed (11, 27), (ii) pH-independent entry via endosomal vesicles has been reported for poliovirus (29), (iii) binding and cross-linking by multivalent virus particles may induce endocytic behavior of cell surface receptors different from that induced by their natural ligands, and (iv) endocytosis of CD4 and that of coreceptors have not been simultaneously examined after HIV exposure. Moreover, since studies of virus entry have been performed with cells where the endocytic pathway is active, it is difficult to determine whether particular fusion events at the cell surface or in endosomal vesicles give rise to productive infection.With the aim of examining the role of endosomal HIV particle uptake, infection was synchronized by exposing cells to the virus at 4°C, cells were warmed at 37°C, and p24 was measured in the vesicular and cytosolic fractions of cell extracts. p24 was detected in intracellular vesicles regardless of whether exposure to virus particles could give rise to authentic infection or not. On the other hand, the detection of p24 in cytosolic fractions was strictly associated with authentic infectious events. However, it represented a minor fraction of intracellular p24. Thus, although vesicular uptake is quantitatively the main route of virus particle internalization, it is essentially a dead end with respect to cell infection.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
A decoding algorithm is tested that mechanistically models the progressive alignments that arise as the mRNA moves past the rRNA tail during translation elongation. Each of these alignments provides an opportunity for hybridization between the single-stranded, -terminal nucleotides of the 16S rRNA and the spatially accessible window of mRNA sequence, from which a free energy value can be calculated. Using this algorithm we show that a periodic, energetic pattern of frequency 1/3 is revealed. This periodic signal exists in the majority of coding regions of eubacterial genes, but not in the non-coding regions encoding the 16S and 23S rRNAs. Signal analysis reveals that the population of coding regions of each bacterial species has a mean phase that is correlated in a statistically significant way with species () content. These results suggest that the periodic signal could function as a synchronization signal for the maintenance of reading frame and that codon usage provides a mechanism for manipulation of signal phase.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号