首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Different interacting signaling modules involving Ca2+/calmodulin-dependent myosin light chain kinase, Ca2+-independent regulatory light chain phosphorylation, myosin phosphatase inhibition, and actin filament-based proteins are proposed as specific cellular mechanisms involved in the regulation of smooth muscle contraction. However, the relative importance of specific modules is not well defined. By using tamoxifen-activated and smooth muscle-specific knock-out of myosin light chain kinase in mice, we analyzed its role in tonic airway smooth muscle contraction. Knock-out of the kinase in both tracheal and bronchial smooth muscle significantly reduced contraction and myosin phosphorylation responses to K+-depolarization and acetylcholine. Kinase-deficient mice lacked bronchial constrictions in normal and asthmatic airways, whereas the asthmatic inflammation response was not affected. These results indicate that myosin light chain kinase acts as a central participant in the contractile signaling module of tonic smooth muscle. Importantly, contractile airway smooth muscles are necessary for physiological and asthmatic airway resistance.  相似文献   

2.
目的:构建重组平滑肌肌球蛋白轻链激酶(myosin light chain kinase,MLCK)N端删除栽体,为研究平滑肌MLCK的分子机制提供研究模型.方法:以重组质粒pCoid/155为模板,根据其待删除序列(N端1-41个氨基酸)设计上下游引物,行PCR扩增.将扩增片段以NdeI/EeoRl双酶切,产物行琼脂糖凝胶电泳回收得到目的基因.将目的基因与栽体连接,转化至大肠杆菌.筛选阳性克隆,并对阳性克隆进行测序.结果:用NdeI和EcoRI双酶切重组质粒pCold/155,琼脂糖凝胶电泳显示得到约4.4kb栽体和约3.4kb的MLCK片段.阳性克隆经测序证实MLCK的N端41个氨基酸序列已被成功删除.结论:成功构建了重组MLCK N端删除栽体 pCold/155/D41.  相似文献   

3.
Ca2+ sensitization of smooth muscle contraction depends upon the activities of protein kinases, including Rho-associated kinase, that phosphorylate the myosin phosphatase targeting subunit (MYPT1) at Thr697 and/or Thr855 (rat sequence numbering) to inhibit phosphatase activity and increase contractile force. Both Thr residues are preceded by the sequence RRS, and it has been suggested that phosphorylation at Ser696 prevents phosphorylation at Thr697. However, the effects of Ser854 and dual Ser696–Thr697 and Ser854–Thr855 phosphorylations on myosin phosphatase activity and contraction are unknown. We characterized a suite of MYPT1 proteins and phosphospecific antibodies for specificity toward monophosphorylation events (Ser696, Thr697, Ser854, and Thr855), Ser phosphorylation events (Ser696/Ser854) and dual Ser/Thr phosphorylation events (Ser696–Thr697 and Ser854–Thr855). Dual phosphorylation at Ser696–Thr697 and Ser854–Thr855 by cyclic nucleotide-dependent protein kinases had no effect on myosin phosphatase activity, whereas phosphorylation at Thr697 and Thr855 by Rho-associated kinase inhibited phosphatase activity and prevented phosphorylation by cAMP-dependent protein kinase at the neighboring Ser residues. Forskolin induced phosphorylation at Ser696, Thr697, Ser854, and Thr855 in rat caudal artery, whereas U46619 induced Thr697 and Thr855 phosphorylation and prevented the Ser phosphorylation induced by forskolin. Furthermore, pretreatment with forskolin prevented U46619-induced Thr phosphorylations. We conclude that cross-talk between cyclic nucleotide and RhoA signaling pathways dictates the phosphorylation status of the Ser696–Thr697 and Ser854–Thr855 inhibitory regions of MYPT1 in situ, thereby regulating the activity of myosin phosphatase and contraction.  相似文献   

4.
5.
To study the regulation of cardiac muscle contraction by the myosin essential light chain (ELC) and the physiological significance of its N-terminal extension, we generated transgenic (Tg) mice by partially replacing the endogenous mouse ventricular ELC with either the human ventricular ELC wild type (Tg-WT) or its 43-amino-acid N-terminal truncation mutant (Tg-Δ43) in the murine hearts. The mutant protein is similar in sequence to the short ELC variant present in skeletal muscle, and the ELC protein distribution in Tg-Δ43 ventricles resembles that of fast skeletal muscle. Cardiac muscle preparations from Tg-Δ43 mice demonstrate reduced force per cross-sectional area of muscle, which is likely caused by a reduced number of force-generating myosin cross-bridges and/or by decreased force per cross-bridge. As the mice grow older, the contractile force per cross-sectional area further decreases in Tg-Δ43 mice and the mutant hearts develop a phenotype of nonpathologic hypertrophy while still maintaining normal cardiac performance. The myocardium of older Tg-Δ43 mice also exhibits reduced myosin content. Our results suggest that the role of the N-terminal ELC extension is to maintain the integrity of myosin and to modulate force generation by decreasing myosin neck region compliance and promoting strong cross-bridge formation and/or by enhancing myosin attachment to actin.  相似文献   

6.
鸡平滑肌肌球蛋白轻链激酶在NIH 3T3细胞中的表达   总被引:2,自引:0,他引:2  
肌球蛋白轻链激酶(MLCK)在调节平骨肌细胞收缩过程中具有十分重要的作用。本言语通过将MLCKcDNA插到质粒pBKrsv中构建pBKrsv-MLCK,并转染至NIH3T3细胞中,DNA-PCR、RT-PCR和Western blot分析表达转染细胞可表达MLCK。活生分析表明所表达的MLCK具有生物学活性。为进一步研究MLCK在信号传导,调节平骨肌收缩等作用奠定了基础。  相似文献   

7.
8.
9.
Supraphysiological mechanical stretching in smooth muscle results in decreased contractile activity. However, the mechanism is unclear. Previous studies indicated that intestinal motility dysfunction after edema development is associated with increased smooth muscle stress and decreased myosin light chain (MLC) phosphorylation in vivo, providing an ideal model for studying mechanical stress-mediated decrease in smooth muscle contraction. Primary human intestinal smooth muscle cells (hISMCs) were subjected to either control cyclical stretch (CCS) or edema (increasing) cyclical stretch (ECS), mimicking the biophysical forces in non-edematous and edematous intestinal smooth muscle in vivo. ECS induced significant decreases in phosphorylation of MLC and MLC phosphatase targeting subunit (MYPT1) and a significant increase in p21-activated kinase (PAK) activity compared with CCS. PAK regulated MLC phosphorylation in an activity-dependent biphasic manner. PAK activation increased MLC and MYPT1 phosphorylation in CCS but decreased MLC and MYPT1 phosphorylation in hISMCs subjected to ECS. PAK inhibition had the opposite results. siRNA studies showed that PAK1 plays a critical role in regulating MLC phosphorylation in hISMCs. PAK1 enhanced MLC phosphorylation via phosphorylating MYPT1 on Thr-696, whereas PAK1 inhibited MLC phosphorylation via decreasing MYPT1 on both Thr-696 and Thr-853. Importantly, in vivo data indicated that PAK activity increased in edematous tissue, and inhibition of PAK in edematous intestine improved intestinal motility. We conclude that PAK1 positively regulates MLC phosphorylation in intestinal smooth muscle through increasing inhibitory phosphorylation of MYPT1 under physiologic conditions, whereas PAK1 negatively regulates MLC phosphorylation via inhibiting MYPT1 phosphorylation when PAK activity is increased under pathologic conditions.  相似文献   

10.
目的:探寻MLCK的非激酶活性区域对MLCK活性的影响,进一步阐明MLCK的非激酶活性在调节平滑肌收缩过程中的分子机制。方法:利用编码MLCK全长的pColdI表达载体对其ATP结合位点进行定点突变,获得无激酶活性的MLCK突变体;应用Glycerol—PAGE鉴定肌球蛋白磷酸化水平;应用孔雀绿方法检测重组MLCK对肌球蛋白ATP酶活性的影响。结果:MLCK/△ATP(突变型)失去磷酸化肌球蛋白轻链的激酶活性;重组MLCK(野生型)和MLCK/AATP(突变型)均可以在非钙条件下激活非磷酸化肌球蛋白Mg2+-ATP酶活性,抑制磷酸化肌球蛋白的Mg2+.ATP酶活性,而且激活与抑制作用均随着MLCK浓度的增加而增大,但二者对肌球蛋白的ATP酶活性的作用没有显著差异(P〉0.05)。结论:平滑肌肌球蛋白轻链激酶及ATP结合位点突变体具有激活非磷酸化肌球蛋白ATP酶活性的作用。  相似文献   

11.
12.
Modulation of L-type Ca2+ channels by tonic elevation of cytoplasmic Ca2+ was investigated in intact cells and inside-out patches from human umbilical vein smooth muscle. Ba2+ was used as charge carrier, and run down of Ca2+ channel activity in inside-out patches was prevented with calpastatin plus ATP. Increasing cytoplasmic Ca2+ in intact cells by elevation of extracellular Ca2+ in the presence of the ionophore A23187 inhibited the activity of L-type Ca2+ channels in cell-attached patches. Measurement of the actual level of intracellular free Ca2+ with fura-2 revealed a 50% inhibitory concentration (IC50) of 260 nM and a Hill coefficient close to 4 for Ca2+- dependent inhibition. Ca2+-induced inhibition of Ca2+ channel activity in intact cells was due to a reduction of channel open probability and availability. Ca2+-induced inhibition was not affected by the protein kinase inhibitor H-7 (10 μM) or the cytoskeleton disruptive agent cytochalasin B (20 μM), but prevented by cyclosporin A (1 μg/ ml), an inhibitor of protein phosphatase 2B (calcineurin). Elevation of Ca2+ at the cytoplasmic side of inside-out patches inhibited Ca2+ channels with an IC50 of 2 μM and a Hill coefficient close to unity. Direct Ca2+-dependent inhibition in cell-free patches was due to a reduction of open probability, whereas availability was barely affected. Application of purified protein phosphatase 2B (12 U/ml) to the cytoplasmic side of inside-out patches at a free Ca2+ concentration of 1 μM inhibited Ca2+ channel open probability and availability. Elevation of cytoplasmic Ca2+ in the presence of PP2B, suppressed channel activity in inside-out patches with an IC50 of ∼380 nM and a Hill coefficient of ∼3; i.e., characteristics reminiscent of the Ca2+ sensitivity of Ca2+ channels in intact cells. Our results suggest that L-type Ca2+ channels of smooth muscle are controlled by two Ca2+-dependent negative feedback mechanisms. These mechanisms are based on (a) a protein phosphatase 2B-mediated dephosphorylation process, and (b) the interaction of intracellular Ca2+ with a single membrane-associated site that may reside on the channel protein itself.  相似文献   

13.
14.
The action of different agonists such as acetylcholine on the membrane of airway smooth muscle cells may induce cytosolic Ca2+ oscillations which can be a part of the Ca2+ signalling pathway, eventually leading to cell contraction. The aim of the present study is to present a mathematical model of the possible effect of the initial Ca2+ distribution within the cell on the form and frequency of induced Ca2+ oscillations. It takes into account intracellular Ca2+ stores such as sarcoplasmic reticulum and cytosolic proteins as well as Ca2+ exchange across the plasma membrane. We are able to demonstrate a closer agreement of model predictions with observed Ca2+ traces for a significantly wider range of parameter values, as was previously reported. We show also that the total cellular Ca2+ content is an important system parameter especially because of the content in sarcoplasmic reticulum. At a total Ca2+ increase of about 20%, the oscillation frequency increases by 25%; also, damped oscillations become sustained. Cases are indicated in which such a situation could occur.  相似文献   

15.
Freshly dissociated cells from the stomach muscularis of the toad Bufo marinus have been employed to carry out a systematic set of electrophysiological studies on the membrane properties of smooth muscle. The existence of Ca2+-activated K+ channels became apparent during the first studies under current clamp. In subsequent studies under voltage clamp, a Ca2+-activated, TEA-sensitive outward current was evident, and it was more than an order of magnitude larger than any other current observed in the cells. The channel responsible, at least in part, for this large outward current has been identified on the basis of single-channel records, and some of its main characteristics have been studied. It is similar in many respects to the large-conductance, Ca2+-activated K+ channel seen in other preparations. This channel has now been found in a considerable diversity of smooth muscle types.  相似文献   

16.
肌球蛋白轻链激酶 (MLCK)的活性片段 (MLCKF)能比完整的MLCK更有效地、以非钙依赖性的方式磷酸化肌球蛋白轻链 (MLC2 0 )。该片段是用胰蛋白酶水解MLCK ,再经DEAE 5 2柱层析分离而获得的 ,分子量约为 6 1kD。Western印迹已证实该MLCKF与完整的MLCK同源。MLCKF对肌球蛋白轻链的磷酸化作用及其作用特征通过甘油电泳及ScoinImage扫描软件检测 ,肌球蛋白ATP酶活性通过分光光度法检测。实验结果证实 ,MLCKF催化的MLC2 0 非钙依赖性磷酸化 (CIPM)比MLCK催化的CIPM效力高、耗能多 ,但比MLCK催化的MLC2 0 钙依赖性磷酸化 (CDPM)效力低、耗能少 ;MLCKF催化的CIPM与MLCK催化的CIPM均较MLCK催化的CDPM稳定 ,不易受温育温度、温育时间及离子浓度等变化的影响 ,且对MLCK抑制剂ML 9敏感性低。  相似文献   

17.
Stimulation of airway myocytes by contractile agents such as acetylcholine (ACh) activates a Ca2+-activated Cl current (IClCa) which may play a key role in calcium homeostasis of airway myocytes and hence in airway reactivity. The aim of the present study was to model IClCa in airway smooth muscle cells using a computerised model previously designed for simulation of cardiac myocyte functioning. Modelling was based on a simple resistor-battery permeation model combined with multiple binding site activation by calcium. In order to validate the model, a combination of equations, used to mimic [Ca2+]i response to ACh stimulation, were incorporated into the model. The results indicate that the model developed in this article accounts for experimental recordings and electrophysiological characteristics of this current in airway smooth muscle cells, with parameter values consistent with those calculated from experimental data. Such a model may thus be used to predict IClCa functioning, though additional experimental data from airway myocytes would be useful to more accurately determine some parameter values of the model.  相似文献   

18.
Smooth muscle activities are regulated by inositol 1,4,5-trisphosphate (InsP3)-mediated increases in cytosolic Ca2+ concentration ([Ca2+]c). Local Ca2+ release from an InsP3 receptor (InsP3R) cluster present on the sarcoplasmic reticulum is termed a Ca2+ puff. Ca2+ released via InsP3R may diffuse to adjacent clusters to trigger further release and generate a cell-wide (global) Ca2+ rise. In smooth muscle, mitochondrial Ca2+ uptake maintains global InsP3-mediated Ca2+ release by preventing a negative feedback effect of high [Ca2+] on InsP3R. Mitochondria may regulate InsP3-mediated Ca2+ signals by operating between or within InsP3R clusters. In the former mitochondria could regulate only global Ca2+ signals, whereas in the latter both local and global signals would be affected. Here whether mitochondria maintain InsP3-mediated Ca2+ release by operating within (local) or between (global) InsP3R clusters has been addressed. Ca2+ puffs evoked by localized photolysis of InsP3 in single voltage-clamped colonic smooth muscle cells had amplitudes of 0.5–4.0 F/F0, durations of ∼112 ms at half-maximum amplitude, and were abolished by the InsP3R inhibitor 2-aminoethoxydiphenyl borate. The protonophore carbonyl cyanide 3-chloropheylhydrazone and complex I inhibitor rotenone each depolarized ΔΨM to prevent mitochondrial Ca2+ uptake and attenuated Ca2+ puffs by ∼66 or ∼60%, respectively. The mitochondrial uniporter inhibitor, RU360, attenuated Ca2+ puffs by ∼62%. The “fast” Ca2+ chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid acted like mitochondria to prolong InsP3-mediated Ca2+ release suggesting that mitochondrial influence is via their Ca2+ uptake facility. These results indicate Ca2+ uptake occurs quickly enough to influence InsP3R communication at the intra-cluster level and that mitochondria regulate both local and global InsP3-mediated Ca2+ signals.  相似文献   

19.
Ca2+ sparks are short lived and localized Ca2+ transients resulting from the opening of ryanodine receptors in sarcoplasmic reticulum. These events relax certain types of smooth muscle by activating big conductance Ca2+-activated K+ channels to produce spontaneous transient outward currents (STOCs) and the resultant closure of voltage-dependent Ca2+ channels. But in many smooth muscles from a variety of organs, Ca2+ sparks can additionally activate Ca2+-activated Cl channels to generate spontaneous transient inward current (STICs). To date, the physiological roles of Ca2+ sparks in this latter group of smooth muscle remain elusive. Here, we show that in airway smooth muscle, Ca2+ sparks under physiological conditions, activating STOCs and STICs, induce biphasic membrane potential transients (BiMPTs), leading to membrane potential oscillations. Paradoxically, BiMPTs stabilize the membrane potential by clamping it within a negative range and prevent the generation of action potentials. Moreover, blocking either Ca2+ sparks or hyperpolarization components of BiMPTs activates voltage-dependent Ca2+ channels, resulting in an increase in global [Ca2+]i and cell contraction. Therefore, Ca2+ sparks in smooth muscle presenting both STICs and STOCs act as a stabilizer of membrane potential, and altering the balance can profoundly alter the status of excitability and contractility. These results reveal a novel mechanism underlying the control of excitability and contractility in smooth muscle.  相似文献   

20.
Inoue  Ryuji 《Neurophysiology》2003,35(3-4):175-180
The molecular mechanisms underlying Ca2+ entry evoked by cell surface receptors in smooth muscle have long been enigmatic, but an important breakthrough has been made by recent investigations on mammalian homologues of Drosophila transient receptor potential (TRP) protein. There is now growing evidence that TRPC6 plays an integrative role in vascular tone regulation, Ca2+ entry channels activated by the sympathetic nerve stimulation, vasoactive peptides, and mechanosensitive mechanisms. Other TRPC isoforms, such as TRPC1 and TRPC4 (and perhaps TRPC5), are also expressed abundantly in smooth muscle and may contribute to muscle contraction, cell proliferation, and cholinergic control of the gut motility. This paper briefly overviews the current knowledge about these TRP proteins in smooth muscle physiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号