首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mathematical model has been developed to study the control mechanisms of human trunk movement during walking. The trunk is modeled as a base-excited inverted pendulum with two-degrees of rotational freedom. The base point, corresponding to the bony landmark of the sacrum, can move in three-dimensional space in a general way. Since the stability of upright posture is essential for human walking, a controller has been designed such that the stability of the pendulum about the upright position is guaranteed. The control laws are developed based on Lyapunov' stability theory and include feedforward and linear feedback components. It is found that the feedforward component plays a critical role in keeping postural stability, and the linear feedback component, (resulting from viscoelastic function of the musculoskeletal system) can effectively duplicate the pattern of trunk movement. The mathematical model is validated by comparing the simulation results with those based on gait measurements performed in the Biomechanics Laboratory at the University of Manitoba.  相似文献   

2.

A mathematical model is developed to study the human thorax and pelvis movements in the frontal plane during normal walking. The model comprises of two-link base-excited inverted pendulums with one-degree of rotational freedom for each link. Since the linear motion of the pelvis has a significant effect on the upper body stability, this effect is included in the model by having a base point moving in the frontal plane in a general way. Furthermore, because the postural stability is the primary requirement of normal human walking, the control law is developed based on Lyapunov's stability theory, which guarantees the stability of the pendulum system around the up-right position. To evaluate the model, the simulation results, including the angular displacement of each link and the torque applied on each link, are compared with those from gait measurements. It is shown that the simulation results match those from gait measurements closely. These results suggest that the proposed model can provide a useful framework for analysis of postural control mechanisms.  相似文献   

3.
Variability is ubiquitous in human movement, arising from internal and external noise, inherent biological redundancy, and from the neurophysiological control actions that help regulate movement fluctuations. Increased walking variability can lead to increased energetic cost and/or increased fall risk. Conversely, biological noise may be beneficial, even necessary, to enhance motor performance. Indeed, encouraging more variability actually facilitates greater improvements in some forms of locomotor rehabilitation. Thus, it is critical to identify the fundamental principles humans use to regulate stride-to-stride fluctuations in walking. This study sought to determine how humans regulate stride-to-stride fluctuations in stepping movements during treadmill walking. We developed computational models based on pre-defined goal functions to compare if subjects, from each stride to the next, tried to maintain the same speed as the treadmill, or instead stay in the same position on the treadmill. Both strategies predicted average behaviors empirically indistinguishable from each other and from that of humans. These strategies, however, predicted very different stride-to-stride fluctuation dynamics. Comparisons to experimental data showed that human stepping movements were generally well-predicted by the speed-control model, but not by the position-control model. Human subjects also exhibited no indications they corrected deviations in absolute position only intermittently: i.e., closer to the boundaries of the treadmill. Thus, humans clearly do not adopt a control strategy whose primary goal is to maintain some constant absolute position on the treadmill. Instead, humans appear to regulate their stepping movements in a way most consistent with a strategy whose primary goal is to try to maintain the same speed as the treadmill at each consecutive stride. These findings have important implications both for understanding how biological systems regulate walking in general and for being able to harness these mechanisms to develop more effective rehabilitation interventions to improve locomotor performance.  相似文献   

4.
Although trunk muscle function has been suggested to be a determinant of judo performance, its contribution to high-level performance in this sport has been poorly studied. Therefore, several tests were used to assess the differences in trunk muscle function between 11 international and 14 national level judo practitioners (judokas). Trunk strength and endurance were assessed using isokinetic tests and core stability was assessed using two protocols: 1) sudden loading, to assess trunk responses to unexpected external perturbations; 2) stable and unstable sitting, to assess the participants’ ability to control trunk balance. No differences between groups were found for trunk flexor isokinetic strength, trunk responses against lateral and posterior loading and trunk control while sitting. However, international level judokas showed significantly higher trunk extensor isokinetic strength (p <0.05) and lower trunk angular displacement after anterior trunk loading (p <0.05) than national level judokas. Few and low (r < 0.512) significant correlations were found between strength, endurance and stability parameters, which suggests that trunk strength and endurance are not limiting factors for trunk stability in competitive judokas. These results support the importance of trunk extensor strength and trunk stability against forward perturbations in elite judo performance.  相似文献   

5.
To understand the role of trunk muscles in maintenance of dynamic postural equilibrium we investigate trunk movements during gait initiation and walking, performing trunk kinematics analysis, Erector spinae muscle (ES) recordings and dynamic analysis. ES muscle expressed a metachronal descending pattern of activity during walking and gait initiation. In the frontal and horizontal planes, lateroflexion and rotation occur before in the upper trunk and after in the lower trunk. Comparison of ES muscle EMGs and trunk kinematics showed that trunk muscle activity precedes corresponding kinematics activity, indicating that the ES drive trunk movement during locomotion and thereby allowing a better pelvis mobilization. EMG data showed that ES activity anticipates propulsive phases in walking with a repetitive pattern, suggesting a programmed control by a central pattern generator. Our findings also suggest that the programs for gait initiation and walking overlap with the latter beginning before the first has ended.  相似文献   

6.
7.
Seeing an action activates neurons in the premotor, motor, and somatosensory cortex. Since a significant fraction of these pyramidal neurons project to the spinal motor circuits, a central question is why we do not automatically perform the actions that we see. Indeed, seeing an action increases both cortical and spinal excitability of consistent motor patterns that correspond to the observed ones. Thus, it is believed that such imitative motor patterns are either suppressed or remain at a sub-threshold level. This would predict, however, that seeing someone make a corrective movement while one is actively involved in the same action should either suppress evoked responses or suppress or modulate the action itself. Here we tested this prediction, and found that seeing someone occasionally stepping over an obstacle while walking on a treadmill did not affect the normal walking pattern at all. However, cutaneously evoked reflexes in the anterior tibial and soleus muscles were modulated as if the subject was stepping over an obstacle. This result thus indicates that spinal activation was not suppressed and was neither at sub-threshold motor resonance. Rather, the spinal modulation from observed stepping reflects an adaptive mechanism for regulating predictive control mechanisms. We conclude that spinal excitability during action observation is not an adverse side-effect of action understanding but reflects adaptive and predictive motor control.  相似文献   

8.
9.
The synthesis of human walking is of great interest in biomechanics and biomimetic engineering due to its predictive capabilities and potential applications in clinical biomechanics, rehabilitation engineering and biomimetic robotics. In this paper, the various methods that have been used to synthesize humanwalking are reviewed from an engineering viewpoint. This involves a wide spectrum of approaches, from simple passive walking theories to large-scale computational models integrating the nervous, muscular and skeletal systems. These methods are roughly categorized under four headings: models inspired by the concept of a CPG (Central Pattern Generator), methods based on the principles of control engineering, predictive gait simulation using optimisation, and models inspired by passive walking theory. The shortcomings and advantages of these methods are examined, and future directions are discussed in the context of providing insights into the neural control objectives driving gait and improving the stability of the predicted gaits. Future advancements are likely to be motivated by improved understanding of neural control strategies and the subtle complexities of the musculoskeletal system during human locomotion. It is only a matter of time before predictive gait models become a practical and valuable tool in clinical diagnosis, rehabilitation engineering and robotics.  相似文献   

10.
Energetics and Mechanics of Human Walking at Oscillating Speeds   总被引:1,自引:0,他引:1  
Seven subjects walked on a programmable treadmill both at constant(3.5 ± 0.0 and 5.0 ± 0.0 km/hr) and oscillatingspeeds (±0.5, ±1.0, ±1.5, ±2.0 kmhr–1), set to sinusoidally change between the two limitsin 3 sec. In each condition oxygen consumption measurementswere taken. The same experimental protocols were replicatedon a walkway by asking subjects to adapt their stride frequencyto an audio signal corresponding to the sinusoidal stride frequencychanges measured on the treadmill. Differently from what expected,only the ±2.0 km hr–1 oscillation resulted to bemetabolically different from the constant speed walking, bothfor the treadmill and the walkway conditions. The time courseof the mechanical energy of the body centre of mass could revealthat a strategy devoted to benefit from the usual energy fluctuationsoccurring at "constant speed," is likely to be used to copewith speed varying sequences. From the energy curve observedat constant speed, it is possible to derive an energeticallyequivalent curve by cumulating acceleration portions, and decelerationones, of a group of strides as to produce a single accelerationand a single deceleration phase, as it is observed in oscillatingspeed walking. Being aware of the bias introduced by using anon-inertial frame (the treadmill protocol), we are replicatingthe experiments with a laser beam projected on a wide radiuscircular path at oscillating speeds, that the subjects haveto follow. The preliminary data seem to confirm the invarianceof the metabolic requirements in oscillatory walking up to ±1.5km hr–1.  相似文献   

11.

Background

Psychological features have been related to trunk muscle activation patterns in low back pain (LBP). We hypothesised higher pain-related fear would relate to changes in trunk mechanical properties, such as higher trunk stiffness.

Objectives

To evaluate the relationship between trunk mechanical properties and psychological features in people with recurrent LBP.

Methods

The relationship between pain-related fear (Tampa Scale for Kinesiophobia, TSK; Photograph Series of Daily Activities, PHODA-SeV; Fear Avoidance Beliefs Questionnaire, FABQ; Pain Catastrophizing Scale, PCS) and trunk mechanical properties (estimated from the response of the trunk to a sudden sagittal plane forwards or backwards perturbation by unpredictable release of a load) was explored in a case-controlled study of 14 LBP participants. Regression analysis (r 2) tested the linear relationships between pain-related fear and trunk mechanical properties (trunk stiffness and damping). Mechanical properties were also compared with t-tests between groups based on stratification according to high/low scores based on median values for each psychological measure.

Results

Fear of movement (TSK) was positively associated with trunk stiffness (but not damping) in response to a forward perturbation (r2 = 0.33, P = 0.03), but not backward perturbation (r2 = 0.22, P = 0.09). Other pain-related fear constructs (PHODA-SeV, FABQ, PCS) were not associated with trunk stiffness or damping. Trunk stiffness was greater for individuals with high kinesiophobia (TSK) for forward (P = 0.03) perturbations, and greater with forward perturbation for those with high fear avoidance scores (FABQ-W, P = 0.01).

Conclusions

Fear of movement is positively (but weakly) associated with trunk stiffness. This provides preliminary support an interaction between biological and psychological features of LBP, suggesting this condition may be best understood if these domains are not considered in isolation.  相似文献   

12.
13.
Bifidobacteria play important roles in human health. However, the influence of exogenous factors on species composition of fecal bifidobacteria is still unclear. The objective of this study was to investigate the effects of fermented milk administration on the species composition of fecal bifidobacteria by molecular biological methods. Fermented milk containing Lactobacillus helveticus was given to seven healthy subjects, and the probiotic effect on human fecal microflora was demonstrated as a significant increase of bifidobacteria and decrease of clostridia by the conventional culture method. Species composition of bifidobacteria in the human fecal microflora was then investigated directly in fecal specimens by the PCR detection method. The species composition of bifidobacteria in the fecal specimens did not change significantly throughout the study period. These findings suggest that the species composition of bifidobacteria remains stable even when fecal microflora is improved by food management. Received: 12 July 2001 / Accepted: 14 September 2001  相似文献   

14.
The two major modes of locomotion in humans, walking and running, may be regarded as a function of different speed (walking as slower and running as faster). Recent results using motor learning tasks in humans, as well as more direct evidence from animal models, advocate for independence in the neural control mechanisms underlying different locomotion tasks. In the current study, we investigated the possible independence of the neural mechanisms underlying human walking and running. Subjects were tested on a split-belt treadmill and adapted to walking or running on an asymmetrically driven treadmill surface. Despite the acquisition of asymmetrical movement patterns in the respective modes, the emergence of asymmetrical movement patterns in the subsequent trials was evident only within the same modes (walking after learning to walk and running after learning to run) and only partial in the opposite modes (walking after learning to run and running after learning to walk) (thus transferred only limitedly across the modes). Further, the storage of the acquired movement pattern in each mode was maintained independently of the opposite mode. Combined, these results provide indirect evidence for independence in the neural control mechanisms underlying the two locomotive modes.  相似文献   

15.
16.
The stability of calf skin collagen (CSC) type I during thermal and chemical denaturation in the presence of glycerol was investigated. Thermal denaturation of type I collagen was performed in the presence of glycerol or in combination with urea and sodium chloride. The denaturation curves obtained in the presence of urea or sodium chloride retained their original shape without glycerol. These curves were shifted upward proportionally to the glycerol concentration in the reaction medium. This means that glycerol and the denaturants act independently. The explanation is based on the difference in the mechanism of their action on the collagen molecule.  相似文献   

17.
18.
Predictive simulation is a powerful approach for analyzing human locomotion. Unlike techniques that track experimental data, predictive simulations synthesize gaits by minimizing a high-level objective such as metabolic energy expenditure while satisfying task requirements like achieving a target velocity. The fidelity of predictive gait simulations has only been systematically evaluated for locomotion data on flat ground. In this study, we construct a predictive simulation framework based on energy minimization and use it to generate normal walking, along with walking with a range of carried loads and up a range of inclines. The simulation is muscle-driven and includes controllers based on muscle force and stretch reflexes and contact state of the legs. We demonstrate how human-like locomotor strategies emerge from adapting the model to a range of environmental changes. Our simulation dynamics not only show good agreement with experimental data for normal walking on flat ground (92% of joint angle trajectories and 78% of joint torque trajectories lie within 1 standard deviation of experimental data), but also reproduce many of the salient changes in joint angles, joint moments, muscle coordination, and metabolic energy expenditure observed in experimental studies of loaded and inclined walking.  相似文献   

19.
Theoretical studies and robotic experiments have shown that asymptotically stable periodic walking may emerge from nonlinear limit-cycle oscillators in the neuro-mechanical periphery. We recently reported entrainment of human gait to periodic mechanical perturbations with two essential features: 1) entrainment occurred only when the perturbation period was close to the original (preferred) walking period, and 2) entrainment was always accompanied by phase locking so that the perturbation occurred at the end of the double-stance phase. In this study, we show that a highly-simplified state-determined walking model can reproduce several salient nonlinear limit-cycle behaviors of human walking: 1) periodic gait that is 2) asymptotically stable; 3) entrainment to periodic mechanical perturbations only when the perturbation period is close to the model''s unperturbed period; and 4) phase-locking to locate the perturbation at the end of double stance. Importantly, this model requires neither supra-spinal control nor an intrinsic self-sustaining neural oscillator such as a rhythmic central pattern generator. Our results suggest that several prominent limit-cycle features of human walking may stem from simple afferent feedback processes without significant involvement of supra-spinal control or a self-sustaining oscillatory neural network.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号