首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of chilling stress on leaf photosynthesis and sucrose metabolism were investigated in tomato plants (Lycopersicon esculentum Mill. cultivar Marmande). Twenty-one-day-old seedlings were grown in a growth chamber at 25/23 °C (day/night) (control) and at 10/8 °C (day/night) (chilled) for 7 days. The most evident effect of chilling was the marked reduction of plant growth and of CO2 assimilation as measured after 7 days, the latter being associated with a decrease in stomatal closure and an increase in Ci. The inhibition in photosynthetic rate was also related to an impairment of photochemistry of photosystem II (PSII), as seen from the slight, but significant change in the ratio of Fv/Fm. The capacity of chilled leaves to maintain higher qP values with respect to the controls suggests that some protection mechanism prevented excess reduction of PSII acceptors. The results of the determination of starch and soluble sugar content could show that chilling impaired sucrose translocation. The activity of leaf invertase increased significantly in chilled plants, while that of other sucrose-metabolizing enzymes was not affected by growing temperature. Furthermore, the increase in invertase (neutral and acid) activity, which is typical of senescent tissue characterized by reduced growth, seems to confirm that tomato is a plant which is not a plant genetically adapted to low temperatures.  相似文献   

2.
Specific leaf weight, percent moisture, and free sugar, starch, and amino nitrogen content of soybean (Glycine max (L.) Merrill) leaves were measured at 1, 3, 7, and 10 day(s) after petiole girdling by threecornered alfalfa hopper,Spissistilus festinus (Say) (Homoptera: Membracidae) nymphs. Leaf starch was increased at 1, 3, and 7 day(s) after girdling and largely accounted for corresponding increases in specific leaf weight and decreases in percent moisture, free sugars, and amino nitrogen. Specific leaf weight was increased at 10 days after girdling despite no increase in starch. Amino nitrogen content was decreased 10 days after girdling. When leaf dry weights were corrected for starch, free sugar content was not affected by girdling, and amino nitrogen content was reduced only at 3 and 10 days. The amino nitrogen: free sugar ratio was reduced only at 10 days after girdling. Changes in leaf starch indicated a rapid but reversible effect of girdling on leaf carbohydrate metabolism.  相似文献   

3.
As osmolytes and signaling molecules, soluble sugars participate in the response and adaptation of plants to environmental stresses. In the present study, we measured the effect of chilling (12 °C) stress on the contents of eight soluble sugars in the leaves, cotyledons, stems, and roots of Jatropha curcas seedlings, as well as on the activities of eight rate-limiting enzymes that are critical to the metabolism of those soluble sugars. Chilling stress promoted both starch hydrolysis and soluble sugar accumulation. The soluble sugar contents of the leaves and cotyledons were affected more than that of the stems and roots. Meanwhile, the activities of the corresponding metabolic enzymes (e.g., β-amylase, uridine diphosphate glucose phosphorylase, and sucrose phosphate synthase) also increased in some organs. The gradual increase of soluble neutral alkaline invertase activity in the four studied organs suggested that sucrose catabolic production, such as glucose and fructose, was especially important in determining resistance to chilling stress and hexose signal transduction pathway. In addition, the substantial accumulation of raffinose family oligosaccharides and increase in corresponding metabolic enzyme activity suggested that galactinol and raffinose play an important role in determining the chilling resistance of J. curcas. Together, these findings establish a foundation for determining the relationship between the chilling resistance and soluble sugar accumulation of J. curcas and for investigating the mechanisms underlying sugar signaling transduction and stress responses.  相似文献   

4.
马锋旺  李嘉瑞 《植物学报》1989,6(4):226-229
在生根培养基中加入0.5或2.0PPm PP333, 明显地减少了苹果离体新梢的鲜重和干重、叶片鲜重和叶面积,增加了比叶重、根的鲜重和干重及根梢鲜重和干重比,并促进了根的形成。PP333对单位叶重量的叶绿素含量没有影响,而增加了单位叶面积的叶绿素含量。经PP333处理后,叶片中的淀粉含量、过氧化物酶活性、蛋白质和游离氨基酸的含量均明显高于对照,可溶性糖与对照差异不明显。  相似文献   

5.
在生根焙养基中加入0.5或2.0ppm PP_333,明显地减少了苹果离体新梢的鲜重和干重、叶片鲜重和叶面积,增加了比叶重、根的鲜重和干重及根梢鲜重和干重比,并促进了根的形成。PP_333对单位叶重量的叶绿素含最没有影响,而增加了单位叶面积的叶绿素含量。经PP_333处理后,叶片中的淀粉含量、过氧化物酶活性、蛋白质和游离氨基酸的含量均明显离于对照,可溶性糖与对照差异不明显。  相似文献   

6.
BERTIN  N.; GARY  C. 《Annals of botany》1998,82(1):71-81
The leaf mass per unit leaf area (LMA) is a key variable inmany growth models, since it is often used to predict leaf areaexpansion from leaf dry weight increase, orvice versa. Influencesof source-sink balance on leaf area, leaf dry weight, LMA, andleaf content in non-structural carbohydrates were investigatedin glasshouse tomato crops. The source-sink balance was manipulatedby artificial shading, CO2enrichment or fruit removal usingdifferent tomato cultivars. Leaf area was hardly affected bycompetition for assimilates except under extreme conditions.In contrast, leaf dry weight, and consequently LMA, underwentlarge and rapid fluctuations in response to any factor thatchanged source and sink activities. A 60% reduction of photosyntheticallyactive radiation involved a 24% decrease in LMA after 10 d.Carbon dioxide enrichment and fruit removal induced about a45% and 15% increase in LMA, respectively, on plants with twofruiting trusses, but hardly affected LMA of producing plants.No significant cultivar effect could be identified. Changesin starch and soluble sugar content in leaves accounted foronly 29% of diurnal variations in LMA, suggesting regular fluctuationsof other components. We propose that structural LMA varies betweena maximum and a minimum value according to the ratio of assimilatesupply and demand during leaf development. Leaf area is independentof the supply of assimilates when the minimum structural LMAis realised. When the maximum structural LMA is attained, astorage pool of assimilates may accumulate in leaves duringperiods of high supply and low demand. We present a model includingthese hypotheses, which predicts structural and non-structuralLMA variations of plants with different source-sink ratios.Copyright1998 Annals of Botany Company Tomato,Lycopersicon esculentumMill., SLA, SLW, leaf growth, vegetative sink strength, assimilate competition, source-sink ratio, non-structural carbohydrate, models.  相似文献   

7.
The loss of total carbohydrate (sugars and starch) per cent of residual dry matter (dry matter less total carbohydrate) during a period of darkness from leaves of sugar-beet plants infected with yellows virus was as great as that from the leaves of healthy plants. The conclusion of previous workers, based on the results of the Sachs iodine test for starch and the occurrence of 'phloem gummosis' in infected plants, that starch accumulates in infected leaves because translocation is prevented by blockage of the sieve-tubes, is therefore incorrect.
Older leaves of infected plants had a higher content of reducing sugars and sucrose, and usually but not invariably of starch, both at the beginning and end of the dark period, than comparable leaves of healthy plants. By far the greater part of the increase was in reducing sugars. In leaves taken in late September from infected plants growing in the field, 20 % or more of the total dry matter was present as reducing sugars. The reducing sugars in both healthy and yellows-infected leaves were shown by paper chromatography to be glucose and fructose in approximately equal amounts.
Accumulation of carbohydrate in infected leaves is probably not a passive consequence of differences in carbohydrate production, distribution and utilization, but is attributable to changes in the physiology of the cells of the leaf.
The carbohydrate content of sugar-beet leaves was little affected by infection with beet mosaic virus.
Yellows-infected leaves had a lower water content per cent of fresh weight than healthy leaves. This was accounted for by the higher carbohydrate content of infected leaves, for the ratio of water: residual dry matter was not affected by infection or was slightly reduced. This implies that hydration was independent of carbohydrate content.  相似文献   

8.
Tomato (Lycopersicon esculentum Mill.) plants, which normally do not accumulate glycinebetaine (GB), are susceptible to chilling stress. Exposure to temperatures below 10 degrees C causes various injuries and greatly decreases fruit set in most cultivars. We have transformed tomato (cv. Moneymaker) with a chloroplast-targeted codA gene of Arthrobacter globiformis, which encodes choline oxidase to catalyze the conversion of choline to GB. These transgenic plants express codA and synthesize choline oxidase, while accumulating GB in their leaves and reproductive organs up to 0.3 and 1.2 micromol g(-1) fresh weight (FW), respectively. Their chloroplasts contain up to 86% of total leaf GB. Over various developmental phases, from seed germination to fruit production, these GB-accumulating plants are more tolerant of chilling stress than their wild-type counterparts. During reproduction, they yield, on average, 10-30% more fruit following chilling stress. Endogenous GB contents as low as 0.1 micromol g(-1) FW are apparently sufficient to confer high levels of tolerance in tomato plants, as achieved via transformation with the codA gene. Exogenous application of either GB or H2O2 improves both chilling and oxidative tolerance concomitant with enhanced catalase activity. These moderately increased levels of H2O2 in codA transgenic plants, as a byproduct of choline oxidase-catalyzed GB synthesis, might activate the H2O2-inducible protective mechanism, resulting in improved chilling and oxidative tolerances in GB-accumulating codA transgenic plants. Thus, introducing the biosynthetic pathway of GB into tomato through metabolic engineering is an effective strategy for improving chilling tolerance.  相似文献   

9.
Growth, CO2 exchange, and the ultrastructure of chloroplasts were investigated in the leaves of potato plants (Solanum tuberosum L., cv. Désirée) of wild type and transformed with a gene for yeast invertase under the control of patatin class I B33 promoter (for apoplastic enzyme) grown in vitro on the Murashige and Skoog medium supplemented with 2% sucrose. At a temperature of 22°C optimal for growth, the transformed plants differed from the plants of wild type in retarded growth and a lower rate of photosynthesis as calculated per plant. On a leaf dry weight basis, photosynthesis of transformed plants was higher than in control plants. Under hypothermia (5°C), dark respiration and especially photosynthesis of transformed plants turned out to be more intense than in control material. After a prolonged exposure to low temperature (6 days at 5°C), in the plants of both genotypes, the ultrastructure of chloroplasts changed. Absolute areas of sections of chloroplasts and starch grains rose, and the area of plastoglobules decreased; in transformed plants, these changes were more pronounced. By some ultrastructural characteristics: a reduction in the cold of relative total area of sections of starch grains and plastoglobules (in percents of the chloroplast section area) and in the number of granal thylakoids (per a chloroplast section area), transformed plants turned out to be more cold resistant than wild-type plants. The obtained results are discussed in connection with changes in source-sink relations in transformed potato plants. These changes modify the balance between photosynthesis and retarded efflux of assimilates, causing an increase in the intracellular level of sugars and a rise in the tolerance to chilling.  相似文献   

10.
Tomato (Lycopersicon esculentum L., cv. Sibirskii skorospelyi) and cucumber (Cucumis sativus L., cv. Konkurent) plants were grown in a soil culture in a greenhouse at an average daily temperature of 20°C and ambient illumination until the development of five and eight true leaves, respectively. During the subsequent three days, some plants were kept in a climatic chamber at 6°C in the light, whereas other plants remained in a greenhouse (control). The cold-resistance of cucumber leaves and roots, as assayed from the electrolyte leakage, was reduced after cold exposure stronger than cold-resistance of tomato organs. The ratio photosynthesis/dark respiration was lower in cucumber than in tomato leaves at all measurement temperatures. The concentrations of sugars (sucrose + glucose + fructose) increased in chilled tomato roots but decreased in cucumber roots. Cold exposure changed the activities of various invertase forms (soluble and insoluble acidic and alkaline invertases). The total invertase activity and the ratio of mono- to disaccharides increased. The lower cucumber cold-resistance is related to the higher sensitivity of its photosynthetic apparatus to chilling and, as a consequence, insufficient root supply with sugars.  相似文献   

11.
植物叶片的非结构性碳水化合物(NSC)不仅可以反应植物的碳供应状况,也能反应植物对外界环境的适应策略。利用传统的蒽酮比色法测定了东北3个典型森林生态系统(呼中、凉水和长白山)242种常见植物叶片的非结构碳水化合物,探讨了温带主要森林植物叶片NSC沿纬度梯度的变化趋势及其在物种-生活型-群落间的分布规律。实验结果表明:3个典型森林生态系统植物叶片可溶性糖、淀粉和NSC含量均呈偏正态分布,多数物种的含量偏中低水平;242种植物叶片可溶性糖、淀粉和NSC的平均含量分别为63.31、65.66和128.96 mg/g。在所调查的森林生态系统中,叶片可溶性糖、淀粉和NSC含量在不同生活型中表现各异。此外,乔木植物叶片的可溶性糖、淀粉和NSC含量从北到南呈递增趋势,呼中最低,凉水次之,长白山最高。乔木淀粉含量均表现为落叶树种大于常绿树种,可溶性糖和NSC含量变化趋势复杂。研究结果不仅为阐明东北主要森林生态系统植被碳代谢和生长适应对策提供数据基础,而且对理解植物对未来气候变化的响应机理提供数据支撑。  相似文献   

12.
Lycopersicon esculentum Mill. cv Vedettos and Lycopersicon chmielewskii Rick, LA 1028, were exposed to two CO2 concentrations (330 or 900 microliters per liter) for 10 weeks. Tomato plants grown at 900 microliters per liter contained more starch and more sugars than the control. However, we found no significant accumulation of starch and sugars in the young leaves of L. esculentum exposed to high CO2. Carbon exchange rates were significantly higher in CO2-enriched plants for the first few weeks of treatment but thereafter decreased as tomato plants acclimated to high atmospheric CO2. This indicates that the long-term decline of photosynthetic efficiency of leaf 5 cannot be attributed to an accumulation of sugar and/or starch. The average concentration of starch in leaves 5 and 9 was always higher in L. esculentum than in L. chmielewskii (151.7% higher). A higher proportion of photosynthates was directed into starch for L. esculentum than for L. chmielewskii. However, these characteristics did not improve the long-term photosynthetic efficiency of L. chmielewskii grown at high CO2 when compared with L. esculentum. The chloroplasts of tomato plants exposed to the higher CO2 concentration exhibited a marked accumulation of starch. The results reported here suggest that starch and/or sugar accumulation under high CO2 cannot entirely explain the loss of photosynthetic efficiency of high CO2-grown plants.  相似文献   

13.
Some morphogenetic and metabolic processes were sensitive to a high atmospheric CO(2) concentration during sunflower primary leaf ontogeny. Young leaves of sunflower plants growing under elevated CO(2) concentration exhibited increased growth, as reflected by the high specific leaf mass referred to as dry weight in young leaves (16days). The content of photosynthetic pigments decreased with leaf development, especially in plants grown under elevated CO(2) concentrations, suggesting that high CO(2) accelerates chlorophyll degradation, and also possibly leaf senescence. Elevated CO(2) concentration increased the oxidative stress in sunflower plants by increasing H(2)O(2) levels and decreasing activity of antioxidant enzymes such as catalase and ascorbate peroxidase. The loss of plant defenses probably increases the concentration of reactive oxygen species in the chloroplast, decreasing the photosynthetic pigment content as a result. Elevated CO(2) concentration was found to boost photosynthetic CO(2) fixation, especially in young leaves. High CO(2) also increased the starch and soluble sugar contents (glucose and fructose) and the C/N ratio during sunflower primary leaf development. At the beginning of senescence, we observed a strong increase in the hexoses to sucrose ratio that was especially marked at high CO(2) concentration. These results indicate that elevated CO(2) concentration could promote leaf senescence in sunflower plants by affecting the soluble sugar levels, the C/N ratio and the oxidative status during leaf ontogeny. It is likely that systemic signals produced in plants grown with elevated CO(2), lead to early senescence and a higher oxidation state of the cells of these plant leaves.  相似文献   

14.
15.
16.
以濒危植物七子花二年生幼苗为研究材料,采用盆栽试验方法,研究干旱胁迫和接种丛枝菌根真菌(AMF)处理对幼苗不同器官C、N、P化学计量关系和非结构性碳水化合物(NSC)含量的影响。试验共设计4个处理:对照(CK)、干旱胁迫(D)、接种AMF(AMF)、干旱胁迫和接种AMF(D+AMF)。结果表明: 在干旱胁迫下七子花根系AMF的侵染率显著下降,但接种AMF处理植株的株高、叶片数显著高于未接种处理。接种AMF显著提高了干旱胁迫下植株根、叶可溶性糖和NSC含量及茎、叶淀粉含量,且茎和叶可溶性糖与淀粉比显著下降。干旱胁迫导致植株C含量在根和叶中显著增加,P含量在茎中显著减少;与干旱胁迫相比,胁迫下接种AMF植株根、茎、叶P含量及叶C含量显著提高,而根C、N含量及茎C含量显著降低。胁迫下接种AMF植株根、茎C∶N、C∶P、N∶P和叶N∶P均显著低于单一胁迫处理。NSC与C∶N∶P计量比的相关性分析表明,根、叶P含量与可溶性糖和NSC含量呈显著正相关,茎P含量与淀粉和NSC含量呈显著正相关,各器官N∶P与NSC含量呈显著负相关。综上,干旱胁迫显著抑制了七子花幼苗的生长,接种AMF通过提高植株根和叶的可溶性糖含量、根的可溶性糖/淀粉,增加地上部分淀粉含量,促进P元素吸收和降低各器官N∶P来增强植株耐旱性,从而提高七子花幼苗在干旱环境中的存活率。  相似文献   

17.
The influence of varied supply of phosphorus (10 and 250 mmolP m–3) potassium (50 and 2010 mmol K m–3) and magnesium(20 and 1000 mmol Mg m–3) on the partitioning of dry matterand carbohydrates (reducing sugars, sucrose and starch) betweenshoots and roots was studied in bean (Phaseolus vulgaris) plantsgrown in nutrient solution over a 12 d period. Shoot and rootgrowth were quite differently affected by low supply of P, K,and Mg. The shoot/root dry weight ratios were 4.9 in the control(sufficient plants), 1.8 in P-deficient, 6.9 in K-deficientand 10.2 in Mg-deficient plants. In primary (source) leaves,but not in trifoliate leaves, concentrations of reducing sugars,sucrose and starch were also differently affected by low nutrientsupply. In primary leaves under K deficiency and, particularlyMg deficiency, the concentrations of sucrose and reducing sugarswere much higher than in control and P-deficient plants. Magnesiumdeficiency also distinctly increased the starch concentrationin the primary leaves. In contrast, in roots, the lowest concenfrationsof sucrose, reducing sugars and starch were found in Mg-deficientplants, whereas the concentrations of sucrose and starch wereparticularly high in P-deficient plants. There was a close relationshipbetween shoot/root dry weight ratios and relative distributionof total carbohydrates (sugars and starch) in shoot and roots.Of the total amounts of carbohyd rates per plant, the followingproportions were parti tioned to the roots: 22.7% in P-deficient,15.7% in control, 3.4% in K-deficient and 0.8% in Mg-deficientplants. The results indicate a distinct role of Mg and K in the exportof photosynthates from leaves to roots and suggest that alterationin photosynthate partitioning plays a major role in the differencesin dry matter distribution between shoots and roots of plantssuffering from mineral nutrient deficiency. Key words: Bean, carbohydrates, magnesium nutrition, phosphorus nutrition, potassium nutrition, shoot/root growth  相似文献   

18.
Huber SC  Hanson KR 《Plant physiology》1992,99(4):1449-1454
We have further characterized the photosynthetic carbohydrate metabolism and growth of a starchless mutant (NS 458) of Nicotiana sylvestris that is deficient in plastid phosphoglucomutase (Hanson KR, McHale NA [1988] Plant Physiol 88: 838-844). In general, the mutant had only slightly lower rates of photosynthesis under ambient conditions than the wild type. However, accumulation of soluble sugars (primarily hexose sugars) in source leaves of the mutant compensated for only about half of the carbon stored as starch in the wild type. Therefore, the export rate was slightly higher in the mutant relative to the wild type. Starch in the wild type and soluble sugars in the mutant were used to support plant growth at night. Growth of the mutant was progressively restricted, relative to wild type, when plants were grown under shortened photoperiods. When grown under short days, leaf expansion of the mutant was greater during the day, but was restricted at night relative to wild-type leaves, which expanded primarily at night. We postulate that restricted growth of the mutant on short days is the result of several factors, including slightly lower net photosynthesis and inability to synthesize starch in both source and sink tissues for use at night. In short-term experiments, increased “sink demand” on a source leaf (by shading all other source leaves) had no immediate effect on starch accumulation during the photoperiod in the wild type or on soluble sugar accumulation in the mutant. These results would be consistent with a transport limitation in N. sylvestris such that not all of the additional carbon flux into sucrose in the mutant can be exported from the leaf. Consequently, the mutant accumulates hexose sugars during the photoperiod, apparently as the result of sucrose hydrolysis within the vacuole by acid invertase.  相似文献   

19.
An inhibition of photosynthetic electron transport in susceptible rye following treatment with DDT is accompanied by an increase in dry weight of leaves contacting the pesticide due to an accumulation of fructose, glucose, and to lesser extent, sucrose. Several days after treatment over 40% of the dry weight is due to these sugars. The assimilation of 14CO2 by leaf segments was decreased as a consequence of DDT treatment, but labelling patterns were similar to those for leaf segments from untreated plants. However, if given a prolonged period in darkness before extraction of assimilates the leaf segments from treated seedlings retained 14C in sugars and did not show the substantial decrease in extractable soluble material which was characteristic of untreated controls. In DDT-treated seedlings the translocation of metabolites from leaves to roots was severely impaired.  相似文献   

20.
An analysis of the celluar constituents of the leaves of an aquatic fern, Marsilea vestita, was done after and during the formation of different leaf forms. Land leaves of Marsilea produced almost twice as much dry material, soluble carbohydrate, insoluble protein and soluble peptides compared to submerged leaves on a fresh weight basis, but on a dry weight basis there is tittle difference between the two types of leaves. the submerged leaf soluble nitrogen fraction consisted mostly of ammonia and free amino acids, while that of the land leaf probably con tained mostly peptides. Free arginine was present in large quantities in megaspores and as the plant matured, at the expense of the megaspore, the amount of arginine left in the pool diminished. A correlation was found between soluble sugar increase and leaf elongation, Just prior to the production of submerged leaves the developing leaves contained low levels of protein and soluble sugar, but high levels of soluble nitrogen and an increased amount of starch. A theory which involves metabolism was proposed to account for the leaf form changes in Marsilea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号