首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 645 毫秒
1.
微藻生物柴油技术的研究现状及展望   总被引:8,自引:1,他引:7  
微藻生物柴油是一种优良的可再生新能源,对于解决人类面临的能源短缺和全球变暖两大危机具有潜在的重大战略意义。综述了微藻生物柴油的技术流程、油脂含量较高的微藻藻种、微藻生物柴油的最大技术瓶颈、提高微藻油脂总产量的方法、微藻的大规模培养、微藻的采收和微藻生物柴油的制取等方面的研究现状,并对微藻生物柴油未来的核心研究方向提出了初步见解。  相似文献   

2.
碳减排与可再生能源的开发利用是研究可持续发展的热点,而微藻在此方面具有巨大优势.利用微藻减排CO2合成生物柴油生产原料油脂,对于解决能源短缺和全球变暖具有重大战略意义.将碳减排与微藻生物柴油的制备方法相结合,对微藻转化CO2合成生物油脂的机制,微藻油脂积累的影响因素以及国内外在工业上的研究概况等方面进行综合归纳和评述,并对微藻生物油脂的发展前景进行了展望.  相似文献   

3.
在新能源开发过程中,人们注意到利用微藻生产可再生能源.微藻具有光能自养能力,在吸收储存太阳能的同时,还能固定CO2、减轻温室效应.相比于陆生植物,微藻具有生长快、光合作用效率高、节省土地、可以工业化生产等优点.一些微藻在一定的条件下可以以积累油脂的方式贮存太阳能,人们可以利用油脂来生产生物柴油.目前微藻油脂的产量还较低,成本较高,用微藻油脂生产生物柴油还不具有竞争力.要使微藻油脂生物柴油具有现实意义,必须保证微藻高效率、低成本生产油脂.  相似文献   

4.
利用微藻油脂制备生物柴油因具有重要的战略意义而受到世界各国的重视,成为近年来的研究热点。利用微藻制备生物柴油具有生长周期短、易于大规模培养、能大量吸收CO2及不占用耕地等优点。但是,由于对藻类油脂合成代谢中的调节机制了解不多,导致微藻基因组研究相对滞后,极大地限制了微藻生物能源的大规模开发和利用。随着现代生物技术的发展,通过基因工程、代谢工程等方法调控微藻脂类的合成代谢,提高藻类含油量和生物量已成为可能。概述了微藻中油脂的合成代谢,归纳总结利用基因工程技术提高微藻油脂含量的研究进展,为获得含油量高的工程微藻及微藻制备生物柴油提供技术储备。  相似文献   

5.
为了建立一个高效的高产油微藻诱变育种流程,微藻中油脂含量快速和准确的测定在其中具有重要作用。在本研究中,首先利用低场核磁共振技术,建立了直接检测干藻粉和培养液中小球藻油脂含量的方法,其信号强度与细胞中油脂含量存在特异的线性关系,干藻粉和藻液中油脂含量与信号值拟合的R2均高于0.99,说明该方法用于小球藻油脂含量的检测是准确和可行的。同时该方法与传统油脂测量方法相比,具有快速、简便和准确等优点。但其通量不及尼罗红染色法,因此,我们开发了将尼罗红染色法用于初筛,低场核磁共振技术用于复筛的新型高通量藻种复合筛选方法,并将此筛选方法应用于一种异养高产油原壳小球藻的诱变育种过程中。首先从3 098株诱变藻种中初筛得到108株具有较高油脂含量的藻株,然后利用低场核磁共振技术复筛得到9株高产油性能的藻株,其中一株甘油三酯含量超过20%,比原始藻株提高1倍,培养168 h后培养液油脂浓度达到5 g/L,证明此诱变育种流程不仅提高了筛选的效率还可靠且可行。  相似文献   

6.
小球藻用于生物柴油生产的研究进展   总被引:1,自引:0,他引:1  
目的:对小球藻(Chlorella)生产生物柴油的研究做一综述。方法:查阅近年来国内外小球藻用于生物柴油生产的相关文献,并进行综合分析。结果:微藻生物柴油是具有广泛发展前景的生物柴油,小球藻是目前研究较深入、非常有吸引力的、用于生产生物柴油的微藻藻种,是优质的生物柴油原料,具有其他生物柴油原料不可比拟的优势。随着工程技术的发展和研究的不断深入,探索适宜的小球藻规模化培养方法以期获得质与量兼得的高品质油脂成为研究目标,相信该目标在不久的将来就会实现。结论:小球藻在生物柴油生产领域具有广阔的发展前景。  相似文献   

7.
微藻生物柴油的发展   总被引:2,自引:0,他引:2  
微藻生物柴油是一种具有较大发展潜力的可再生能源,与动、植物为原料制备的生物柴油相比,它有不占用耕地、产油效率高等优点。目前,微藻生物柴油在国内外都有很大发展,产业化的进程也在逐步推进。介绍了高油脂含量微藻的种类、微藻合成油脂的机理研究、微藻的培养技术及微藻生物柴油的产业化现状,并对微藻生物柴油发展中的一些问题进行了分析。  相似文献   

8.
中国科学院青岛生物能源与过程研究所能源藻类资源团队刘天中研究员针对微藻生物柴油生产成本和能耗影响大的微藻油脂提取、微藻生物柴油转化等下游关键技术进行了系列研究,结果发表在《Biore-sourceTechnology》杂志上。  相似文献   

9.
产油微藻具有生长速度快、油脂含量高和抗逆性强等特点,是极具生产潜力的生物柴油的原料.微藻生物柴油技术包括微藻藻种的筛选、大量培养和采收、油脂的提取和生物柴油的制备.该文对近些年产油微藻藻种的筛选和规模化培养的研究进展进行综述.  相似文献   

10.
生物柴油研究进展   总被引:11,自引:0,他引:11  
介绍了国内外生物柴油的发展现状,探讨了我国发展生物柴油的原料来源途径,包括木本油料植物、转基因油料作物、废弃油脂、微生物油脂和微藻油脂等,综述了制备生物柴油的化学法、酶法、超临界法等生产技术及其进展,概括了当前生物柴油主要的品质问题与改性对策,分析了生物柴油副产物的高值化利用策略,指出了我国生物柴油产业化面临的原料、技术和生物炼制方面的主要问题。  相似文献   

11.
The use of organic matter such as vegetable oil to produce biodiesel fuel has been a practical technology for a number of years. However, the search for new technologies and raw materials for biodiesel fuel production has gained increased attention recently because of financial and environmental concerns. Of particular interest are raw materials that are not food-related. Microalgae have gained a great deal of attention as a potential biodiesel raw material because of their high growth rates and ability to accumulate oil, bind carbon dioxide, and remove contaminants from wastewater. This article is a literature review of technologies for biodiesel production from microalgae. The technologies relate to microalgal cultivation, microalgal growth enhancement to simultaneously increase biomass and reduce pollution, the preparation of microalgal biomass for biodiesel production, and biodiesel production itself.  相似文献   

12.
微藻生物柴油的现状与进展   总被引:7,自引:2,他引:5  
微藻生物柴油能够解决目前使用植物原料发展生物柴油面临的耕地不足、气候变化对产量影响大和引起农作物价格上涨等突出问题。通过转基因技术培育“工程微藻”,繁衍能力高,生长周期短,比陆生植物产油高出几十倍,并且能用海水作为其天然培养基进行工业化生产。介绍了微藻生物柴油的优势,高脂质微藻选育,以及工程微藻研究与下游生产工艺的研究现状和进展。  相似文献   

13.
Biodiesel is a renewable fuel produced mostly from edible and non‐edible vegetables, by transesterification of neutral lipids (triacylglycerols). However, vegetable oil‐based biodiesel production competes with food crops for arable land, increasing food prices and leading to biodiversity loss. The production of biodiesel from oleaginous microorganisms – particularly microalgae – has attracted attention due to the higher lipid productivity of these organisms, when compared with vegetables. Several environmental factors – including light, temperature, pH and the presence of nutrients (particularly nitrogen, phosphorus and iron) – influence directly the ability of microalgae to produce and store triacylglycerols and other lipids, and also modulate microalgal growth. Although some environmental factors affect several species in a similar manner, differential responses between species are frequent, highlighting the importance of identifying optimal cultivation conditions for each species, to balance growth and lipid productivity for biodiesel production. Here, we reviewed the particular influence of the physicochemical and nutritional factors on the growth and lipid productivity of different green oleaginous microalgae species.  相似文献   

14.
基于模糊综合评价的产生物柴油微藻藻种筛选   总被引:3,自引:0,他引:3  
产生物柴油微藻大规模培养对微藻藻种的性能要求较高。从丰富的藻种资源中筛选到高品质的藻种一直是个亟待解决的问题。通过研究3株产油微藻,从系统工程的角度综合整个微藻生物柴油的技术工艺,建立了以生长速率、含油率、油脂组成等18种指标的二级评价体系,采用二级模糊综合评价的模糊数学方法对产生物柴油微藻的性能进行综和分析、筛选。最终确定供评价的三株微藻二级模糊综合评价集:小球藻LICME001[0.360 0.315 0.192 0.069 0.064],微绿球藻LICME002[0.277 0.331 0.236 0.104 0.052]和葡萄藻LICME003[0.325 0.371 0.232 0.071 0.060]。根据最大隶属度法则分析得:小球藻LICM001株产生物柴油微藻品质为优等级别,适合产生物柴油的技术工艺要求;微绿球藻LICME002和葡萄藻LICME003为良等级别的产生物柴油藻种。  相似文献   

15.
Microalgae have the ability to mitigate CO2 emission and produce oil with a high productivity, thereby having the potential for applications in producing the third-generation of biofuels. The key technologies for producing microalgal biofuels include identification of preferable culture conditions for high oil productivity, development of effective and economical microalgae cultivation systems, as well as separation and harvesting of microalgal biomass and oil. This review presents recent advances in microalgal cultivation, photobioreactor design, and harvesting technologies with a focus on microalgal oil (mainly triglycerides) production. The effects of different microalgal metabolisms (i.e., phototrophic, heterotrophic, mixotrophic, and photoheterotrophic growth), cultivation systems (emphasizing the effect of light sources), and biomass harvesting methods (chemical/physical methods) on microalgal biomass and oil production are compared and critically discussed. This review aims to provide useful information to help future development of efficient and commercially viable technology for microalgae-based biodiesel production.  相似文献   

16.
As a potential source of biomass supplies, cassava (Manihot esculenta Crantz) has been studied for bioethanol production, but not for the production of biodiesel. In this study, we used cassava hydrolysate as an alternative carbon source for the growth of microalgae (Chlorella protothecoides) which accumulated oil in vivo, with high oil content up to 53% by dry mass under a 5-L scale fermentation condition. The oils were extracted and converted into biodiesel by transesterification. The biodiesel obtained consisted of mainly unsaturated fatty acids methyl ester (over 82%), cetane acid methyl ester, linoleic acid methyl ester, and oleic acid methyl ester. This work suggests the feasibility of an alternative choice for producing biodiesel from cassava by microalgae fermentation. We report herewith the optimized condition for the fermentation and for the hydrolysis of cassava as the carbon source.  相似文献   

17.
生物柴油原料资源高油脂微藻的开发利用   总被引:16,自引:1,他引:15  
生物柴油作为化石能源的替代燃料已在国际上得到广泛应用。至今生物柴油的原料主要来自油料植物, 但与农作物争地的情况以及较高的原料成本限制了生物柴油的进一步推广。微藻作为高光合生物有其特殊的原料成本优势, 微藻的脂类含量最高可达细胞干重的80%。利用生物技术改良微藻, 获得的高油脂基因工程微藻经规模养殖, 可大大降低生物柴油原料成本。介绍了国内外生物柴油的应用现状, 阐述了微藻作为生物柴油原料的优势, 对基因工程技术调控微藻脂类代谢途径的研究进展, 以及在构建工程微藻中面临的问题和应采取的对策进行了综述和展望。  相似文献   

18.
Gong Y  Jiang M 《Biotechnology letters》2011,33(7):1269-1284
Due to negative environmental influence and limited availability, petroleum-derived fuels need to be replaced by renewable biofuels. Biodiesel has attracted intensive attention as an important biofuel. Microalgae have numerous advantages for biodiesel production over many terrestrial plants. There are a series of consecutive processes for biodiesel production with microalgae as feedstock, including selection of adequate microalgal strains, mass culture, cell harvesting, oil extraction and transesterification. To reduce the overall production cost, technology development and process optimization are necessary. Genetic engineering also plays an important role in manipulating lipid biosynthesis in microalgae. Many approaches, such as sequestering carbon dioxide from industrial plants for the carbon source, using wastewater for the nutrient supply, and maximizing the values of by-products, have shown a potential for cost reduction. This review provides a brief overview of the process of biodiesel production with microalgae as feedstock. The methods associated with this process (e.g. lipid determination, mass culture, oil extraction) are also compared and discussed.  相似文献   

19.
污水资源化、二氧化碳减排及微藻生物柴油是当前能源与环境领域的前沿课题。以下围绕污水及烟道气资源化培养产油微藻的培养体系,就藻种、营养条件、培养方式、培养环境及微藻生物反应器等影响产油微藻培养的因素研究进展进行了综述。在综述的基础上提出:由于微藻具有特殊营养方式,通过藻种筛选、微藻营养条件和培养环境的优化以及高效光生物反应器和生产工艺等的创新,可利用污水进行产油微藻生产,以获得生物柴油等高附加值产品,实现微藻生物能源、污水资源化处理和CO2减排三者高度耦合的产油微藻生产体系,从而减少微藻培养费用及污水处理费用,因此,该体系具有重要的环境、社会、经济价值和商业化应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号